
MORADI, ET AL.: BEYOND THE SANDBOX: REAL-WORLD FL 1

Beyond the Sandbox: Real-World Federated
Learning for MRI Prostate Cancer Detection

Ashkan Moradi1

ashkan.moradi@ntnu.no

Bendik Skarre Abrahamsen1

bendik.s.abrahamsen@ntnu.no

Jeroen Geerdink2

j.geerdink@zgt.nl

Derya Yakar3

d.yakar@umcg.nl

Henkjan Huisman4

henkjan.huisman@radboudumc.nl

Tone Frost Bathen1,5

tone.f.bathen@ntnu.no

Mattijs Elschot1,6

mattijs.elschot@ntnu.no

1 Department of Circulation and
Medical Imaging, Norwegian
University of Science and
Technology, Trondheim, Norway

2 Department of Information and
Organization, Hospital Group
Twente, Almelo ,The Netherlands

3 Medical Imaging Center,
Department of Radiology,
University Medical Center
Groningen, The Netherlands

4 Diagnostic Image Analysis Group,
Department of Medical Imaging,
Radboud University Medical Center,
Nijmegen, The Netherlands

5 Department of Radiology and
Nuclear Medicine, St. Olavs Hospital,
Trondheim University Hospital, Norway

6 Central Staff, St. Olavs Hospital,
Trondheim University Hospital, Norway

Abstract

The success of computer-assisted methods based on deep learning for the early detec-
tion of prostate cancer (PCa) has attracted significant attention in recent years. Successful
training of such models, however, requires access to large amounts of patient data. This
data is typically not available at a single institution, and sharing patient-specific informa-
tion raises privacy concerns. Federated learning (FL) thus emerges as a viable solution
that enables decentralized model training without the need to share patient data. In this
study, we design and implement a real-world FL solution for the detection of clinically
significant prostate cancer in biparametric MRI. We benchmark the performance by con-
ducting centralized model training and simulated FL experiments using the Flower FL
and NVIDIA FLARE frameworks, and compare these results with those from a real-
world FL solution implemented using the Rhino Federated Computing platform. The re-
sults showed that FL-based models outperformed local models and achieved performance
comparable to the centralized model. Furthermore, the real-world FL model closely
replicated the performance of simulated FL models and demonstrated that the choice of
FL implementation framework had minimal impact on performance across external test
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sets. Additionally, we provided a time performance analysis for simulated and real-world
FL scenarios, highlighting the longer execution time and challenges in implementing FL
in practice. Code available here https://github.com/AshknMrd/moradi2025realworldFL/.

1 Introduction

The high global mortality rate associated with prostate cancer (PCa) underscores the im-
portance of detecting clinically significant prostate cancer (csPCa) [16, 23]. Recent guide-
lines from the European Association of Urology recommend magnetic resonance imaging
(MRI) as the initial diagnostic test for PCa prior to biopsy [5]. Consequently, MRI analysis
has become a critical component of the PCa diagnostic pathway [25]. Simultaneously, ad-
vances in medical technology and imaging have led to an exponential increase in available
data, driving the adoption of deep learning-based image analysis models in clinical practice.
However, training these models to achieve high accuracy requires access to large, diverse
datasets, which are often unavailable at individual institutions. As a result, collaboration
through data sharing is necessary but raises significant privacy concerns. Federated learn-
ing (FL) has emerged as a promising solution, enabling distributed model training without
sharing private data [10]. In this study, we propose an FL solution for csPCa detection us-
ing biparametric MRI (bpMRI) data. We evaluate the performance of FL across various
frameworks in both simulated and real-world environments. Their performance is compared
to single-institution models, from now referred to as local models, and centralized models,
with a detailed analysis of associated challenges and impacts.

In healthcare applications, where protecting patient data is essential, FL holds great
promise. By enabling collaborative model training across multiple clients, FL can enhance
diagnostic accuracy and clinical outcomes [4]. Moreover, by eliminating the need for data
centralization, FL offers practical solutions for digital health, with successful applications in
various oncological contexts, including breast, lung, and prostate cancer [1]. FL frameworks
have been applied in healthcare for brain tumor segmentation, demonstrating the generaliz-
ability of FL models and addressing challenges related to data sharing among institutions
in both simulated and real-world settings [13, 21, 22]. In a simulated setting, a federated
approach for training a lung nodule detection model on horizontally distributed data is in-
vestigated in [9], while [26] introduces a customized FL framework for identifying csPCa
and classifying skin lesions. Similarly, [8] proposes an FL-based method for prostate cancer
diagnosis and Gleason grading using pathological images. Recent studies have focused on
the technical developments and potential of FL in both simulated and real-world healthcare
settings [15, 24]; however, evaluating its effectiveness, model performance, and generaliz-
ability in specific real-world oncological contexts remains a challenge.

In the prostate domain using MRI data, a simulated FL framework was implemented
for automated classification of csPCa, addressing cross-client variation by mapping raw im-
ages from individual clients onto a shared image space prior to federated training [27]. A
real-world implementation of prostate gland segmentation on T2-weighted MRI data was
presented in [19], while [14] proposed a versatile FL framework for real-world cross-site
training and evaluation of customized deep learning-based MRI PCa detection. This ap-
proach collaboratively trains a 3D UNet-based model with a region-of-interest classification
head on diverse annotated prostate MRI data for lesion classification and detection. Kades
et al. [7] introduced a framework for clinical implementation of FL based on a standard-
ized digital infrastructure across multiple university hospitals. This framework enables the
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adaptation of nnU-Net [6] for FL settings using the Kaapana framework [20], and evaluates
it for MRI prostate segmentation. Moradi et al. [11, 12] benchmarked the impact of sim-
ulated FL environments and configuration optimization in MRI csPCa detection. However,
the real-world implementation and its challenges have not been addressed. In this work, we
investigate such real-world FL implementations and compare them with two simulated FL
frameworks based on Flower FL [2] and NVIDIA FLARE (NVFlare) [17]. Addressing a gap
in the literature, we evaluate the impact of real-world FL on both patient- and lesion-level
accuracy of csPCa detection, with the main contributions summarized as follows:

• Design and implementation of a deep learning-based solution, a 3D U-Net model ar-
chitecture, for detecting csPCa on bpMRI data in a federated setting.

• Comprehensive evaluation of the model performance at both the patient and lesion
levels on independent test sets, with comparisons among locally trained models, a
centralized approach, and simulated and real-world FL models.

• Investigation of real-world FL effectiveness compared to simulated implementations
across different frameworks, highlighting key results in performance and time, and
addressing implementation challenges.

2 Materials and Method
This study proposes a deep learning-based solution for detecting csPCa that trains a U-Net
model in an FL setting on bpMRI data. The bpMRI dataset comprised T2-weighted images,
high b-value diffusion-weighted images, and apparent diffusion coefficient maps. We con-
ducted simulated FL experiments using the Flower FL [2] and NVFlare [17] frameworks,
along with a real-world FL model training on the Rhino Federated Computing Platform
(FCP). Simulated FL means that the clients are in the same cloud infrastructure, even if they
are on different machines not placed in different geographical locations or institutions. In
contrast, real-world FL involves clients in different geographical locations within different
cloud infrastructures. An overview of the differences between the simulated and real-world
implementations of the FL experiments is provided in Figure 1.

2.1 Methodology
The csPCa is defined as ISUP grade ≥ 2 cancer lesions.1 To perform lesion detection, the
server assigns clients a global model designed using nnU-Net [6], which configures a 3D U-
Net-based pipeline tailored to the input data geometry and available computational resources.
Each client uses T2-weighted, high b-value, and apparent diffusion coefficient sequences
as input and trains its local model to generate a voxel-level probability map indicating the
likelihood of each voxel being cancerous or non-cancerous. Following the Prostate Imaging:
Cancer Artificial Intelligence (PI-CAI) Grand Challenge guidelines [18], these probability
maps are then post-processed to extract lesions and predict the patient-level likelihood of
harboring csPCa.

We designed three training setups: local and centralized training, simulated FL, and
real-world FL. In local training, each client trains its model independently on its own data
for E local epochs. Centralized training aggregates data from all clients at a single site,

1International Society of Urological Pathology (ISUP)
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Figure 1: Comparison of real-world and simulated federated learning topologies.

where a nnUNet [6] model is trained for E epochs. For simulated FL, we used two clients
hosted on separate machines, each equipped with an NVIDIA A40-48GB GPU, within the
local cloud infrastructure at the Norwegian University of Science and Technology (NTNU).
Training begins with the central server, located within the same cloud infrastructure as the
clients, distributing an initial model to all participating clients. This model is identical to
the one used for local training. Each client then trains the model on its own data for E local
epochs and transmits the updated model parameters back to the server. Using the FedAvg
algorithm [10], the server aggregates local models into a global model and redistributes it
to the clients to initiate another round of training. This process was iterated for R federated
rounds to progressively refine the global models. The entire FL simulation was conducted
within a secure on-premises local cloud, using Flower [2] and NVFlare [17], two widely
recognized FL frameworks. Additionally, we conducted a real-world implementation of FL
model training using the Rhino FCP. In this setup, client C1 was hosted by NTNU in Norway
on an NVIDIA A40-48GB GPU, and client C2 was hosted by Ziekenhuis Groep Twente in
the Netherlands on an NVIDIA RTX A5000-24GB GPU. The Rhino client configurations
were installed on each site, and both clients were connected to the Rhino Server, hosted on
Amazon Web Services (AWS). The training scripts for the Rhino clients were implemented
based on NVFlare [17], as required by Rhino FCP, and the experiments were conducted via
the Rhino FCP interface. After training, the model parameters were downloaded locally and
evaluated on various test sets.

For real-world FL implementation, established platforms such as Rhino FCP are prefer-
able for production systems that handle private data, as they provide off-the-shelf software
and infrastructure to facilitate deployment, along with validated implementations of privacy-
preserving mechanisms. In contrast, relying on ad hoc or purely open-source setups in-
creases the risk of implementation errors and insufficient safeguards, which can compromise
data confidentiality.

2.2 Experiments Design and Evaluation
The local and centralized experiments were conducted with E = 500 local epochs, where
each epoch is defined as a fixed number of training steps over mini-batches. This number of
epochs was chosen to ensure client convergence. In FL experiments, each client performed E
local epochs, shared model updates with the server, and repeated this process for R federated
rounds. To ensure a fair comparison between the local and FL models, we kept E × R con-
stant and equal to the number of iterations used in the local experiments. Accordingly, the FL
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Figure 2: Comparison of average validation PI-CAI scores across five folds for local models
(C1, C2), centralized training (CENT), simulated FL with Flower (FLWR) and NVFlare
(NVFR), and real-world FL with Rhino FCP (RHNO).

setup used E = 25 local epochs and R = 20 federated rounds. To allow direct comparisons be-
tween the local and FL models after each round, we saved the local and centralized models at
intervals of 25 epochs. All scenarios were evaluated using five-fold cross-validation, where
each fold used a different subset of the data for validation. The ensemble of the resulting five
models was then evaluated on various test sets.

To evaluate the trained models, we followed the PI-CAI Grand Challenge guidelines [18].
The area under the receiver operating characteristic curve (AUROC) was used to assess
patient-level diagnostic performance, while average precision (AP) was employed to eval-
uate lesion-level detection performance. AP summarizes the precision–recall curve as the
weighted mean of precision values at each decision threshold. Overall model performance
for csPCa detection was quantified using the PI-CAI score, calculated as (AUROC + AP)/2,
which combines both patient- and lesion-level metrics. The process of computing the patient-
level metric from voxel-level predictions and extracting meaningful lesions from raw outputs
are adopted from [3].

Lesion Extraction: Lesion extraction was performed in accordance with the PI-CAI
Grand Challenge guidelines [18]. The voxel-level predicted probability map output from
the model contains voxel values representing the likelihood of csPCa. These probability
maps undergo post-processing to extract lesion candidates, where dynamic thresholding is
employed to select the candidates. In this method, the threshold is adjusted based on the dis-
tribution of probability values within each probability map. After thresholding, connected
component analysis is performed to group neighboring voxels that exceed the threshold into
distinct 3D clusters. To further refine lesion extraction, these potential lesions undergo size
filtering, and the top k lesions are selected based on confidence scores. Further details re-
garding the process are provided in the supplemental materials, Section 1.1.

3 Experimental Results
We utilized the public training and development dataset from the PI-CAI Grand Challenge,
which comprises 1500 annotated bpMRI scans from patients at three different centers. FL
experiments were conducted with two clients: client C1 used data from Radboud University
Medical Center, consisting of 800 male patients (mean age: 64.6±7.1 years; range: 35–92),
and client C2 used data from Ziekenhuis Groep Twente, comprising 350 male patients (mean
age: 66.6±7.4 years; range: 43–89). Data from the third center, University Medical Cen-
ter Groningen (UMCG), containing 350 male patients (mean age: 66.9±6.8 years; range:
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Table 1: Dataset distribution for csPCa detection across different clients.

Scenario Dataset Detail Vendor

Local C1 800 (640/160 - train/val) Siemens
Local C2 350 (280/70 - train/val) Siemens
Centralized 1150 (920/230 - train/val) Siemens
UMCG 350 (test) Siemens & Philips
In-House 200 (test) Siemens

45–83), was reserved as an external test set for model evaluation. Additionally, we used an
independent in-house dataset of 200 male patients (mean age: 64.4±6.9 years; range: 44–76)
to further evaluate the trained models. This dataset included patients that were part of the
hidden test set in the PI-CAI challenge. For all patients in the independent in-house dataset,
the presence of csPCa lesions was confirmed through histopathology, and the absence of
csPCa in patients without biopsy or with negative biopsy results was verified via a 3-year
follow-up. Each client used the split of 80/20 for training and validation. In the centralized
experiment, data from both clients were combined at a single site, with the training and vali-
dation sets defined as the union of the respective sets from both clients. The data distribution
details is summarized in Table 1.

The experiments were performed using Python 3.10, Flower 1.17, nnU-Net 2.5, CUDA
12.4, running on Ubuntu 22.04.5 LTS. For both the simulated and real-world FL implemen-
tations using NVFlare, version 2.5 was used. For all experiments, the data was pre-processed
by resampling all data to the same resolution (0.5mm × 0.5mm × 3.0mm/voxel) and cropping
to 20 slices, each of size 256 × 256 voxels. We employed the default nnU-Net configuration
as the Stochastic Gradient Descent optimizer with an initial learning rate of 0.01, momentum
of 0.99, and FedAvg uses weighted averaging based on each client’s local dataset size. The
batch size was 3, and each epoch used 250 training steps over mini-batches. Additionally, the
MR images were normalized independently using instance-wise z-score normalization. Fol-
lowing the PI-CAI Grand Challenge guidelines [18] and baseline models, the model training
experiments employed cross-entropy loss and evaluated model performance using the PI-
CAI score, which includes both patient- and lesion-level evaluation.

3.1 Results and Discussion
Figure 2 shows the average validation PI-CAI scores across five folds for both clients. The
mean of these two curves, as shown in Figure 3, is used as the metric to determine the
best-performing model. As illustrated in Figure 3, the optimal performance occurs early
in the total number of iterations: C1 at E=100, C2 at E=75, centralized training at E=150,
simulated Flower FL at R=6, simulated NVFlare FL at R=5, and real-world Rhino FL at
R=5. The optimal models are then selected and evaluated on the in-house and UMCG test
sets. Specifically, we report the performance of the ensemble model, created by averaging
the prediction maps of five models trained on separate folds at the optimal round/epoch.

To examine the patient- and lesion-level performance of the ensembled best models,
Tables 2 and 3 present the AUROC and AP metrics across various scenarios on the in-house
and UMCG test sets, respectively. These results show that FL-based models outperform
locally trained models and closely match the performance of centralized model, without
requiring data sharing between institutions. This consistent improvement in performance
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Figure 3: Average validation PI-CAI scores across clients and folds per round for local
(C1, C2) and centralized (CENT) models, simulated FL with Flower (FLWR) and NVFlare
(NVFR), and real-world FL (RHNO). Dashed lines indicate the best performing round for
each model. Each round corresponds to 25 local epochs; thus, a peak at R=4 equals E=100
for local and centralized models.

Table 2: Performance metrics and 95% confidence interval for the ensemble of the 5-fold
cross-validated best models, evaluated on the in-house test set.

Model AUROC AP PI-CAI Score

Local C1 0.89 [0.85,0.94] 0.48 [0.38,0.60] 0.69 [0.62,0.76]
Local C2 0.92 [0.87,0.95] 0.36 [0.25,0.48] 0.64 [0.58,0.71]
Centralized 0.91 [0.86,0.95] 0.53 [0.41,0.65] 0.72 [0.65,0.79]
Flower FL 0.90 [0.85,0.94] 0.54 [0.43,0.66] 0.72 [0.65,0.79]
NVFlare FL 0.92 [0.88,0.96] 0.54 [0.42,0.66] 0.73 [0.66,0.80]
Rhino FL 0.90 [0.85,0.94] 0.53 [0.41,0.66] 0.72 [0.65,0.79]

compared to the local model across various test sets demonstrates the generalizability of the
FL models when evaluated on unseen data. These tables also demonstrate that real-world FL
implementations can achieve performance comparable to simulated FL models, and that the
choice of FL framework has minimal impact on performance.

To further assess the generalizability of the trained models, Figure 4 presents the ensem-
bled PI-CAI scores of different models evaluated on the in-house and UMCG test sets. The
FL models consistently demonstrate strong generalizability, outperforming the local mod-
els on both unseen test sets in nearly every round. Although the same approach was used
to select the best model in all experiments based on validation performance, the selected
checkpoint for the centralized model at E=150 does not correspond to its peak performance
on the external test sets. This may explain why, in Table 2, the centralized model performs
slightly worse than the FL models. Comparing the results in Tables 2 and 3, it is evident that
performance is lower on the UMCG test set, which may be due to differences in scanners
and image acquisition protocols. In addition, since both the simulated FL with NVFlare and
the real-world FL use NVFlare as the implementation tool, we expected to observe more
identical performances; however, such marginal performance differences may be due to the
use of different seed numbers in the implementations. The performance of the real-world FL
implementation (Rhino FL) is comparable to that of the simulated FL approaches (NVFlare
FL and Flower FL) and generally surpasses the non-federated local models (Local C1 and
Local C2) across all metrics.

We also analyzed the time required to complete each round in the successful FL exper-
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Table 3: Performance metrics and 95% confidence interval for the ensemble of the 5-fold
cross-validated best models, evaluated on the UMCG test set.

Model AUROC AP PI-CAI Score

Local C1 0.71 [0.65,0.76] 0.31 [0.23,0.41] 0.51 [0.44,0.58]
Local C2 0.71 [0.65,0.77] 0.29 [0.20,0.39] 0.50 [0.43,0.57]
Centralized 0.75 [0.69,0.80] 0.36 [0.28,0.47] 0.56 [0.49,0.63]
Flower FL 0.72 [0.66,0.77] 0.34 [0.24,0.43] 0.53 [0.46,0.59]
NVFlare FL 0.73 [0.67,0.79] 0.35 [0.27,0.46] 0.54 [0.47,0.62]
Rhino FL 0.72 [0.66,0.77] 0.33 [0.25,0.44] 0.52 [0.46,0.60]
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Figure 4: Comparison of the ensembled PI-CAI scores for trained models evaluated on var-
ious test sets. Dashed lines indicate the round at which the average validation PI-CAI score
across clients and folds peaked for each curve.

iments. Figure 5 (left) represents the average time per round and its variation for simulated
FL using Flower and NVFlare, and real-world FL using Rhino FCP. As expected, the real-
world FL setup required more time to complete each round due to the geographical separa-
tion between the server and clients, and because data transfers had to pass through different
client-side firewalls. Meanwhile, the simulated FL experiments exhibited shorter and more
consistent round completion times, due to stable connections within the on-premises cloud
system where all components were co-located. To examine the time analysis and investigate
the cause of the longer rounds and their variability in the real-world FL, Figure 5 (right)
shows the average time taken to upload model updates from each client to the server for the
NVFlare-based FL models. The delay appears to be caused by an unstable connection be-
tween the server and client C2. However, we observed similar issues with client C1 as well,
which might be due to server-side congestion or NVFlare 2.5 connectivity issues that appear
in the real-world implementation requiring external connectivity. Such problems might not
exist in other versions. We note that the subsequent release of NVFlare 2.6 brought signif-
icant communication enhancements, including native tensor transfer and model streaming
improvements, which address known sources of network strain and may resolve such issues.

Figure 6 demonstrates the qualitative performance of different models in detecting csPCa
on patients from the in-house test set. Each row represents one test case, while each column
shows the image and prediction for different models as an overlay. In the first case, all local,
centralized, and federated models successfully predict the csPCa lesion, comparable to the
ground truth (GT) lesion. However, in the second case, clients trained separately using only
their own local data fail to detect the lesion, while employing the FL technique generalizes
the trained model and enables successful detection of the csPCa lesion.

A primary limitation of this study is the exclusive use of publicly available data for model
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Figure 5: Time analysis per training round for simulated FL based on Flower (Sim-FL-
FLWR), simulated FL based on NVFlare (Sim-FL-NVFR), and real-world FL based on
Rhino (RW-FL).
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Figure 6: Qualitative performance comparison of predictions from different models on test
patients from the in-house test set. Each row shows the lesions predicted by different models
for a single test case.

training, in accordance with agreements among participating partners during the proof-of-
concept phase. Incorporating private data and involving more clients in future work may en-
hance the model’s generalizability and clinical applicability. The limited number of clients
in this experiment reflects the constraints of implementing the FL scenario in a real-world
setting. Adding more clients would require involving additional partners, establishing new
agreements, and performing extra hardware installations and client configurations, efforts
that demand more time and financial resources and are planned for future work. Further-
more, due to the use of only public data, more advanced privacy-preserving techniques, such
as differential privacy, were not explored. Another major challenge, not captured in the time
analysis, was the instability of the connection between the server and clients during the real-
world FL experiment. Although the FL process was successfully initiated, the connection
with one client was lost after several rounds, resulting in a timeout and experiment failure.
Ensuring more stable connections, from the hardware and software perspective, and allocat-
ing experiment-specific server resources may help mitigate such issues.

4 Conclusion

This work proposed a real-world implementation of FL for detecting csPCa using bpMRI
data. We evaluated the effectiveness, performance, and implementation challenges of real-
world FL in comparison with local, centralized, and simulated FL models. The FL-based
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models outperformed local models and achieved performance comparable to that of the
centralized model, without requiring data sharing. Furthermore, the real-world FL model
closely replicated the performance of simulated FL models and demonstrated that the choice
of implementation framework had minor impact on performance across external test sets.
Additionally, time analysis showed longer execution times in real-world FL scenario due to
FL contributors being deployed in separate cloud environments.
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