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Abstract

Having potholes detected and repaired is essential for road maintenance and unin-
terrupted transport. Generations of researchers and engineers have been innovating on
using computer vision and sensors to detect potholes, however, gaps in knowledge remain
in the lack of robustness of detectors trained with RGB images in varied environments
and the inability to harness depth in detecting potholes with monocular images. This
research proposes a solution by fusing predictions made by RGB-trained detectors and
monocular depth estimation. The solution first orthorectifies the pavement from perspec-
tive RGB images. It then receives predictions from RGB-trained detectors and a depth
detector enabled by DINOvV2 independently. These predictions are subsequently fused by
weighted bounding box fusion and have masks predicted by Segment Anything. Whereas
RGB-trained detectors perform well in test sets within the training context, they show a
drastic loss of performance in out-of-context situations, such as in images taken on differ-
ent roads in more challenging environmental conditions. Fusing predictions with depth
enhances F1 scores by 16% to 81% in out-of-context situations, reinforcing detection
robustness. This solution paves the way for further research on expanding detection to
motorways and overcoming shadows in images.

1 Introduction

Well-maintained roads are crucial for providing reliable connectivity. Road conditions have
traditionally been assessed by engineering judgement, while since the 1970s automation be-
gan with computerised analytical methods on measurements and priority setting [29]. The
current practice commonly measures road defects with automatic scanning and vision pro-
cessing, such as SCANNER and TRACS in the UK. They produce features such as transverse
profile (rut depth), longitudinal profile (bumpiness), cracks and surface textures [6] for cal-
culating the Road Condition Index and assigning maintenance priorities. The current survey
techniques however cannot identify potholes as a specific defect or record their deterioration
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[5]. These vehicles are currently deployed only on local and trunk roads and do not cover
unclassified roads.

The strengths and the room for improvement of the current practice highlight the need for
robust pothole detection. When using computer vision technique on RGB images, potholes
are detected when the solution locates and produces bounding boxes (bbox) and segmen-
tation masks within the bbox to indicate where a pothole is in an image, and this process
needs to be sufficiently robust to be reliable in images taken in variable scenes and con-
ditions. This research explores the possibility of fusion of dual-pass results, where each
image is read twice at inference by two different detectors and their results are combined to
produce the final predictions. Each image is read by a deep learning object detector trained
on annotations made on RGB images (RGB-trained models), and once by a detector util-
ising monocular depth estimation designed in this research, to be further discussed in later
sections. This research concretely makes the following contributions:

¢ Improve the generalisation of traditional RGB-trained models across different road

scenes and environmental conditions by incorporating monocular depth estimation.
This is achieved with monocular camera images, without special data modalities such
as stereo images or LiDAR.

* Provides extra interpretability of the pothole detection process by estimating depths

from an image and extracting regions of greater depths in an image.

 Performs experiments to evaluate the vulnerability of out-of-context detection by using

images of varied geolocation and environmental conditions

2 Related Work

Pothole detection has been thoroughly investigated by researchers using different techniques
and data modalities. Fusion of different modalities and detection models has been widely
investigated in more general domains. Relevant previous work is synthesised as follows.

2.1 Pothole Detection

Deep learning was the most prevalent technique in recent research. A common setup in-
volved collecting images with cameras or smartphones, annotating the images, and training
object detection models [2, 21]. Smartphone footage may also be used to locate or validate
potholes measured with sensor data [23, 35]. Datasets were available publicly on Kaggle and
Roboflow and offered for benchmarking in Road Defect Detection Dataset [18] for experi-
ments and prototyping [11, 14, 33]. Deep learning could alternatively be used to segment
point clouds [32] or images to help reconstruct and make measurements on point clouds
[25, 37].

Another common stream of research utilised depth differences in detecting potholes.
Some research commenced with self-collected LiDAR [8, 22], while others began on stereo
image pairs [7, 25] or drone images [4] to reconstruct point clouds. The 3D point clouds
would then search for the pavement by line or plane fitting [4, 7] and segment points below
the surface by thresholding. The 3D point clouds also enable contour plotting, pothole size
estimation and mesh reconstructions [37].

Other research relied on sensor data. They typically measured vibrations and movements
with accelerometers and gyroscopes and detected potholes with machine learning techniques
such as Artificial Neural Network [24] or Long Short-Term Memory [35]. The moments
where the vehicle experienced potholes can be correlated with the GPS trajectory and/or
video footage to obtain the pothole locations.
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2.2 Fusion

Fusion is commonly employed to maximise positive detection of a dataset and minimise false
detections. This is motivated by having limited labelled data, needing to detect objects with
difficult physical presence (such as occlusion, small in size, relationship between objects) in
complex backgrounds and detecting objects among highly varied images. Sometimes objects
require different detection models or even detection methods to be captured. Out-of-context
degradation [9, 26] and constraints in computing resources [9, 27] also contribute to the need
to employ multiple detection and fusion for the final prediction results.

Fusion techniques can be divided by the stage ensembling occurs. The earliest stage en-
sembling occurs is at the input data, by creating multiple candidate regions [9] or augmented
images [34] for the downstream classifier. Some ensembling takes place at the feature level,
where the solution combines features obtained from different models (or modalities) to in-
fluence downstream detection. Earlier research combined more primitive features such as
contrast and histogram [26], while more recent research may aggregate or cluster features
[27, 31] and saliency maps [17], or employ self and cross attention to tokens [19].

Ensembling can alternatively happen towards the final prediction. Some researchers
opted for fusion at the detection head before finalising the predictions, such as combining
multiple prediction verdicts on shared region proposals [1], region proposals in a teacher-
student network [10] and features at the instance and pixel level [3]. The majority of the
literature, however, ensembled predicted instances at the output. This removed the need
to interfere with ithe internal structures of detection models and provided flexibility to the
models used. Typical ensembling techniques included voting [13, 30], non-maximum sup-
pression [27, 36] and weighted bbox fusion [1, 28].

The current landscape of pothole detection reveals several gaps in knowledge. When
deep learning is used, the current practice overwhelmingly relies on training some images
and testing other images in the same dataset. The tolerance of road scene variation relies
on the variability of images in the dataset, which is commonly limited to hundreds or a few
thousand images. In road scenes at different locations or real-world environmental condi-
tions such as fallen leaves and standing water after rain, RGB-trained detectors have not been
shown to maintain consistent performance, and may in fact perform significantly worse. This
poor generalisation inhibits more widespread adoption in the industry.

On the patterns adopted to detect potholes from the surrounding pavement, the current
research landscape requires point clouds collected on-site or reconstructed from stereo cam-
eras in order to utilise depth for pothole detection. The otherwise indiscriminate use of
supervised training with RGB image annotation negates the fact that potholes are fundamen-
tally potholes because they form depressions in a continuous surface of road pavement, not
because they possess a rough texture that an object detector can pick up. The demands for
generalisation and understanding depths inspire this research.

3 Methodology

This research project assumes the use of monocular RGB images as they are vastly prevalent
in road vehicles. The wide availability of RGB images helps data collection and facilitates
wider adoption in infrastructure maintenance. The proposed solution uses RGB images to
detect potholes with RGB patterns and depth.
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Figure 1: The overall solution to detect potholes from RGB images with two passes

3.1 The Overall Solution

The overall solution is depicted in Figure 1. In preparation, the solution first rotates im-
ages to an orthonormal projection to correct for perspective distortion by inverse perspective
mapping [16]. Object detectors will be trained with annotated RGB orthorectified images
at the instance segmentation level by YOLOv11x-seg [12]. The pothole detector via depth
(depth detector) utilises monocular depth estimation powered by DINOv2 with a ViT-g/14
backbone fine-tuned on the NYU-depth dataset [20]. The training setup of the RGB-trained
models and the design of the whole depth detector will be explained in detail.

In inference, the first pass on the orthorectified testing images predicts instances from the
RGB-trained model. The second pass through the pre-trained depth estimator returns depth
maps with pixel-wise estimated depth. The depth detector then corrects the depth maps with
a fitted plane and extracts features of varying size with a feature pyramid in 3 scales. The
bboxes that surround the features are fed into Segment Anything [15] to refine masks and
bboxes that represent potholes detected by estimated depths. The predicted bboxes from
the RGB-trained model and the depth detector are fused by weighted bounding box fusion
(WBF) [28] and are processed by Segment Anything to generate the final masks and bboxes.

3.2 The RGB-trained Models

Deep learning object detectors are trained with self-collected and prepared monocular RGB
images to make inferences. The experiment first trains weights with the two training datasets,
West Road (WR) and Tennis Court Road (TCR) in Cambridge, collected with a smartphone
or an action camera mounted on a bicycle. The recorded videos were sliced into individual
image frames and rotated into orthonormal projection for annotation, training and testing.
The exact data split and extra out-of-context testing sets are further illustrated in Section 3.5.

The two training datasets were then trained on YOLOv11x-seg. This was the best RGB-
image-based model that provided results at an instance segmentation level and could be
trained on a desktop computer with Nvidia 3080Ti GPU with 12GB VRAM. Each dataset
would be trained twice, with the best checkpoints of the two models chosen to represent the
road section. Each model (referred to as RGB-trained model) was trained for a maximum of
200 epochs.

3.3 The Depth Detector

The depth detector comprises a monocular depth estimator, depth correction, feature extrac-
tion and prediction refinement as shown in Figure 2. Depths of the monocular RGB images
are first estimated by DINOv2 with a ViT-g/14 backbone, finetuned on NYU-depth dataset.
Unlike other monocular depth estimation models that are distilled for perspective views of
common scenes, this original model is trained in an unsupervised manner. The model is
thus learned to extract depth relationships between pixels even in unfamiliar views, such as
orthonormal projections. Orthorectification is necessary because the depth detector needs
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to differentiate potholes from the surrounding pavement surface, which has a much smaller
depth difference than the near and far views in images taken from a perspective.
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Figure 2: The depth detector incorporates a monocular depth estimator, then corrects depth,
extracts features and refines depth regions from the orthonormal image

Bearing the need to eliminate perspective effects in the image, the detector proceeds to
remove lingering global perspective effects or inherent tilts on the pavement surface. The
algorithm normalises the depth matrix outputted from DINOV2 to the interval of -1 and 1,
and fits the matrix to a plane by minimum square distance with a numpy package. The
residual depth is calculated by the orthogonal distance to the plane. Only depth values below
the plane (indicating a depression) are retained in the residual depth map.

The residual depth map is then fed into a feature pyramid network with 3 scales, achieved
by downsizing the image by half in each iteration. Points of interest at each scale are ex-
tracted by a difference of Gaussians (of 6 = 2and 2v/2). The points exceeding a preset
threshold intensity (empirically tested to be 0.6), indicating significant depressions from the
surface, will be accepted as regions of interest and be drawn with preliminary bboxes and
masks. The preliminary bboxes are offset by 20 pixels and used to prompt Segment Any-
thing, creating refined masks that include the pothole’s periphery.

3.4 Fusion of predicted instances

Fusion takes place at the prediction outputs. The predicted bboxes from the RGB-trained
model and depth detector are fed into the weighted bbox fusion tool [28] to receive fused
bboxes. The weights are the ratios of the F1 score of potholes achieved by the RGB-trained
model and the depth estimator on the particular testing image dataset. This design enables
a more flexible choice of detectors when better models emerge in the future and a more
modular design for easier maintenance. The fused bboxes are fed into Segment Anything to
generate instance masks and refined bboxes as the final combined outcomes.

3.5 Experimental Setup

As described in Section 3.2, the authors collected RGB videos and prepared them into or-
thonormal images in two roads in Cambridge, namely West Road (WR) and Tennis Court
Road (TCR). Images from each street formed a dataset, which was split into training and
testing sets and contained three classes: potholes, patches and alligator cracks. Detailed
numbers of images and instances are in Table 1.

In addition to the two testing sets, two more testing sets of still camera RGB images were
created to evaluate models in out-of-context and challenging environmental conditions. They
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Dataset WR TCR Camb-still  Pothole-special

Train Test Train Test Test Test

Nos. Images 873 190 765 175 112 89

Positive Images 693 148 528 135 109 89

Nos. Instances 894 356 871 280 290 225

Instance distribution

potholes 301 201 76 27 149 150

patch 453 138 238 93 134 75

alligator cracks 140 17 557 160 7 0

Table 1: Data distribution of the two training sets and the four testing sets

were collected in neighbourhoods with an asphalt surface beyond the two roads, as shown
in the map in Figure 3. These two image sets were not trained by any models and were
prepared for testing only. The first test-only dataset (Camb-still) was taken on days with fair
weather and clear conditions. The second (Pothole-special) was taken in more challenging
conditions, either taken after rain with ponding water in potholes, covered by fallen leaves
or with significant shade.
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Figure 3: RGB images of road defects were collected in roads across Cambridge. Pothole-
special specifically collects images in challenging conditions.

The RGB-trained models were trained with all three classes to improve the models’ inter-
class discrimination and enhance the results for the target class. In testing, the RGB-trained
models of the two streets and the depth detector inferred instances on each of the testing
sets: WR, TCR, Camb-still and Pothole-special. The testing adopted metrics of precision,
recall and F1 scores for masks at the Intersection-over-Union (IoU) threshold of 0.5. This
paper only presented metrics evaluated on the potholes category, as the depth detector only
impacted the detection of potholes.

Note the confidence score thresholds at the output of RGB-trained models. When evalu-
ating the models against the four testing sets, the confidence score threshold was set at 0.001
for bboxes and masks to capture predictions of the full range of confidence scores when
evaluating the average precisions and recalls. To prevent garbage bboxes from being fused,
RGB-trained models produced another set of predictions with a confidence score threshold
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of 0.25 and fused with those from the depth detector with WBE.

4 Results and Discussions

Table 2 and Table 3 show the F1 scores, precision and recall of the two RGB-trained models,
the depth detector alone and the fusion results with both RGB-trained models. The cell
colour shows the alignment with the trained context. Cells in dark blue have testing images
taken in the same perspective, road scene and geolocation as the trained models. Cells in
magenta show combinations in different geolocations. Cells in beige show combinations in
different geolocations and road scenes.

Pothole only (F1_50, M)

\Te\“ TCR | Camb- | Pothole-
Traine : i
still special Legends
WR 0.090 0.376 0.149 Perspective v v v
TCR 0.048 0.189 | 0.031 Scene v [ v | x
Depth only | 0.056 | 0.004 | 0.139 | 0.161 Geolocation| v | x | x

Fused (using conf = 0.25):
WR+Depth | 0.388 0.064 0.281 0.204
TCR+Depth | 0.096 0.603 0.306 0.165

Table 2: F1 score of RGB-trained, Depth Detector and Fused. Fusion improved the F1 scores
when detecting out of context.

RGB-trained models performed the best on the testing set that had the same perspective,
scene and geolocation, in line with expectation. What caught a surprise was the significant
drop of performance even by just changing the geolocation (WR and TCR exchanged, or both
on Camb-still and pothole-special) and further in more challenging scenes and conditions
(pothole-special). Metrics by the depth estimator alone were consistently mediocre in all
datasets regardless of scenes and geolocations, performing at about the level of RGB-trained
models in different geolocations.

When fused, the F1 score improved predominantly when RGB-trained models performed
poorly out of context. This was mainly achieved by having the depth estimator to improve the
precision. When the RGB-trained models detected well (TCR on TCR-val, WR on Camb-
still), predictions from the depth estimator caused confusion and dragged the results.

4.1 Discussions

The sharp decline in performance on images taken in a different street, even at the same
perspective and similar street scene in the same city, highlights the poor generalisation of

AP_50 (M) AR_50 (M)
w WR TCR Camb- Pothole- | WR TCR Camb- Pothole-
Trained . . . .
still special still special

WR 0.049 0.278 0.094 0.542 0.519 0.584 0.360
TCR 0.032 0.124 0.016 0.100 0.815 0.396 0.247
Depth only 0.034 0.002 0.093 0.132 0.159 0.111 0.275 0.207
Fused (using conf = 0.25):

WR + Depth 0.351 0.045 0.254 0.171 0.433 0.111 0.315 0.253
TCR + Depth 0.065 0.578 0.255 0.138 0.179 0.630 0.383 0.207

Table 3: Average precision and recall @ [oU = 0.5 of RGB-trained, Depth Detector and
Fused. Fusion mainly improved the precision.
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RGB-trained models. The performance worsens when the images are taken in more chal-
lenging environmental conditions. When a model performs so bad that it shows little ability
to extrapolate and detect instances of the same category beyond the learned context, results
highlight the need for some safeguard to supplement detections, especially when deployed
for critical applications. In real practice, developers will collect all annotated images they
have and train a holistic model to harness the benefits of the scaling law. The experiments
postulate "what-if" situations when road scenes go out of context, even as benign as RGB
patterns of potholes change with fallen leaves and ponding water.

The depth estimator supplements predictions by the RGB-trained models, especially out
of their training context. It also provides a relatively consistent performance in clear and
challenging conditions, without the acute plunge in performance by RGB-trained models
in more complex conditions. This is likely caused by the fact that DINOv2 was trained
in an unsupervised manner that enables it to draw relationships relative to other pixels in
the same image, instead of relying explicitly on trained patterns in RGB-trained models. A
deeper review of predictions by the depth estimator suggests room for improvement in shady
environments. This may potentially be achieved by removing shadows in pre-processing, or
fine-tuning a depth estimator in future development.

While local roads and inspections with simple apparatus may improve local residents’
satisfaction, maintaining motorways is vital to sustain uninterrupted logistics and connectiv-
ity between key transport hubs and cities. Preliminary studies on images with more radical
differences of road scenes were performed, such as motorway images inferred on models
trained with local street images. The results tended to zero and were not presented. Further
studies on fusing motorway and local road images are encouraged.

5 Conclusions

This research illustrates the problem of poor generalisation of object detectors trained with
limited annotations of RGB images. In the use case of pothole detection, monocular RGB
images were collected to evaluate and propose improvements to the problem. Experiments
found a remarkable performance drop of 73% (WR weight) and 94% (TCR weight) in F1
score when transiting to an unfamiliar context, even when the transition was merely to an-
other road in the same city.

The proposed solution targeted the out-of-context issue and addressed it by fusing depth
detection to supplement RGB-trained model detections. As opposed to previous work that
required stereo images or point clouds to reconstruct in 3D and threshold by depth, this
research utilises a pre-trained DINOv2 depth estimator to predict depths on RGB images.
The solution integrates orthorectification, depth correction, feature extraction and mask re-
finement to detect potholes with monocular RGB images. The predictions by RGB-trained
models and depth are fused with weighted bounding box fusion. Experimental results reveal
that while the depth detector standalone performed at about the level of out-of-context RGB-
trained models, the fused results improved F1 scores by 0.05 (16%) to 0.13 (81%) when
the RGB-trained models operate out-of-context. Further research may include addressing
detections on motorways and tackling shadows in images.
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