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Abstract

Generative Adversarial Networks (GANs) excel in image-to-image translation with
high-resolution images. Such images are computationally expensive and may not suit
real-life applications. Real-life scenarios demand a lightweight model that performs
translation on low-resolution images, which is challenging. Knowledge distillation (KD)
helps to improve the performance of lightweight models. We propose a KD framework
with a bridging mechanism. It transfers and fuses high-resolution features from the
teacher to the low-resolution student via a bridge module. This module aligns feature
maps and retains high-resolution details. It operates only during training, ensuring effi-
ciency in inference. We apply a multi-objective loss with adversarial, cycle consistency,
and distillation losses. This combination improves image quality. Experiments on bench-
mark datasets show the effectiveness of the method. The results confirm that resolution-
aware fusion enhances the student’s ability to recover fine textures while maintaining
computational efficiency. Our approach provides a practical balance between quality and
efficiency, making image translation feasible for resource-constrained environments. The
code will be released after acceptance.

1 Introduction

Image-to-image translation is an important task in computer vision, enabling the transfor-
mation of images across domains. The main objective is to map a source image into a target
domain while preserving the essential visual properties of the input. This task has several
practical applications, including style transfer, image synthesis, domain adaptation, and data
augmentation [2]. Researchers employ a variety of deep learning techniques such as Genera-
tive Adversarial Networks (GANs) [10], conditional GANs (cGANSs) [6], and Convolutional
Neural Networks (CNNs) [3] to learn complex mapping functions. GANs [13] achieve re-
markable success in image synthesis, inspiring a range of image-to-image translation frame-
works. Despite these advances, existing approaches face critical limitations. Paired training
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Figure 1: KD framework and model architecture of the proposed BridgeKD. Teacher and student generator
details, including feature map dimensions (C x H x W), are shown in each block. Both models take input from the
same domain (Domain-A) but at different resolutions—high for the teacher, low for the student. During training,
we distill intermediate features from teacher to student. Since resolutions differ, student features are upsampled via
bridge module to match the teacher. The bridge module are used only during training and are removed at inference,
adding no runtime cost.

data are often unavailable or expensive to obtain. Models require significant computational
resources to learn conditional distributions. High-resolution training further increases cost.
These drawbacks restrict their large-scale applicability. Knowledge Distillation (KD) [15]
offers a promising strategy to improve lightweight models by transferring knowledge from
larger, well-trained models. Research in image-to-image translation evolves rapidly with
advances in GAN architectures. Goodfellow et al. [13] introduce GANs as an adversar-
ial framework with a generator and discriminator. This foundation has been extended into
several translation models. Pix2Pix [17] provides a general framework for paired image
translation, and Pix2PixHD [7] adapts it to high-resolution settings. CycleGAN [36] enables
unpaired translation, making it one of the most influential works in the field. Further progress
addresses either efficiency or diversity. NICE-GAN [8] and U-GAT-IT-light [18] introduce
lightweight designs, but often lose fine-grained details in high-resolution outputs. UNIT
[24], MUNIT [16], and DRIT [22] achieve multimodal generation through disentangled rep-
resentations of content and style, but require heavy computation. CUT [27] and DCLGAN
[14] adopt contrastive learning to improve quality, with SimDCL [14] simplifying the pro-
cess. These developments illustrate the trade-off between efficiency, diversity, and fidelity in
translation.

Knowledge distillation is introduced by Hinton et al. [15] as a technique to transfer
knowledge from a large teacher model to a smaller student model. It has been widely used
in image classification [4, 5], language modeling, and generative tasks. In image translation,
KD methods attempt to compress large models without losing translation quality. Prior work
explores multiple strategies: Zhang et al. [35] use wavelet-based KD; ReKo [34] applies
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region-aware distillation; [25] studies multi-teacher distillation. Other methods rely on in-
termediate feature matching [12], AutoGAN-Distiller [11] uses AutoML for discovering ef-
ficient generators, DMAD [23] applies differentiable masking with co-attention distillation,
OMGD [28] introduces multi-granularity distillation, and DCD [4] leverages discriminator
cooperation for stable adversarial training. Semantic relation-preserving approaches [5] in-
tegrate KD with structural constraints. Co-evolutionary distillation [30] further optimizes
convolution filters with regularization. Although effective, most approaches distill teacher
and student models at the same resolution. This design ignores the fusion of high-resolution
knowledge into low-resolution students, limiting their ability to capture fine details.

There is an increasing demand for efficient image translation models that work on resource-
limited devices while maintaining quality. To address this, we propose BridgeKD, a novel
KD framework with a bridging mechanism. Unlike direct distillation, our approach fuses
high-resolution features from a teacher with low-resolution features from a student. The stu-
dent’s feature maps are upsampled to match the teacher’s representations, ensuring effective
alignment and feature fusion. This setup allows the student to learn rich semantic and struc-
tural details often missing at lower resolutions. High-resolution features guide the student in
capturing fine textures and spatial structures, enabling higher-quality outputs. Importantly,
the bridge operates only during training and is removed at inference, adding no runtime cost.

We further design a multi-objective loss that integrates adversarial, cycle consistency,
and distillation terms. This combination balances visual realism, structural consistency, and
effective knowledge fusion. Through this design, the student achieves strong performance
while retaining efficiency.

The contributions of this work are summarized as follows:

* We propose BridgeKD, a knowledge distillation framework for image-to-image trans-
lation that employs a bridging mechanism to fuse high-resolution features from a
teacher into a low-resolution student.

* We design feature alignment at both intermediate and output layers, where student
features are upsampled via transpose convolution and matched with teacher represen-
tations for effective fusion.

* We introduce a new loss function that combines adversarial, cycle consistency, and
distillation losses to guide the student generator and improve translation quality.

* BridgeKD reduces computational cost and memory usage, enabling high-quality trans-
lation on resource-constrained devices and low-resolution inputs.

» Extensive experiments on benchmark datasets show that fusion of high-resolution
teacher features significantly enhances the student’s ability to capture fine details and
achieve accurate image-to-image translation.

2 Methodology

We propose a method for knowledge distillation, where a low-resolution student CycleGAN
learns from a high-resolution teacher. The student mimics the teacher’s high-dimensional
features, enabling it to generate high-quality images despite being trained on lower-resolution
data.
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Figure 2: KD framework and model architecture of the proposed BridgeKD. Teacher and student generator
details, including feature map dimensions (C x H x W), are shown in each block. Both models take input from the
same domain (Domain-A) but at different resolutions—high for the teacher, low for the student. During training,
we distill intermediate features from teacher to student. Since resolutions differ, student features are upsampled via
bridge module to match the teacher. The bridge module are used only during training and are removed at inference,
adding no runtime cost.

2.1 Teacher Model (High-Resolution CycleGAN)

The teacher model is a standard CycleGAN trained on high-resolution images. It includes
two generators and two discriminators. Each generator uses a ResNet-based architecture.
It begins with a 7x7 convolution (reflection padding, 64 channels, instance norm, ReLU),
followed by two downsampling layers (3x3 conv, 128 and 256 filters, stride 2, padding
1). The core has nine residual blocks with 3x3 convolutions, reflection padding, instance
norm, and ReLLU. Two upsampling layers use transpose convolutions (4x4 kernel, stride 2,
padding 1). The output layer applies a 7x7 conv with reflection padding and tanh activation.
See Fig. 2 for the generator architecture. The discriminator processes inputs through four
convolutional blocks. Image size reduces from 256x256 to 16x16, and channels increase
from 3 to 512. Each block uses 4x4 conv, stride 2, Leaky ReLU (slope 0.2), and instance
norm (except the first layer).

2.2 Student Model (Low-Resolution CycleGAN)

The student model uses a lighter architecture for low-resolution image translation. It includes
two generators and two discriminators. Extra convolution and transpose convolution layers
form a Bridge module to match feature dimensions with the teacher. This module is active
only during training and adds no inference cost. The generator follows an encoder-decoder
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Table 1: Evaluation of proposed proposed BridgeGAN with Knowledge Distillation (KD) from high resolution
teacher and without KD on Various benchmark Datasets[36]. The evolution metric includes : FID (Fréchet Inception
Distance), SSIM (Structural Similarity Index), and PSNR (Peak Signal-to-Noise Ratio). The arrows indicate the
desired direction of improvement: FID | (lower is better), SSIM 7 (higher is better), and PSNR 1 (higher is better).
The SSIM and PSNR metrics are calculated between the low-resolution student model and the high-resolution
teacher model’s output as reference.

Dataset FID| SSIM{ PSNRT KD

Summer to Winter  39.80 69.50 21.22 Yes
Summer to Winter  62.30 66.00 20.59 No

Winter to Summer  44.65 70.20 2242 Yes
Winter to Summer  61.09 64.90 21.80 No

Apple to Orange 5230  74.50 2243  Yes
Apple to Orange 60.27 73.40 21.70 No

Orange to Apple 63.56 70.20 21.72 Yes
Orange to Apple 7122 68.10 20.88 No

design. It starts with a 7x7 conv (3—32 channels), followed by one downsampling layer
(to 128%x128, 128 channels). The core has four residual blocks with 3x3 convs, reflection
padding, instance norm, and ReLU. One upsampling layer (transpose conv) restores resolu-
tion to 256x256 and reduces channels to 32. A final conv layer outputs a 3-channel image.
The Bridge module has five transpose conv layers to align student features with the teacher.
The student architecture is shown in Fig. 2. The discriminator shares the same design as the
teacher’s, using stacked conv layers to classify real and fake images.

2.3 Loss Functions

Adversarial Loss:

The adversarial loss ensures generated images appear realistic by distinguishing between
real and fake images. This loss drives the generators to create images that can fool their
respective discriminators. The loss for the generator G is:

ﬁadv(G7D7X,Y) = EXiNPdam(xi) [logDy(G(x,-))]
T By pra 7) [log Dx (F ()] -

Generator G maps images from domain X to domain Y, while generator F' maps from
domain Y to domain X. Discriminators Dy and Dy evaluate the authenticity of generated
images G(x;) and F(y;). This loss pushes generators to produce increasingly convincing
images that discriminators classify as real, enhancing the visual quality of translations.

Cycle Consistency Loss:

Cycle consistency loss preserves the content integrity of translated images. It achieves
this by ensuring translations maintain semantic information that allows reverse mapping to
recover the original image. This bidirectional consistency is crucial for meaningful transla-
tions that preserve important characteristics. The loss is defined as:

6]

»Ccycle(GvF) = Ex,wpdam(x,-) [HF(G(X,')) _xi”l}
By pra 00) IG(F (i) —yilh]-
The L1 norm measures the absolute pixel-wise difference between the original and re-

constructed images. Without this constraint, generators might create arbitrary outputs that
look realistic but lose content correspondence with the input. This mechanism guarantees

2
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meaningful transformations rather than arbitrary style changes, effectively addressing the
ill-posed nature of unpaired image translation.

Intermediate Layer Feature Matching:

Knowledge transfer between teacher and student generators requires alignment of fea-
ture representations across multiple layers. The student generator operates at lower resolu-
tion with reduced channel capacity compared to the teacher. To address these dimensional
discrepancies, we introduce a Bridge module in the student generator. This module employs
transpose convolution layers when both resolution and depth need enhancement. These com-
ponents align the student’s feature maps with the teacher’s more complex representations.
The intermediate distillation loss minimizes the L2 distance between corresponding feature
maps:

1 L
Lintermediate = z Z HflT (xi) - I(ﬁs(xl)) Hi 3)
=1

Here, fI (x;) represents the teacher’s feature map at layer I, £ (x;) is the student’s corre-
sponding feature map, and F represents the appropriate transformation through the Bridge
module. This loss enables the student to capture the rich hierarchical features learned by the
teacher, improving representation quality despite the student’s compact architecture.

Output Distillation Loss:

While intermediate features capture internal representations, output distillation ensures
the final generated images match in quality. This loss directly aligns the end results of both
networks:

Loutput = ||GT (xi) —G*(x:) ||§ “)

Where G” (x;) and G5(x;) represent the outputs of teacher and student generators. This
direct supervision at the output level complements intermediate supervision by focusing on
final image quality. It ensures the student’s results closely resemble the teacher’s high-fidelity
outputs, particularly important for preserving fine details and textures that contribute to vi-
sual realism.

Total Loss:
The total loss combines all components with weighted importance:

£total = )Ll Ladv + )Q Lcycle + A3 [fintermediate + A4AC0utput )

Each component addresses a different aspect of translation quality. The adversarial loss
ensures visual realism, while cycle consistency maintains content integrity. The interme-
diate and output distillation losses transfer complex feature representations from teacher to
student. Hyperparameters A; through A4 balance these competing objectives. The com-
bination of adversarial training and knowledge distillation proves particularly effective for
resource-constrained applications where high-quality image translation is still required.
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Table 2: Comparison of prior methods for unpaired image-to-image translation on benchmark CycleGAN dataset
of Summer to Winter (S to W) and Winter to Summer (W to S) transformation, evaluated using the FID (Fréchet
Inception Distance) metric. Lower FID values indicate superior translation quality. Additionally, we report the
number of parameters for each model to highlight differences in computational complexity.

Method StoWFID| WtoSFID| Parameters (M) |
CycleGAN [36] 78.76 79.58 28.29M
NICE-GAN [8] 76.03 76.44 16.20M
U-GAT-IT-light [18] 88.41 80.33 21.20M
UNIT [24] 112.07 95.93 -
MUNIT [16] 114.08 99.14

RIT [22] 81.64 78.61

Co-Evolution [30] 79.16 78.58

AutoGAN-Distiller [11] 78.33 77.73 -
DMAD [23] 78.24 70.97 0.45M
OMGD [28] 73.79 - 0.14M
DCD [4] 73.63 - 0.14M
CoroNetGAN (85%) [20] 74.70 - 1.67TM
CoroNetGAN (75%) [20] 72.30 - 2.69M
SPR [32] - 70.90 11.38M
SCONE-GAN [1] 51.70 - -
MSGAN [26] 51.85 46.23

Proposed 39.80 44.65 1.35M

Table 3: Comparison of prior methods for unpaired image-to-image translation on the Orange to Apple (O to A)
and Apple to Orange (A to O) transformation using the FID (Fréchet Inception Distance) metric. Lower FID values
indicate better translation quality. Additionally, we report the number of parameters (in millions) for each model,
where fewer parameters indicate a more lightweight architecture.

Method OtoA]l AtoO| Parameters (M) |
CycleGAN [36] 117.70 174.08 28.29M
CUT [27] 127.00 177.83 14.40M
FastCUT [27] - 156.77 -
DCLGAN [14] 124.90 - 28.81M
SimDCL [14] 134.40 - 28.85M
SRPKD [5] 132.83 121.17 2.85M
DiscoGAN [19] 345.54 377.58 16.56M
StarGAN [9] 167.68 22271 53.20M
RfGAN [21] 136.64 173.13 14.14M
AttentionGAN [31] - 168.71 -
MSPC [33] - 205.84 -
EUITTS [29] - 156.76 -
Proposed 63.56 52.30 1.35M

3 Experiments and Results

3.1 Datasets

We use several unpaired image datasets from [36] to train and evaluate our models, designed
for upaired image-to-image translation tasks without paired examples. The Summer to Win-
ter dataset [36] consists of outdoor scenes captured in both summer and winter conditions.
The Apple to Orange dataset [36] contains images of apples and oranges in an upaired fash-
ion.

3.2 Implementation Details

We implement our knowledge-distilled CycleGAN models in PyTorch and optimize the net-
works using a training schedule for stability and convergence. We use the Adam optimizer
for all networks with a learning rate of Ir = 0.0004, a first momentum term f; = 0.5, and
a second momentum term B, = 0.999. We set the hyperparameters A; = 1.0, A, = 6.0,
A3 =5.0, and A4 = 5.0 to balance the loss terms, stabilizing the training process and improv-
ing the model’s performance. We employ a dynamic learning rate scheduler with a linear
decay starting at epoch 50 and continuing until the end of epoch 200. This scheduler is
applied to both the generator and discriminator optimizers, ensuring a consistent learning
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Table 4:  Ablation study on how using a high-resolution teacher generator in Knowledge Distillation (KD)
improves image generation quality compared to using a low-resolution teacher. We tested this Summer to Winter,
Winter to Summer, Apple to Orange and Orange to Apple generation tasks. The evaluation metrics FID | (lower is
better), SSIM 7 (higher is better), and PSNR 1 (higher is better).

Dataset Used FID| SSIMt PSNR?T KD Approach
Summer to Winter 39.80 69.40 21.22 512 x 512
Summer to Winter 46.04 67.80 21.10 256 x 256
Winter to Summer 44.65 70.20 22.42 512 x 512
Winter to Summer 60.70 66.40 22.30 256 x 256
Apple to Orange 52.30 74.50 22.43 512 x 512
Apple to Orange 60.60 73.90 22.07 256 x 256
Orange to Apple 63.56 70.20 21.72 512 x 512
Orange to Apple 64.04 68.50 21.26 256 x 256

Figure 3: Visual comparison of proposed BridgeKD and Non-KD models on two translation tasks. Left: Sum-
mer <> Winter. Right: Apple <> Orange. Each group shows real input, Non-KD output, and proposed BridgeKD
output (left to right). KD improves translation results.

rate adjustment across both components of the model. This approach helps stabilize train-
ing by allowing the learning rate to decrease over time, potentially improving the overall
performance of the model.

3.3 Comparative Performances

We compare the performance of the proposed method with different state-of-the-art ap-
proaches. Next, we present the comparative performances for different datasets.

3.3.1 Summer-Winter Transformation

We train the student model with knowledge distillation (KD) and without it (non-KD) for
summer-to-winter and winter-to-summer transformations. We evaluate models using Fréchet
Inception Distance (FID) for visual quality and Structural Similarity Index (SSIM) and
Peak Signal-to-Noise Ratio (PSNR) for similarity to teacher-generated images. The teacher
model trains on higher-resolution images. For unpaired image translation, we generate high-
resolution counterparts using the teacher model to evaluate student-generated images. FID
scores (lower better) improve with KD for summer-to-winter (39.80 vs 62.30) and winter-to-
summer (44.65 vs 61.09). SSIM (higher better) and PSNR (higher better) also increase with
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KD across both transformations. Table 1 presents these results, while Table 2 compares with
state-of-the-art methods. Image results appear in Fig. 3.

3.3.2 Apple-Orange Transformation

We train models with and without knowledge distillation (KD) for apple-orange transforma-
tions. We use FID for visual quality assessment and SSIM and PSNR for similarity mea-
surement. For these metrics, we generate high-resolution counterparts using the teacher
model, as they require paired images. FID scores (lower better) improve with KD for apple-
to-orange (52.30 vs 60.27) and orange-to-apple (63.56 vs 71.22). SSIM and PSNR (both
higher better) also increase with KD across both transformations. Table 1 presents these re-
sults, while Table 3 compares with state-of-the-art approaches. Image results appear in Fig.
3.

3.4 Ablation Studies

We perform ablation studies to analyze the role of teacher resolution in knowledge distil-
lation. Two settings are tested: a 256 x 256 teacher and a 512 x 512 teacher transferring
knowledge to a 256 x 256 student. Results in Table 4 show that higher-resolution teach-
ers consistently improve student performance. This improvement comes from the fusion of
richer high-resolution features, which capture finer textures and details, providing stronger
supervision during distillation.

3.5 Comparison Between Teacher and Student Generators

BridgeKD achieves efficiency without sacrificing quality. The teacher model has 11.66M
parameters, while the student reduces this to 1.35M. Model size decreases from 44.5 MB
to 5.14 MB, and inference speed improves from 26s to 4.74s on 200 images (5.5 % faster).
These results demonstrate that fusing high-resolution teacher knowledge allows the student
to achieve high-quality translation while remaining suitable for deployment on resource-
limited devices.

3.6 Discussion

Our experiments highlight the value of resolution-aware knowledge fusion in image-to-
image translation. Students distilled from 512 x 512 teachers consistently outperform those
trained with 256 x 256 teachers across multiple translation tasks. This shows that teacher res-
olution directly influences the quality of transferred knowledge. The student benefits from
fused high-resolution guidance while maintaining parameter efficiency and fast inference.
BridgeKD therefore balances accuracy and efficiency, making high-quality image transla-
tion feasible in real-world, resource-constrained environments.

4 Conclusion and Future Work

We present a bridge-based knowledge distillation method for CycleGANS to enable efficient
unpaired image translation. A high-resolution teacher guides a compact student model, im-
proving output quality while reducing complexity. Experiments show consistent gains in
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FID,

SSIM, and PSNR over non-KD models. The high-res teacher improves student perfor-

mance, highlighting the role of feature quality. Our method achieves 88% fewer parameters,
88% storage savings, and 5.5x faster inference. Future work includes using multiple student
models trained from one teacher to boost generalization. We also plan to explore adaptive
resolution and attention for better knowledge transfer.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Iman Abbasnejad, Fabio Zambetta, Flora Salim, Timothy Wiley, Jeffrey Chan, Russell
Gallagher, and Ehsan Abbasnejad. Scone-gan: Semantic contrastive learning-based
generative adversarial network for an end-to-end image translation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
URL https://arxiv.org/abs/2311.03866.

Aziz Alotaibi. Deep generative adversarial networks for image-to-image translation: A
review. In Symmetry, volume 12, page 1705. MDPI, 2020.

Laith Alzubaidi, Jinglan Zhang, Amjad J. Humaidi, Ayad Al-Dujaili, Dongxu Li, Xue
Li, Meng-Hao Wu, and Sarah K. A. O. H. Ibrahim. Review of deep learning: Algo-
rithms and applications in medical image analysis. In J. Imaging, volume 7, page 51.
MDPI, 2021.

Shilajit Banerjee and Angshuman Paul. An ensemble of well-trained students can per-
form almost as good as a teacher for chest x-ray diagnosis. In 2024 IEEE International
Symposium on Biomedical Imaging (ISBI), pages 1-5, 2024. doi: 10.1109/ISBI56570.
2024.10635412.

Shilajit Banerjee and Angshuman Paul. Knowledge distillation for an ensemble of
students from a pyramid of teachers with diverse perspective. IEEE Transactions on
Artificial Intelligence, pages 1-10, 2025. doi: 10.1109/TAL.2025.3591588.

Anis Bourou, Valérie Mezger, and Auguste Genovesio. Gans conditioning methods:
A survey. In arXiv:2408.15640, 2024. URL https://arxiv.org/abs/2408.
15640.

H. Chang, H. Yue, A. Doulamis, I. Doulamis, and D. Metaxas. High-resolution image
synthesis and semantic manipulation with conditional gans. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 8798-8807,
2018. URL https://arxiv.org/abs/1711.11585.

R. Chen, W. Huang, B. Huang, F. Sun, and B. Fang. Reusing discriminators for encod-
ing: Towards unsupervised image-to-image translation. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 8165-8174, 2020. URL
https://arxiv.org/abs/2003.00273.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul
Choo. Stargan: Unified generative adversarial networks for multi-domain image-to-
image translation. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8789-8797, 2018.


https://arxiv.org/abs/2311.03866
https://arxiv.org/abs/2408.15640
https://arxiv.org/abs/2408.15640
https://arxiv.org/abs/1711.11585
https://arxiv.org/abs/2003.00273

BANERJEE ET AL.: BRIDGEKD: RESOLUTION-AWARE KNOWLEDGE FUSION FOR .. 11

[10] M Durgadevi and Others. Generative adversarial network (gan): A general review on
different variants of gan and applications. In 2021 6th International Conference on
Communication and Electronics Systems (ICCES), pages 1-8. IEEE, 2021.

[11] Yonggan Fu, Wuyang Chen, Haotao Wang, Haoran Li, Yingyan Lin, and Zhangyang
Wang. Autogan-distiller: Searching to compress generative adversarial networks. In
ICML 2020, 2020. URL https://arxiv.org/abs/2006.08198.

[12] T. Gao and R. Long. Accumulation knowledge distillation for conditional gan compres-
sion. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 1302-1311, 2023.

[13] 1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems, volume 27, 2014. URL https://arxiv.org/abs/
1406.2661.

[14] Junlin Han, Mehrdad Shoeiby, Lars Petersson, and Mohammad Ali Armin. Dual con-
trastive learning for unsupervised image-to-image translation. In 2021 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 746—
755, 2021.

[15] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.
In Proceedings of the Neural Information Processing Systems (NIPS), 2015. URL
https://arxiv.org/abs/1503.02531.

[16] X. Huang, MY. Liu, S. Belongie, and J. Kautz. Multimodal unsupervised image-to-
image translation. In Computer Vision — ECCV 2018, volume 11207 of Lecture Notes
in Computer Science. Springer, Cham, 2018. URL https://doi.org/10.1007/
978-3-030-01219-9_11.

[17] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with con-
ditional adversarial networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1125-1134, 2017. URL https:
//arxiv.org/abs/1611.07004.

[18] Junho Kim, Minjae Kim, Hyeonwoo Kang, and Kwanghee Lee. U-gat-it: Unsupervised
generative attentional networks with adaptive layer-instance normalization for image-
to-image translation. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=BJ1Z5ySKPH.

[19] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim. Learn-
ing to discover cross-domain relations with generative adversarial networks. In Pro-
ceedings of the 34th International Conference on Machine Learning - Volume 70
(ICML’17), pages 1857-1865. JIMLR.org, 2017.

[20] Aman Kumar, Khushboo Anand, Shubham Mandloi, Ashutosh Mishra, Avinash
Thakur, Neeraj Kasera, and Prathosh A P. Coronetgan: Controlled pruning of gans via
hypernetworks. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), 2024. URL https://arxiv.org/abs/2403.08261.


https://arxiv.org/abs/2006.08198
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1503.02531
https://doi.org/10.1007/978-3-030-01219-9_11
https://doi.org/10.1007/978-3-030-01219-9_11
https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1611.07004
https://openreview.net/forum?id=BJlZ5ySKPH
https://arxiv.org/abs/2403.08261

12

BANERJEE ET AL.: BRIDGEKD: RESOLUTION-AWARE KNOWLEDGE FUSION FOR ..

(21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

[32]

Ali Koksal and Shijian Lu. Rf-gan: A light and reconfigurable network for un-
paired image-to-image translation. In Computer Vision — ACCV 2020, pages 542-559.
Springer, Cham, 2021.

Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh Singh, and Ming-Hsuan
Yang. Diverse image-to-image translation via disentangled representations. In Pro-
ceedings of the European Conference on Computer Vision (ECCV), September 2018.

S. Li, M. Lin, Y. Wang, F. Chao, L. Shao, and R. Ji. Learning efficient gans for image
translation via differentiable masks and co-attention distillation. In IEEE Transactions
on Multimedia, volume 25, pages 3180-3189, 2023. URL https://arxiv.org/
abs/2011.08382.

M.-Y. Liu, T. M. Breuel, and J. Kautz. Unsupervised image-to-image translation net-
works. In CVPR 2018, 2017. URL http://arxiv.org/abs/1703.00848.

X. Liu, L. Lv, J. Liu, Y. Han, M. Liang, and X. Jiang. More teachers make greater
students: Compression of cyclegan. In International Conference on Intelligent Infor-
mation Processing, pages 125—139. Springer, 2024.

Qi Mao, Hsin-Ying Lee, Hung-Yu Tseng, Siwei Ma, and Ming-Hsuan Yang. Mode
seeking generative adversarial networks for diverse image synthesis. In 2079
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
1429-1437, 2019.

T. Park, A.A. Efros, R. Zhang, and JY. Zhu. Contrastive learning for unpaired image-
to-image translation. In Computer Vision — ECCV 2020, volume 12354 of Lecture
Notes in Computer Science. Springer, Cham, 2020. URL https://doi.org/10.
1007/978-3-030-58545-7_109.

Y. Ren, J. Wu, X. Xiao, and J. Yang. Online multi-granularity distillation for gan com-
pression. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
pages 6773-6783,2021. URL https://arxiv.org/abs/2108.06908.

K Shibasaki and M Ikehara. Enhanced unpaired image-to-image translation via trans-
formation in saliency domain. In IEEE Access, volume 11, pages 137495-137505,
2023. URL https://doi.org/10.1109/ACCESS.2023.33386209.

Han Shu, Yunhe Wang, Xu Jia, Kai Han, Hanting Chen, Chunjing Xu, Qi Tian, and
Chang Xu. Co-evolutionary compression for unpaired image translation. In 2019
IEEE/CVF International Conference on Computer Vision (ICCV), pages 3234-3243,
2019.

H. Tang, H. Liu, D. Xu, P. H. S. Torr, and N. Sebe. Attentiongan: Unpaired image-
to-image translation using attention-guided generative adversarial networks. In /IEEE
Transactions on Neural Networks and Learning Systems, volume 34, pages 1972-1987,
April 2023.

S. Xie, Y. Xu, M. Gong, and K. Zhang. Unpaired image-to-image translation with
shortest path regularization. In 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 10177-10187, 2023.


https://arxiv.org/abs/2011.08382
https://arxiv.org/abs/2011.08382
http://arxiv.org/abs/1703.00848
https://doi.org/10.1007/978-3-030-58545-7_19
https://doi.org/10.1007/978-3-030-58545-7_19
https://arxiv.org/abs/2108.06908
https://doi.org/10.1109/ACCESS.2023.3338629

BANERJEE ET AL.: BRIDGEKD: RESOLUTION-AWARE KNOWLEDGE FUSION FOR .. 13

[33] Y. Xu et al. Maximum spatial perturbation consistency for unpaired image-to-image
translation. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 18290-18299, 2022.

[34] L. Zhang, X. Chen, R. Dong, and K. Ma. Region-aware knowledge distillation for
efficient image-to-image translation. In BMVC 2023,2022. URL https://arxiv.
org/abs/2205.12451.

[35] L. Zhang, X. Chen, X. Tu, P. Wan, N. Xu, and K. Ma. Wavelet knowledge distilla-
tion: Towards efficient image-to-image translation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12464—12474, 2022.

[36] J.-Y. Zhu, P. Krdhenbiihl, E. Shechtman, and A. A. Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pages 2223-2232, 2017. URL
https://arxiv.org/abs/1703.10593.


https://arxiv.org/abs/2205.12451
https://arxiv.org/abs/2205.12451
https://arxiv.org/abs/1703.10593

