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Abstract

Deep-learning models tailored to individual airborne LiDAR applications are gain-
ing traction in Earth-science research, yet they face two persistent hurdles: scarce task-
specific labels and poor generalisation across geographic regions. We address both issues
with GeologyCLIP, a contrastive pre-training framework that jointly learns from airborne
LiDAR point clouds and accompanying textual descriptions. GeologyCLIP employs a
transformer encoder to capture rich, geometry-aware representations; the encoder is first
trained on a large, heterogeneous corpus and then fine-tuned on limited-label downstream
datasets. Across multiple regional benchmarks for geohazard detection, GeologyCLIP
consistently surpasses task-specific baselines, demonstrating superior transferability and
label efficiency. These results position GeologyCLIP as a promising foundation model
for geological applications and open new avenues for data-efficient Earth-science analyt-
ics.

1 Introduction
The field of Earth science is entering the big data era and artificial intelligence (AI) of-
fers substantial potential not only for solving traditional Earth science problems but also
for enhancing our understanding of the Earth’s complex, interactive, and multiscale pro-
cesses [2, 34]. The availability of massive volumes of Earth system data, which already
exceed dozens of petabytes in scale and have hundreds of terabytes transmitted daily, has
led to the widespread adoption of AI, including machine learning and deep learning meth-
ods, in data-driven Earth science [13, 58]. For example, deep learning has been effectively
applied to identify extreme weather patterns [78], develop competitive weather prediction
models ranging from precipitation nowcasting [57, 90] to medium-range weather forecast-
ing [5, 12, 32, 33], and predict climate phenomena such as El Niño-southern oscillation
[21] or monsoon onsets [44]. Additionally, in recent years, machine learning and deep
learning methods have proven effective in almost every subfield of seismology [3, 46].
These methods have consistently outperformed classical approaches on a wide range of
tasks, including denoising [52, 71, 77, 81, 94], earthquake detection [60, 82, 83], phase
picking [7, 17, 37, 47, 50, 53, 59, 74], phase association [41, 42, 61, 84], localization
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Figure 1: (a) Hierarchical text representations for geological condition. (b) Hierarchical rep-
resentations of geological labels are fed into the standard contrastive pre-training objective
and are matched with image representations of airborne LiDAR data.

[15, 38, 40, 45, 72, 88, 89], event classification [10, 26, 27, 29, 35, 36], focal mechanism
determination [22, 30, 59, 69, 70, 91], and earthquake prediction [9, 25, 62, 66, 75, 76].
Many existing methods focus on training specific models for individual tasks.

To leverage the relationships between related tasks effectively, some researchers have
proposed methods to address multiple interrelated tasks simultaneously, such as earthquake
detection and phase picking [48, 92, 93], earthquake monitoring [54, 67, 95], as well as lo-
calization and magnitude estimation [49]. Although deep learning has been actively utilized
in meteorology and seismology, its application in the field of geology has been relatively lim-
ited. Existing research primarily focuses on extracting geological hazards such as landslides
from satellite imagery [39] and classifying rock types based on image data [1].

Despite these advances, most current workflows still rely on task-specific networks re-
trained from scratch, an approach that suffers from three fundamental limitations: (i) label
scarcity—many geological targets (e.g., rare lithologies, incipient slope failures) have only
dozens to hundreds of annotated examples; (ii) poor cross-regional generalisation—models
tuned for one tectonic or climatic setting often fail when applied elsewhere; and (iii) com-
putational inefficiency—repeated training for every new sensor or task wastes both energy
and research time. A pre-trained foundation model that learns generic, geometry-aware
representations from vast, heterogeneous airborne LiDAR archives offers a direct remedy.
Such a model can be fine-tuned with minimal supervision, ported seamlessly across regions,
and serve as a unifying backbone for diverse downstream tasks ranging from landslide de-
tection to rock-type classification. A pre-trained foundation model that learns generic,
geometry-aware representations from vast, heterogeneous airborne LiDAR archives offers
a direct remedy. Crucially, recent progress in vision–language pre-training has shown that
contrastive models such as CLIP [56] can align images with natural language descriptions,
and nascent extensions have begun to port CLIP to 3-D point clouds. Yet existing CLIP for
point cloud, such as PointCLIP [85], are confined to indoor or small object-centric scans; to
our knowledge, no method scales the paradigm to outdoor, kilometre-scale airborne LiDAR
scenes. We bridge this gap by rasterising the LiDAR point cloud into multi-view, terrain-
aware image projections, enabling direct use of mature vision–language architectures while
retaining the geometric richness of the original data.

Such a model can be fine-tuned with minimal supervision, ported seamlessly across re-
gions, and serve as a unifying backbone for diverse downstream tasks ranging from landslide
detection to rock-type classification. In this paper we therefore introduce GeologyCLIP, the
first contrastively pre-trained LiDAR–text model designed to provide a transferable repre-
sentation for geological applications.
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2 Related Work
AI in GeoScience. Across the geosciences, artificial intelligence (AI) is increasingly ap-
plied in remote sensing [64, 65] and in seismology [24], notably for seismic waveform anal-
ysis. With the growing application of large foundational models to general-purpose tasks,
the exploration of foundational models tailored to remote-sensing-based geoscience tasks has
garnered significant attention from the research community. Here, we review recent advance-
ments in geoscience foundational models (GFMs), covering key techniques for constructing
GFMs and summarizing existing foundational models from the perspectives of large lan-
guage models [14], large vision models [20], and large language-vision models [31, 87].
These vision and language foundational models are primarily trained on satellite data and
there is a growing need to develop foundational models specifically tailored to geological
data.|

Vision and Language. Multimodal Foundational Model like CLIP [56] has achieved state-
of-the-art performance on vision tasks by training on noisy, web-scale datasets containing
over 100 million image-text pairs using a contrastive objective optimized for image retrieval.
Subsequent models such as ALIGN [23] and BASIC [55] expanded the number of training
examples to 400 million and 6.6 billion, respectively, further enhancing the quality of vision
representations. However, recent studies [16, 18, 51, 79, 80] have demonstrated that dataset
diversity and improved alignment between image and caption semantics are more critical
than dataset size, leading to superior performance on downstream tasks.

Hierarchical Structure. The concept of hierarchies has been well explored in computer
vision, primarily because ImageNet [63] classes are derived from the hierarchical structure
of WordNet [43]. For example, Bilal et al. [6] analyzed model predictions on ImageNet
and discovered that model confusion patterns often corresponded to hierarchical class struc-
tures. By incorporating this hierarchical information into AlexNet’s architecture [28], they
achieved an absolute improvement of 8% in the top-1 error rate on ImageNet. Similarly,
Bertinetto et al. [4] examined the severity of errors made by image classifiers and proposed
alternative training objectives that integrate hierarchical information. Although this approach
only slightly increased the top-1 error rate, it successfully reduced the severity of mistakes.
In another study, Zhang et al. [86] introduced a contrastive objective that aligns the hierar-
chical distances between labels with the corresponding distances in the embedding space.
This method outperformed traditional cross-entropy loss on both ImageNet and iNat17 [73].

3 Proposed Method

3.1 Architecture of GeologyCLIP
Our objective is to develop a foundational model for geology by leveraging the success of
contrastive learning as demonstrated by CLIP (Figure 2). We propose adapting the vision
encoder of CLIP to process terrain images derived from digital terrain models (DTMs). By
representing 3D terrain data as 2D images, we can harness the computational efficiency and
scalability of existing computer vision techniques.

To improve computational efficiency, we divide terrain images into smaller patches, sim-
ilar to the approach used in the original CLIP model. These patches are then fed into a

Citation
Citation
{Shinohara and Saomoto} 2025{}

Citation
Citation
{Shinohara and Saomoto} 2025{}

Citation
Citation
{Jiao and Alavi} 2020

Citation
Citation
{Denli, Chughtai, Hughes, Gistri, and Xu} 2021

Citation
Citation
{Guo, Lao, Dang, Zhang, Yu, Ru, Zhong, Huang, Wu, Hu, et~al.} 2023

Citation
Citation
{Kuckreja, Danish, Naseer, Das, Khan, and Khan} 2023

Citation
Citation
{Zhang, Cai, Zhang, Zhuang, and Mao} 2024

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, et~al.} 2021

Citation
Citation
{Jia, Yang, Xia, Chen, Parekh, Pham, Le, Sung, Li, and Duerig} 2021

Citation
Citation
{Pham, Dai, Ghiasi, Kawaguchi, Liu, Yu, Yu, Chen, Luong, Wu, et~al.} 2023

Citation
Citation
{Fang, Ilharco, Wortsman, Wan, Shankar, Dave, and Schmidt} 2022

Citation
Citation
{Gadre, Ilharco, Fang, Hayase, Smyrnis, Nguyen, Marten, Wortsman, Ghosh, Zhang, et~al.} 2023

Citation
Citation
{Nguyen, Ilharco, Wortsman, Oh, and Schmidt} 2022

Citation
Citation
{Xu, Xie, Huang, Yu, Howes, Ghosh, Zettlemoyer, and Feichtenhofer} 2023{}

Citation
Citation
{Xu, Xie, Tan, Huang, Howes, Sharma, Li, Ghosh, Zettlemoyer, and Feichtenhofer} 2023{}

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, et~al.} 2015

Citation
Citation
{Miller} 1995

Citation
Citation
{Bilal, Jourabloo, Ye, Liu, and Ren} 2018

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Bertinetto, Mueller, Tertikas, Samangooei, and Lord} 2020

Citation
Citation
{Zhang, Xu, Xiong, and Ramaiah} 2022{}

Citation
Citation
{Van~Horn, Mac~Aodha, Song, Cui, Sun, Shepard, Adam, Perona, and Belongie} 2018



4 TAKAYUKI SHINOHARA: AIST

Figure 2: Summary of GeologyClip. (a) GeologyClip consists of two encoders that are
pre-trained jointly using contrastive learning on multi-modal data comprising terrain image
and corresponding geological and geomophogical information. (b) In a downstream task,
the pre-trained image encoder is used to generate features, which are then fed into MLP for
geohazard (landslide) classification.

transformer encoder, where they are processed to extract meaningful representations. By
pre-training this model on a large and diverse dataset of terrain images, we aim to learn
generalizable visual representations that can be adapted to various downstream geological
tasks.

Our proposed GeologyCLIP model employs a dual-branch encoder architecture (Figure
3(a)). One branch processes terrain images using a pre-trained ViT-small network as its
backbone, leveraging knowledge from the ImageNet dataset. The other branch processes
geological text data, including terrain and geological condition information, and encodes
it into a compact 1D vector using an MLP. These two encoders are jointly trained using a
contrastive learning objective, aligning image and information features.

Figure 3: Transformer-based Encoder and Decoder. (a) Detailed network architectures of
the two encoders during the pre-training phase. (b) Three different training strategies and
the corresponding network architectures for the downstream task of landslide classification.

Each training sample consists of a three-channel terrain image and associated geological
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information. The image is processed by the ViT-small encoder, while the geological infor-
mation is encoded by the MLP. The resulting image and information features are then used
as inputs for contrastive learning, which encourages the model to learn representations that
are similar for samples from the same class and dissimilar for samples from different classes.

3.2 Data Preparation for Pre-training and Validation

Terrain Image Data. In this study, we first convert the raw airborne LiDAR point clouds
to a Digital Terrain Model (DTM) by ground–surface filtering and grid-based interpolation.
The resulting DTM is a single–channel raster in which each pixel records bare-earth elevation
at 1 m resolution. We use the nationwide DTM tiles released by the Geospatial Information
Authority of Japan, a standard reference for high-precision terrain analysis1.

To enrich the geomorphometric information, we derive auxiliary terrain attributes—slope,
hill-shade, relief degree of land surface, and various curvatures—directly from the DTM.
Stacking these derivatives with the elevation band yields a multi-channel terrain image
(Fig. 4) that preserves the metric fidelity of the LiDAR data while remaining compatible
with convolution-based encoders.

From the full Japanese archive we extract 2,935 spatial extents that cover both common
and rare geological features. The data are randomly partitioned into 2,364 training extents,
571 validation extents, and 483 held-out extents for cross-regional testing. Each extent is fur-
ther tiled into 512×512 patches to provide sufficient spatial context; patches from different
splits do not overlap, preventing information leakage during training and evaluation.

Figure 4: Input terrain image of our ViT-based encoder. Terrain images are a combined
image of height, hill shade, and slope.

Text Data. A key advantage of CLIP is its ability to accept free-form text descriptions.
In the context of geology, this allows us to incorporate a wide range of textual information,
including stratigraphic names, scientific classifications, and common geological terms.
Geological Condition. In geology, unlike other classification tasks, category names are di-
versely formatted. We consider the following categories2:

• Stratigraphic Names: To represent the hierarchical nature of stratigraphic units, we
concatenate all labels from the highest (e.g., eon) to the lowest level (e.g., member)
into a single string. For example, the stratigraphic name "Paleozoic Era, Carboniferous
Period, Mississippian Epoch" would be used as a single text input.

1Terrain data was obtained from the AIST geological database.
2The Geological data was obtained from the AIST geological database.
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• Scientific Classifications: We include scientific classifications based on the compo-
sition, texture, and formation process of rocks and minerals. These classifications
provide detailed information regarding the geological materials present.

• Common Classifications: In addition to scientific classifications, we also incorporate
common geological terms that are more widely understood. Terms such as "sandstone"
or "limestone" may not always have a direct correspondence with specific stratigraphic
units but can provide valuable context for image-text matching.

Geomorphological condition. Additionally, we consider geomorphological text as follows3:

• Geomorphological hierarchy: A standard hierarchy in geomorphology from higher
to lower levels may include continental, regional, sub-regional, and local landforms.
For each landform, we "flatten" this hierarchy by concatenating all labels from the
broadest to the most specific into a single string, which we call the geomorphological
name.

• Scientific classification: Scientific classifications of landforms are based on their ori-
gin, structure, and process of formation (e.g., fluvial terrace, aeolian dune). These
classifications are used in the same manner as taxonomic names in biology.

• Common classification: Geomorphological classifications are often highly technical
and specific, which may not be reflected in generalist image-text pre-training datasets.
Common classifications such as "mountain," "valley," or "plain" are more widespread.
Note that common classifications may not have a one-to-one mapping to specific land-
forms because a single landform may have multiple common names or the same com-
mon name may refer to different types of landforms.

4 Results and Discussion

4.1 Geohazard Classification
We evaluated the effectiveness of CLIP for geohazard (landslide) classification by first pre-
training our model on a large dataset and then fine-tuning it on a specific task. Specifically,
we evaluated the effectiveness of using a CLIP model fine-tuned on landslide patch/background
patch classification task. To assess the impact of fine-tuning the CLIP encoder, we conducted
experiments comparing the classification performance of three different approaches: fine-
tuning the pre-trained image encoder (Finetune in Figure 2), training the same encoder from
scratch (Scratch in Figure 2), and applying transfer learning from a pre-trained CLIP model
without further fine-tuning (Frozen in Figure 2).

The results indicate that fine-tuning the CLIP encoder on domain-specific geological
data significantly enhances its performance for classifying geological formations such as
rock types and stratigraphic layers (Table 1). The fine-tuned model (Finetune in Table 1)
outperformed both the model trained from scratch (Scratch in Table 1) and the transfer learn-
ing model without fine-tuning (Freeze in Table 1). Specifically, the fine-tuned CLIP model
demonstrated superior accuracy and robustness in terms of handling the diverse and complex
nature of geological data, which often involve subtle distinctions between classes.

3The Geological data was obtained from the Geographical Survey Institute.
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In contrast, the model trained from scratch exhibited lower classification performance,
likely due to the limited size of the geological dataset compared with the large-scale data
typically used in pre-training CLIP models. This result underscores the importance of lever-
aging pre-trained models, especially when handling specialized datasets that may not have
extensive labeled data available.

The frozen approach, while better than training from scratch, did not match the perfor-
mance of the fine-tuned model. This suggests that while the pre-trained CLIP model contains
valuable general visual and textual representations, fine-tuning is crucial for adapting these
representations to the specific nuances of geological data.

Overall, these findings highlight the effectiveness of fine-tuning pre-trained models such
as CLIP models for domain-specific tasks in the geosciences, offering a promising approach
for improving classification accuracy in applications where data diversity and complexity are
prevalent.

Table 1: The performance of geohazard classification
Models F1 Score

Scratch (GeologyClip) 88.1
Freeze (GeologyClip) 92.2

Finetune (GeologyClip) 94.7

Figure 5: Geohazard (landslide) Classification Results. Our fine-tuned GeologyCLIP clas-
sifed landslide patch or background (not landslide) patch.

4.2 Zero-Shot Classification of Geological Categories
Here, we use our pre-trained GeologyCLIP model to classify geological categories. We
consider four geological categories: sedimentary rock, igneous rock, accretionary rock, and
metamorphic rock.

Chao et al. [11] introduced the concept of generalized zero-shot learning (GZSL), which
we used to classify unseen and seen terrain images. We selected a set of 400 seen terrain
image samples from our dataset and performed the classification of geological categories on
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these terrain images. The zero-shot accuracy is 26.4 in AU→T and 63.2 in AS→T . We then
augmented our testing set by gathering an additional 4000 unseen terrain images from vari-
ous areas, without removing other images of these areas from our dataset. The classification
results for the unseen dataset are presented in Figure 6. Following the methodology of [11],
we evaluated the conventional zero-shot accuracy of GeologyCLIP.

Figure 6: Zeroshot Classification Results of geological category for terrain image.

4.3 Is the CLIP Objective Necessary?
Using the CLIP objective function to pre-train on a labeled image dataset is an unintuitive
decision. (Goyal et al. [19] performed fine-tuning using the CLIP objective but did not per-
form pre-training). We justify this decision by training two ViT-small models on our terrain
image and text dataset using cross-entropy classification loss and a multitask hierarchical
variant, and then evaluate these models against the CLIP objective in a few-shot setting. The
multitask hierarchical training objective is to predict the labels for rock type, time periods,
etc. down to fine categories using cross-entropy for each level of the taxonomy, and then
sum those losses [8].
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We evaluated each model on the 4,000 unseen terrain images used in Zero-Shot Classi-
fication section. One-shot and five-shot settings were evaluated because non-CLIP models
cannot perform zero-shot classification. We report mean accuracy values in Table 2. The
hierarchical classification model outperformed simple classification and is comparable to
the CLIP baseline (see Table 2). However, the CLIP objective massively outperforms both
baselines, strongly justifying our repurposing of the CLIP objective.

Objective Mean 1-Shot Mean 5-shot

Cross-entropy 16.5 26.2
Hier. cross-entropy 19.3 30.5

CLIP 44.7 63.8
Table 2: One- and five-shot classification top-1 accuracy for different pre-training objectives
on our dataset. Results are macro-averaged over all the test sets.

5 Conclusion
We introduce a novel foundation model for Earth-science workflows that learns directly
from airborne LiDAR point clouds rasterised into multi-channel terrain images. Each point
cloud is projected into a set of georeferenced 2-D rasters—elevation, slope, curvature, hill-
shade, and relief—so that the rich 3-D geometry remains intact yet becomes compatible
with convolutional backbones. Using these LiDAR-derived images paired with expert text
descriptions, we train a CLIP-style contrastive encoder that aligns terrain appearance with
geological semantics. Consequently, the pre-trained model acquires a robust, language-
grounded understanding of geomorphological patterns and can be adapted to diverse down-
stream tasks—such as landslide mapping, lithology classification, or fault-scarp recogni-
tion—with only a few fine-tuning iterations instead of training from scratch for each task.

However, this study has some limitations. First, the training and testing data were con-
structed from a limited dataset collected in Japan. Therefore, our model was not trained
to handle a variety of classes, unlike the original CLIP model, and it does not map global-
scale data to geological conditions. Therefore, the training data will need to be expanded
in the future. If a country has a database of geological information, the proposed method
can be used to prepare teacher signals for pre-training at a low cost. Additionally, consider-
ing the amount of data and computational resources available, we were unable to use a rich
transformer-based encoder for image feature extraction. When the dataset is expanded, it
will be necessary to perform training with a larger model.

Our model consistently outperformed baseline methods on multiple datasets from di-
verse regions, demonstrating its generalizability and adaptability. This work establishes a
new benchmark for Earth science deep learning and paves the way for future research on
developing more comprehensive and universal geological AI systems.
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6 Supplementary Material

6.1 Training strategy
6.1.1 Pre-training GeologyCLIP using Contrastive Learning

During pre-training, GeologyCLIP’s dual encoders are jointly optimized through contrastive
learning, utilizing paired terrain images and their corresponding geological and geomor-
phologic information. For each batch of N pairs, the two encoder branches independently
compute embeddings for the terrain images and geological information from their respective
inputs. The contrastive learning objective aims to maximize the cosine similarity between
embeddings of genuine terrain image-geological information pairs while minimizing similar-
ity for the N2 - N incorrect pairings [56]. This process is achieved by optimizing symmetric
cross-entropy loss over the computed similarity scores. The result of this pre-training phase
is a fine-tuned GeologyCLIP model consisting of both a spectrum encoder and an informa-
tion encoder.

6.1.2 Adapting GeologyCLIP to Downstream Tasks

Following the pre-training phase, the terrain image encoder of our foundational model takes
on a multifaceted role in the downstream task of geohazard (landslide) detection (Figure
3(b)). This critical task is fundamentally a scene classification problem, requiring the model
to discern and categorize various geological hazards in terrain images.

To evaluate downstream tasks, we implemented three distinct strategies: fine-tuning,
freezing, and scratch. Figure 2 delineates the training strategy and network architecture
specifics for the geohazard classification task. The fine-tuning approach involves further
training of the pre-trained ViT-Small-based image encoder (Finetune in Figure 2), while the
freezing strategy maintains this encoder in a static form during training (Freeze in Figure
2). Conversely, the scratch model eschews the geology-based pre-trained model entirely
(Scratch in Figure 2). To provide a comprehensive evaluation, we not only compared pre-
trained models using different strategies but also retrained several baseline models. For the
classification task, we employed the geohazard classification network [27] as a benchmark.
Minor modifications were made to the network architecture to accommodate the length of
the spectrum data, ensuring compatibility and fair comparisons.

6.2 Experimental Setup
The pre-training process employed a learning rate of 1e-4 and batch size of 192, with the
model undergoing training for 100 epochs. Given the use of cross-entropy loss, we selected
the model iteration that achieved the highest classification accuracy on the validation set
(occurring at the 55th epoch) as our final pre-trained model. This optimized model was
primed for deployment with its trained terrain image encoder ready to be utilized across a
diverse range of downstream tasks. The learning environment used in our experiment was a
parallel GPU server with four NVIDIA A100s.
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