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Abstract

This paper presents RFconstruct, a framework that enables 3D shape reconstruction
using commercial off-the-shelf (COTS) mmWave radars for self-driving scenarios. RF-
construct overcomes radar limitations of low angular resolution, specularity, and sparsity
in radar point clouds through a holistic system design that addresses hardware, data pro-
cessing, and machine learning challenges. The first step is fusing data captured by two
radar devices that image orthogonal planes, then performing odometry-aware temporal
fusion to generate denser 3D point clouds. RFconstruct then reconstructs 3D shapes of
objects using a customized encoder-decoder model that does not require prior knowledge
of the object’s bound box. The shape reconstruction performance of RFconstruct is com-
pared against 3D models extracted from a depth camera equipped with a LiDAR. We
show that RFconstruct can accurately generate 3D shapes of cars, bikes, and pedestrians.
Check our demo video and more on our project page.

1 Introduction
Self-driving cars require precise and high-resolution 3D perception of the environment. The
ability to recover accurate depth information, 3D dimensions, and the shapes of objects
in the scene can be essential for improving decision-making for safer and more efficient
autonomous driving. Today, self-driving cars rely mainly on cameras or LiDAR to image the
environment. However, both sensors fail in adverse weather conditions such as fog, smog,
snowstorms, and sandstorms [29, 30, 56] which is a foundational challenge against realizing
the true vision of autonomous driving. Millimeter-wave (mmWave) radars have recently
received significant interest in the autonomous driving industry due to their unique ability to
operate in adverse weather conditions [27, 28, 37, 49] since mmWave signals can penetrate
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(a) Radar Point Cloud (b) Baseline PCN (c) RFconstruct (Ours) (d) Ground Truth

Figure 1: RFconstruct’s ability to reconstruct 3D shapes from sparse specular point clouds.

through fog, smoke, sand, rain, etc. As a result, many radar manufacturers have extended
the capabilities of their autonomous driving radars from 2D ranging to generating 3D point
clouds [3, 40, 41, 47, 57]. Despite this significant progress, there is still a massive gap in the
resolution compared to LiDAR and cameras, which prevents mmWave radars from providing
detailed and interpretable shapes of objects.

Enhancing mmWave radar point clouds has been studied in past work. [34] uses Li-
DAR supervision to generate denser point clouds from radar heatmaps. [5, 18, 23] train
neural networks to predict correct radar point clouds that match depth camera mappings of
indoor environments. Other works focus on human pose estimation in controlled indoor
scenarios[19, 59, 60]. However, none of the prior work on mmWave radars can accurately
reconstruct the 3D shape of common autonomous driving objects (cars, bikes, pedestrians)
from partial radar measurements. On the other hand, 3D shape completion has been studied
in the context of LiDAR and depth cameras [6, 35, 48, 50, 54, 55]. However, these works
cannot be directly used for mmWave radars due to the unique nature of RF signals and the
resolution limitations of the radars.

Unlike LiDAR, Radar point clouds are incredibly sparse as can be seen in Fig. 1(a). The
angular resolution of radars can be 100× lower than cameras and LiDARs on the azimuth
plane and 2000× lower along the elevation plane [10, 14]. Moreover, in contrast to light,
mmWave signals do not scatter as much and mainly reflect off surfaces [25]. Hence, cars
are highly specular and act as a mirror reflector of mmWave signals and most reflections
never trace back to the radar. This specularity makes certain portions of the car impossible
to image, where a large portion of the car’s surface is missing, as seen in Fig. 1(a). Finally,
unlike vision, mmWave radar data is very scarce and highly dependent on the radar system
that captures the data, making it very challenging to train deep neural networks.

In this paper, we introduce RFconstruct, the first system for 3D shape reconstruction from
partial autonomous driving radar observations. It deploys COTS mmWave radars to generate
interpretable 3D reconstructions of objects observed in autonomous driving scenarios, as
shown Fig. 1(c). Enabling RFconstruct requires tackling the aforementioned domain-specific
challenges like lack of high-resolution elevation information, sparsity of point clouds, signal
specularity, and lack of training data.

RFconstruct overcomes these challenges through a holistic system design. First, to obtain
elevation information, we build a radar system that uses two synchronized radars where one
of the radars is flipped by 90◦. This allows one radar to capture azimuth information and one
radar to capture elevation information, which we then fuse together to obtain 3D radar point
clouds. Second, we leverage odometry-aware temporal fusion to accumulate points over time
to overcome specularity and generate denser point clouds. Third, we deploy a customized
point-cloud completion neural network to generate complete, meaningful 3D representations
from the sparse mmWave points. Finally, RFconstruct overcomes the scarcity of training
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Fused Radar Point clouds RFconstruct’s Completion 
(Ours) 

Camera Image

Figure 2: RFconstruct’s reconstruction results. Note that we filter out background buildings
and objects in our reconstruction and the color map corresponds to the height.

data1 by designing a carefully augmented dataset that resembles partial radar inputs which
we use for training before refining the results with real data collected by our radar system.

We build RFconstruct using two 77-GHz TI MMWCAS mmWave radars [46] which we
mount on the side of a car as shown in Fig. 4 to collect a real-world dataset. Fig. 2 shows
qualitative examples of RFconstruct’s reconstruction from a video demo that can be found
in the supplementary material. To evaluate RFconstruct quantitatively, we further collect a
dataset of cars, humans, bikes, and motorbikes by mounting the radars on a TurtleBot3 [31]
and measuring ground-truth from a full 3D scan of the objects using a depth camera and
LiDAR-based reconstructions. We compare RFconstruct against the ground truth using stan-
dard metrics like Chamfer Distance (CD) and Earth Mover Distance (EMD) and show that
it outperforms four baselines: PCN [55], AdaPointTr [54], ODGNet [6], and a class medoid
baseline. Moreover, we show that RFconstruct’s temporal fusion significantly outperforms
Synthetic Aperture Radar techniques. We also present extensive microbenchmarks, ablation
studies, and qualitative results.

This paper makes the following contributions:

• RFconstruct, to the best of our knowledge, is the first mmWave radar system capable of
reconstructing 3D shapes and details of commonly found street-side objects (cars, pedes-
trians, bikes and motorbikes, ) from partial observations of driving past the object.

• We present a novel system design that combines: (1) Radar fusion, (2) Odometry-aware
temporal fusion, and (3) a radar shape completion deep neural network to reconstruct
complete 3D shapes.

• We provide a new radar dataset composed of: (1) an augmented training dataset generated
from ShapeNet-55 [1] to emulate mmWave radar point cloud imperfections such as spec-
ularity and noise, (2) a simulated radar dataset that captures radar characteristics like sinc
leakage, (3) a real 3D mmWave radar dataset with equally good resolution in azimuth and
elevation collected paired with depth camera and odometry data.

• We build, implement, and extensively evaluate a prototype of RFconstruct in real settings
using COTS MIMO cascaded radars.

1Note that given our unique radar system, none of the online radar data sets can be used for training since none
of them contain elevation information or odometry-aware temporally fused radar data.
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2 Related Work

A. Millimeter-wave Radar Perception: Recent years have witnessed an increasing interest
in mmWave radar perception for various applications, ranging from human posture track-
ing [17, 19, 59] to gesture recognition [20, 21]. On autonomous vehicles and autonomous
mobile robots, mmWave radars have also been exploited for odometry [2, 24], mapping [8,
23, 34], object detection [4, 9, 11, 13, 14, 22, 26, 27, 28, 32, 33, 58], and scene flow
estimation[10].These works only output high-level abstract features for specific end goals,
such as semantic segmentation of radar point clouds [32, 38, 39], coordinates of objects [14],
2D BEV bounding boxes [9, 11, 26, 27, 58], and 3D bounding boxes [4, 22, 28, 33]. In con-
trast, RFconstruct aims to reconstruct 3D shapes of objects, which contain high-frequency
details and contextual and perceptual information than the abstracted features.

B. 3D Reconstruction with mmWave Radars: There are prior works that try to reconstruct
3D shapes, but they focus on reconstructing 3D meshes of human bodies [7, 36, 51, 61]. They
are specifically designed and trained for human targets and cannot generalize to other types
of objects. [15, 18] create 2D depth maps of cars and indoor buildings from radar heatmaps.
However, when converting depth maps to 3D point clouds, they suffer from common inac-
curacies and artifacts and are incomplete because of occlusion. Sun et al. [43, 44, 45] take
a step further, combining multiple GAN-generated depth maps from multiple views to gen-
erate a complete point cloud and feeding it to another generative model to reconstruct 3D
shapes. These methods, however, have only been shown to work on cars and struggle with
overfitting and insufficient input information due to requiring two stages of deep learning
(Radar to depth map and depth map to 3D shape).

C. Point-Cloud Completion: Learning-based methods have become the current research
trend in point cloud completion, and they can be further categorized into voxel-based and
point-based methods. The voxel-based method entails the voxelization of the disordered
point cloud, followed by the use of the voxelized 3-D model to accomplish shape comple-
tion [48, 50]. Point feature-based approaches leverage deep neural network architectures
designed to work directly with point clouds like PointNet [35]. RFconstruct builds on top
of PCN [55], which has an encoder-decoder architecture and uses the strategy of coarse-to-
fine point generation. The encoder extracts global features from the partial input, and the
decoder uses these global features to generate a dense, complete point cloud. AdaPtr [54]
further advances this line by introducing an adaptive point transformer that dynamically
warps a learned template to each input, improving completion quality especially under large
missing regions. ODGNet [6] takes a complementary approach, employing an object-driven
graph network that incorporates symmetry and geometry priors to refine local details and
better preserve fine structures.

3 Proposed Method

RFconstruct is a 3D reconstruction framework designed for mmWave radars, which can
recover complete 3D shapes of objects commonly seen by self-driving cars such as vehicles,
motorcycles, bicycles and pedestrians. RFconstruct operates in two stages shown in Fig. 3;
The first stage focuses on the enhancement of mmWave radar point clouds. The second stage
leverages the enhanced partial point cloud to feed through a shape-completion network that
generates a complete 3D shape from partial inputs.
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Figure 3: RFconstruct Overview. In Stage 1 (left), Enhanced, dense point clouds are gen-
erated by multi-radar fusion and odometry-aware fusion. In stage 2 (right), RFconstruct’s
completion network generates complete 3D shapes from the enhanced point clouds.

3.1 Enhanced 3D mmWave Point Clouds

Orthogonal Radars Fusion: In order to enhance the resolution and provide elevation infor-
mation necessary for reconstructing the shapes of objects, we built a radar system consisting
of two 1D MIMO radars placed orthogonal to each other, i.e., we flip one radar by 90◦ so it
has good resolution along elevation. The intuition is that the horizontal radar can emulate a
1D horizontal antenna array with N elements, and achieve an equally high azimuth resolu-
tion as a prohibitively expensive 2D N ×N elements radar. Similarly, the vertical rada has
an equally high elevation resolution. For a detailed background on mmWave imaging and
MIMO radar, please refer to the supplementary material.

Imaging a 3D scene using a 1D antenna array, however, results in ambiguities on the
other dimension. For a target detected at the azimuth angle φt with the horizontal radar, if we
could estimate its elevation angle using vertical radar, we would get the best of both worlds
and enable high-resolution 3D imaging. Finding corresponding targets in multiple radar
heatmaps is challenging, however, because radar heatmaps lack rich features as in RGB
camera images that can be used to associate pixels in multiple camera images [52]. Radar
heatmaps appear as the reflected signal power, which is the key feature we can leverage
to identify and associate targets across the two radars. Moreover, we know that the range
(depth) of corresponding targets would be the same. We first list the targets detected by each
radar in the order of the reflected signal power for each range. Then, we start associating
targets from the highest power to the lowest until the discrepancy becomes larger than 3dB.

Odometry-Aware Temporal Fusion: In order to combat specularity and increase point
cloud density, RFconstruct combines a number of consecutive radar frames and accumulates
their point clouds.To accurately accumulate point clouds in different frames, we first need to
convert the relative reflectors’ positions into absolute positions by compensating for the ego-
motion of the radar. To obtain the position and orientation of the radar per frame, RFconstruct
uses an odometry sensor that is synchronized with the radar. For each frame of 3D point
clouds, we first obtain the corresponding position and orientation from the odometry. We
then apply the necessary translation and rotation to adjust the point clouds to the same origin.
Then, the transformed point clouds are merged to generate a denser 3D point cloud.
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f)

Figure 4: Temporal fusion for (a) horizontal radar only, (b) vertical radar only, and (c) the
fused output of both. (d) camera picture of the scene. (e,f) our experimental setup.

3.2 Shape Completion from Radar Point Clouds

RFconstruct takes a data-driven approach to reconstruct complete 3D shapes with missing
parts filled in from partial radar point clouds. We focus on four types of object that are most
commonly seen and are most important for self-driving cars: cars, bicycles, motorcycles,
and pedestrians. Our work builds on the Point-Completion Network (PCN) [55]. However,
PCN is designed and trained for significantly different inputs than radar point clouds. It also
make restrictive assumption about the object dimensions, centering and orientation which
would be impractical for our application.

RFconstruct follows an encoder-decoder architecture similar to that of PCN. However,
we introduce two main architectural changes to the neural network as shown in Fig. 3.

(1) Classification-Driven Feature Refinement. A classifier module that classifies the input
objects based on the features produced by the encoder. The classifier module is not directly
used in our system but it is only used in the computation of the loss function during training.
It consists of an MLP layer and helps guide the encoder to better differentiate the four types
of targets and produce more class-differentiable features.

(2) Local-Global Context Modeling Decoder. In addition to the global feature vector, we
include the point features in the decoder input which we find is necessary for noisy sparse
specular input. The decoder is a two-stage decoder. The first stage generates a coarse point
cloud that constitutes the general object shape. In the second stage, We measure a nearest-
neighbor correspondence between the generated coarse point cloud and the partial input point
cloud. This correspondence is used to extract local point feature vectors that are concatenated
to the coarse output as well as the global feature vector and fed to a shared MLP to generate
a fine-grained point cloud.

Loss Functions: The loss for our network is a weighted combination of a classification
loss, coarse loss, and fine loss. The classification loss is a softmax cross-entropy loss that
measures the loss between the predicted class and the true class. The coarse loss measures
the loss between the output of the coarse stage in the decoder and the ground truth using the
Earth Mover’s Distance (EMD) metric [12]. Finally, the fine loss is measured between the
final output and the ground truth using Chamfer Distance (CD) [12]. The exact equations of
the loss functions can be found in the supplementary material.
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3.3 RFconstruct’s Dataset
Because of our unique radar point cloud processing pipeline, there are no available radar
datasets that we can use to train and evaluate our model, and collecting data using our hard-
ware data takes a prohibitively long time. Hence, for training, we generate an augmented
dataset that closely resembles the behavior and noise of the real-world radar data. This data
consists of two parts: the first is simulated mmWave radar data using ray tracing, and the
second is a synthetic dataset inspired by the PCN [55] dataset, but is deformed to resemble
radar noise patterns and practical motion perspectives. To generate the training data, we
use synthetic 3D CAD models from ShapeNet[1] objects dataset as well as CAESAR[53]
human dataset. Our final dataset consists of 2,573 unique shapes, including 1,697 cars, 396
bikes and motorbikes, and 480 humans. From each shape, we generate 8 simulated and 8
synthetic data points for a total of 41,168. For the ground truth, we sample the surface of
the full 3D shapes uniformly to extract 16384 points, which is equal to the number of output
points produced by the network. The real data set includes data collected with the car and
the turtlebot shown in Fig. 4. However, only the turtlebot data is used for fine-tuning and
quantitative evaluations as we are able to capture the ground truth using a PolyCam with the
LiDAR and camera of an iPhone. This data includes 162 cars, 91 bikes, and 52 humans. A
more detailed explanation of how we generate the training and real data sets can be found
in the supplementary material.

4 Implementation and Evaluation Setup

Experimental Hardware Setup: Our experimental setup shown in figure 4 consists of two
TI MMWCAS radars [46] and a depth camera ZED 2i [42] with an IMU that is deployed on
the same moving platform as the two radars. The hardware implementation details can be
found in the supplementary material.

Training RFconstruct: RFconstruct as well as all the below baselines are trained with the
bounding box priors, such that the partial inputs are positioned in their correct position in
the complete shape, and the object orientation is presumed to be fixed. Bounding boxes and
the direction of the cars can be obtained from prior work [16, 26]. To avoid the need for
bounding boxes, we also train RFconstruct-no-bbox on the true-to-scale and centered data
with diverse orientations in the training data. We train both RFconstruct and RFconstruct-
no-bbox for 340 epochs. We fine-tune RFconstruct with a portion of the real radar dataset
to evaluate improved performance and reduce any simulation biases. We use 80% of the
collected data for fine-tuning and 20% for testing. We do not include any objects seen in
training for testing. Finally, we also train class-specific RFconstruct models that are trained
on only a single class (cars, bikes, or humans).

Baselines: We compare our results against six baselines. (1) PCN [55] trained on three
classes of interest. (2) AdaPoinTr [54] retrained on our augmented dataset. (3) ODGNet [6]
trained on our augmented data set. d (4)A class medoid baseline, by selecting the training
shape with the lowest average Chamfer Distance to others in the same class. (5) A SAR
(synthetic aperture radar) baseline that leverages SAR from vehicle motion to emulate large
antenna arrays that improve resolution.

Metrics: We use the following for our evaluation: (1) Chamfer Distance (CD) [12] is the
minimum distance between a point in one point set and the closest point in the other set. (2)
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Figure 5: Performance against baselines using 3D radar point clouds without fine-tuning

Earth Mover’s Distance (EMD) [12] finds the one-to-one correspondence of points in the
two point clouds and calculates the distance between each pair of associated points.

5 Results
Demo: We submitted a video demo in the supplementary material. Note that in this demo,
we filter out background buildings and objects and focus on reconstructing foreground ob-
jects. Also note that the training data set did not include a human on a bike. Since the
reflections from the metal bike are stronger, RFconstruct mainly reconstructs the bike. For
moving targets, we use a sliding window to accumulate radar point clouds. However, since
RFconstruct was trained on static objects, and since the size of the sliding window should be
dynamically adjusted based on the relative speeds of the cars, humans, and bikes, the recon-
struction of moving targets appears smeared at times in the video. We evaluate the impact of
the vehicle’s speed on the reconstruction in the supplementary material. We also elaborate
on the limitations of RFconstruct in the supplementary material.

Performance Against Baselines: We show RFconstruct’s performance in comparison with
the baselines in Fig. 5 as well as in Table 1. RFconstruct accurately reconstructs the 3D
shapes of cars, bikes, and humans that closely match the ground truth and outperform the
state-of-the-art baselines both quantitatively and qualitatively. The medoid baseline perfor-
mance is competitive but it assumes perfect class labels and doest not work without bounding
box priors. Our fine-tuned model outperforms it, showing better adaptation to individual in-
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puts. Furthermore, note that although RFconstruct is trained primarily on simulated and syn-
thesized data, it could generalize well to real scenes with different backgrounds and visibility
conditions. The results also improve significantly with only a small amount of fine-tuning as
can be seen in Table 1.

Table 1: Performance against baselines with and without object bounding box knowledge.
CD and EMD reported are in cm.

With Bounding-box Priors Without Bounding-box Priors
Mean CD Mean EMD Mean CD Mean EMD

ODGNet 3.89 16.07 ODGNet 52.2 108
AdaPointTr 3.42 14.94 AdaPointTr 43 91.46
PCN 4.58 13.03 PCN 42.1 90.8
Medoid Baseline 2.52 9.16 Medoid Baseline N/A N/A
RFconstruct 3.52 11.7 RFconstruct 28.8 82.7
Fine-tuned RFconstruct 2.01 6.25 Fine-tuned RFconstruct 15.3 49.9

Class-Specific Models. We evaluate RFconstruct trained on all classes against three, class-
specific RFconstruct models that are trained on only a single class each. As shown in Table
3, the improvement of a class-specific model over our general model is marginal and incon-
sistent. This is likely due to the inherent classification module of RFconstruct.

Ablation of the Classifier Module: The classifier module aids the encoder in generating
features that are class-separable. This, in turn, improves the decoder performance due to
having more representative input features. We analyze the impact of the classifier module
by removing it from the pipeline. Table 2 shows that the addition of the classifier module
improves the overall CD and EMD.

Ablation of Data Augmentations: RFconstruct is trained on a merged dataset of simulated
radar data and synthetic data. Training only on one of these data types results in worse
performance, as shown in Table 2. While the simulated data models the noise of radar
systems such as low resolution, sinc noises, and grating lobes, the geometric perturbations
in synthetic data can model signal specularity as well as noise generated by real systems.

Fine-Tuning: Figure 6 shows qualitative results for RFconstruct and Fine-tuned RFcon-
struct. It also shows the two stages of point generation where the second and fourth columns
show the output coarse pointcloud, and the third and fifth columns show the fine pointcloud.

Additional Results: Further qualitative results for (1) fine-tuning, (2) randomly selected
data points, (3) failure cases, (4) the impact of the number of accumulated frames, (5) the
impact of relative speeds of the cars, and (5) comparison with SAR can be found in the
supplementary material.

Table 2: Comparison of results without the
classifier module and data augmentations.

Classifier module
Configuration CD EMD
With Classifier Module 3.52 11.7
Without Classifier Module 4.2 12.3

Data augmentations.
Training Data CD EMD
Combined Augmentations 3.52 11.7
Simulated Radar Data Only 4.62 14.1
Geometric Augmentation Only 4.09 12.53

Table 3: Class-specific models performance
Classes in Classes in CD ↓ EMD ↓
Evaluation Training (cm) (cm)

Human Human only 2.8 8.34
Car, Bike, Human 3.1 11.5

Car Car only 2.65 8.66
Car, Bike, Human 3.1 10.3

Bike Bike only 4.3 13.3
Car, Bike, Human 4.2 13.6



10 HUSSEIN ET AL.: RF-CONSTRUCT

Figure 6: Qualitative results for RFconstruct and RFconstruct fine-tuned on real radar data
for randomly selected data points.

6 Conclusion and Limitations

This paper takes major steps towards enhancing autonomous radars by developing a radar
system that provides good resolution in both azimuth and elevation and completes 3D shapes
of important objects in the context of autonomous driving, such as cars, bikes, and pedestri-
ans, from partial observations. Such capabilities will be essential in enabling self-driving cars
to operate in fog and bad weather. RFconstruct was able to tackle challenges in hardware,
modality, and practicality to enhance performance. However, significantly more research is
needed to enhance the robustness, stability, and generalizability of such systems.

RFconstruct is trained mainly for static objects due to the nature of pointcloud genera-
tion. However, this can be expanded for dynamic objects by incorporating dynamic sliding
windows for Temporal fusion, as well as incorporating radar doppler information for esti-
mating and compensating for the velocity of dynamic objects in the scene. A preliminary
exploration of static sliding windows for dynamic objects can be seen in the demo, which
we leave for suture work. A further detailed discussion on RFconstruct’s limitations can be
found in the supplementary material, which we leave to future work.
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