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Abstract

Robust frame-wise embeddings are essential to perform video analysis and under-
standing tasks. We present a self-supervised method for representation learning based
on aligning temporal video sequences. Our framework uses a transformer-based encoder
to extract frame-level features and leverages them to find the optimal alignment path
between video sequences. We introduce the novel Local-Alignment Contrastive (LAC)
loss, which combines a differentiable local alignment loss to capture local temporal de-
pendencies with a contrastive loss to enhance discriminative learning. Prior works on
video alignment have focused on using global temporal ordering across sequence pairs,
whereas our loss encourages identifying the best-scoring subsequence alignment. LAC
uses the differentiable Smith-Waterman (SW) affine method, which features a flexible
parameterization learned through the training phase, enabling the model to adjust the
temporal gap penalty length dynamically. Evaluations show that our learned representa-
tions outperform existing state-of-the-art approaches on action recognition tasks.

1 Introduction
Video understanding and analysis have garnered significant attention in computer vision re-
search in recent years [1, 4, 8, 11, 12, 13, 19, 30, 31, 35]. These tasks require models to
capture not only spatial information within individual frames but also the complex temporal
dynamics that evolve across sequences of frames. Traditional supervised learning methods
have achieved considerable success in advancing performance; models such as those pre-
sented in [4, 12, 19] are able to predict action categories effectively. However, these methods
present several challenges: (i) Most approaches require fine-grained annotations, which are
time-consuming and labor-intensive; (ii) Most approaches struggle to capture the complex
temporal information and causal relationships that vary across diverse videos. To address
these challenges, we explore how representation learning based on the pretext-task of video
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Figure 1: We introduce a representation learning approach that aligns video sequences de-
picting the same processes. Our training objective is to use a novel LAC loss to optimize and
learn an element-wise embedding function that supports the alignment process.

alignment can improve performance in downstream action recognition tasks such as phase
classification and phase progression.

Prior self-supervised or weakly-supervised video alignment approaches [2, 5, 10, 14, 15,
27] train on pairs of videos that describe the same action using either cycle-consistency [10],
soft dynamic time warping [14, 15], or sequential contrastive learning [5]. We notice that
the pretext task of video alignment shares similarities with bioinformatics sequence align-
ment for studying DNA, RNA, and protein structures. Since some actions are composed of
sub-actions or events that occur in a specific order, video alignment shares similarities with
protein alignment, as both involve identifying regions of continuity and discontinuity within
sequences. There are two main types of alignment algorithms commonly used in bioinfor-
matics: global and local. The Needleman-Wunsch (NW) algorithm [25], a global alignment
method, aligns entire sequences from start to finish. This approach is conceptually simi-
lar to Dynamic Time Warping (DTW) [24], which aligns sequences of varying lengths by
matching their temporal patterns from start to finish. Differentiable versions of NW and
DTW algorithms have been established by incorporating smooth maximum/minimum and
argmax/argmin functions [7, 23]. In particular, Soft-DTW [7] has been used in prior video
alignment approaches [2, 14, 15]. In contrast, the Smith-Waterman (SW) algorithm [29]
implements local alignment, identifying regions of high similarity within sequences and al-
lowing for gaps, insertions, and deletions. This ability to handle subsequences makes local
alignment particularly suitable for modeling the complexity of actions in real-world video
data, where actions may not always follow rigid, continuous sequences.

Specifically, in this work, we introduce a novel loss function termed Local-Alignment
Contrastive (LAC) loss, integrated into our proposed end-to-end framework for the video
alignment task, as visualized in Figure 1. Following prior works [2, 5], our framework
uses a variation of convolutional and transformer encoders to extract spatio-temporal fea-
tures from each frame. However, rather than relying on a differentiable global alignment
loss like Soft-DTW [7], our novel LAC loss enables the comparison of video pairs through
a consistent and differentiable local alignment loss. This loss specifically accommodates
sequences with learned penalties for opening gaps and extending them, combined with
a contrastive loss that effectively separates dissimilar frames. We demonstrate that the
learned representations of our approach outperform previous methods on various down-
stream action recognition tasks, such as action phase classification and action phase pro-
gression on the Pouring [27] and PennAction [33] datasets. Code and models are available
at: https://github.com/keynekassapa13/LAC.
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2 Related Work

Action Recognition. Over the last decade, researchers have proposed various methods to
address video recognition tasks [4, 12, 13, 30, 35], including action classification [1, 4,
11, 18, 28, 31], which involves mapping a video to an action category, and action segmen-
tation [9, 12, 21, 32, 34], which aims to identify the spatial and temporal boundaries of
specific actions within a video. However, these methods often rely heavily on extensive la-
beled data, which is time-consuming and labor-intensive to obtain. To address this limitation,
self-supervised learning methods have been explored, enabling the extraction of video repre-
sentations without requiring labeled data. Video alignment, as a self-supervised pretext task
for action recognition, leverages temporal consistency to learn meaningful representations.
Previous work has utilized traditional computer vision techniques to derive these represen-
tations; for instance, optical flow [3] computes motion between frames based on brightness
constancy, the CONDENSATION algorithm [17] employs a probabilistic approach informed
by prior motion data, and Space-Time Interest Points (STIPs) [20] detect salient points by
analyzing both spatial and temporal patterns in video sequences.

Self-Supervised Learning. With the rise of deep learning, the field has shifted towards
using Self-Supervised Learning (SSL) methods to learn video representations. Prior works
[5, 10, 14, 15, 27] have addressed the problem of video alignment using self-supervised
methods. Time Contrastive Network (TCN) [27] utilizes contrastive learning to distinguish
frames from different segments while grouping those within the same segment. Temporal
Cycle-Consistency (TCC) [10] introduces cycle-consistency loss to identify and match recur-
ring action sequences within or across videos. Learning by Aligning Videos (LAV) [15] uses
Soft-DTW [7] and Inverse Difference Moment (IDM) regularization to optimize alignment
and ensure balanced frame distribution. Global Temporal Alignment (GTA) [14] implements
a modified differentiable DTW with global consistency loss for consistent temporal align-
ment. Contrastive Action Representation Learning (CARL) [5] introduces Sequence Con-
trastive Loss (SCL), which minimizes the KL-divergence between augmented views based
on timestamp distance. Learning Representation by position PROPagation (LRProp) [2] uti-
lizes a Soft-DTW [7] alignment path and a novel pair-wise position propagation technique.
We will use these state-of-the-art methods to evaluate our model’s performance on action
recognition tasks.

Global vs. Local Alignment. Global alignment methods, such as the NW algorithm [25]
and DTW [24], aim to align entire sequences from start to finish to achieve the best overall
match; differentiable versions have been developed [7, 23] and utilized in prior video align-
ment approaches [2, 14, 15]. In contrast, the SW algorithm [29] focuses on identifying the
most similar subsequences within larger sequences. Recent work by Petti et al. [26] intro-
duced a differentiable SW algorithm in a supervised framework that jointly learns alignments
and improves protein structure prediction. [22] shows the power of embedding sequences
into high-dimensional spaces within a supervised framework for more precise local align-
ment. Our approach employs a differentiable version of SW in self-supervised framework
to improve model performance on video understanding and alignment tasks compared to
state-of-the-art temporal global alignment methods.
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Figure 2: Our framework uses Local Alignment Loss and Contrastive Loss to optimize em-
beddings generated by an encoder that processes input videos after they have undergone
spatio-temporal data augmentation.

3 Method

This section introduces our novel Local-Alignment Contrastive (LAC) loss function em-
ployed within our framework where video alignment serves as the pretext task, as visualized
in Fig. 2. Specifically, we derive the forward and backward passes of the differentiable local
alignment loss and explain how we ensure consistency within our method.

3.1 Notations

Let V 1 and V 2 represent two videos, each consisting of a sequence of frames. Specifically,
V 1 = {v1

t }
T1
t=1 and V 2 = {v2

t }
T2
t=1, where v1

t and v2
t denote individual frames at time t, and

T1 and T2 are the total number of frames in each video. Following [5], we preprocess the
videos using temporal random cropping to generate cropped versions V 1

c and V 2
c . The indices

of the sampled frames during cropping are recorded in S1 and S2, where S1 ⊆ {1, . . . ,T1}
and S2 ⊆ {1, . . . ,T2}. Next, we apply data augmentations to the cropped videos, resulting
in Ṽ 1 and Ṽ 2. These augmented videos are then processed through an encoder to obtain
embeddings Z1 and Z2. Each embedding Zi ∈ RTi×E represents a sequence of length Ti
with an embedding dimension E. The objective is to train the encoder to minimize the
distance between embeddings Z1 and Z2 corresponding to videos depicting the same action,
as determined by our loss.

3.2 Background

Prior approaches [14, 15] use DTW as the main method for the temporal alignment loss.
Given embeddings Z1 and Z2, we compute a cost matrix C ∈ RT1×T2 , where each element
Ci, j measures the local distance between Z1

i and Z2
j . DTW seeks the optimal alignment path

through this cost matrix that minimizes the total cumulative cost. The feasible paths must
satisfy constraints of matching endpoints, monotonicity, and continuity. While the number
of possible alignment paths grows exponentially with the lengths of the sequences, dynamic
programming allows DTW to compute the optimal path efficiently in quadratic time O(T1T2).
The DTW algorithm is formulated recursively as:

Di, j =Ci, j +min

 Di−1, j−1
Di−1, j
Di, j−1

(1)
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where Di, j represents the accumulated cost up to point (i, j), and Ci, j is the local cost be-
tween elements Z1

i and Z2
j . The non-differentiable nature of the DTW formulation presents

challenges for gradient-based optimization techniques. To address this, prior methods [14,
15] utilize Soft-DTW [7] which replaces the discrete min operator with a differentiable,
smoothed version denoted as softminγ . As the smoothing parameter γ approaches zero,
the behavior of softminγ approximates that of the discrete min operator. This substitution
enables the use of gradient-based optimization in DTW while preserving its alignment capa-
bilities.

3.3 Differentiable Local-Alignment

Despite the advantages offered by Soft-DTW [7], it inherently maintains the global align-
ment characteristic, ensuring continuity throughout the entire sequence. This attribute of
global alignment may prove suboptimal in scenarios where localized alignment strategies,
such as those implemented by the SW algorithm [29], are preferable. The SW algorithm
[29] supports localized matching, providing enhanced flexibility and increased sensitivity to
similarities within subsequences. Therefore, we propose a differentiable SW local-alignment
approach as our method for temporal alignment loss.

We consider a pair of embeddings, (Z1,S1) and (Z2,S2), with corresponding sampled
indices, tasked with determining the optimal alignment between these embeddings. We begin
by calculating a similarity matrix, S ∈ RT×T , using the inverted Euclidean distance to yield
higher values that indicate increased similarity between the points in Z1 and Z2. Utilizing
dynamic programming, the SW algorithm effectively determines the optimal alignment by
maximizing a score derived from pairwise similarities within the matrix. The alignment
algorithm is formally expressed as follows:

Di, j = Si, j +max


0
Di−1, j−1
Ixi−1, j−1

Iyi−1, j−1

(2)

Ixi, j = max
{

Di, j−1 −goi, j

Ixi, j−1 −gei, j
(3)

Iyi, j = max


Di−1, j −goi, j

Ixi−1, j −goi, j

Iyi−1, j −gei, j

(4)

where the initial values are set to D(i,0)=D(0, j)= Ix(i,0)= Ix(0, j)= Iy(i,0)= Iy(0, j)=
−∞ for all indices i, j = 1, . . . ,T . The matrix D described in Eq. 2 acts as the primary scor-
ing matrix, representing the cumulative maximum score at each matrix coordinate (i, j). The
matrices Ix and Iy detailed in Eq. 3 and Eq. 4, represent the scores associated with introduc-
ing gaps along the x and y axes. Additionally, go and ge are used to specify the penalties for
opening and extending gaps.

Similar to Soft-DTW [7], our differentiable temporal alignment loss function uses a
smoothed version of the discrete max function, denoted as maxγ . This smooth approxi-
mation is formally defined as:
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max γ(u1, . . . ,un) := γ log
n

∑
i=1

eui/γ (5)

where γ > 0 is a smoothing parameter that controls the approximation’s fidelity to the
original max function. As γ approaches zero, the smoothed maxγ function increasingly ap-
proximates the behavior of the standard max function, enabling a differentiable formulation
that can be integrated into gradient-based optimization frameworks. The gradient of the
smoothed maxγ with respect to each input ui is calculated as follows:

∂ max γ({u1, . . . ,un})
∂ui

= exp
(

ui −max γ({u1, . . . ,un})
γ

)
(6)

This expression aligns with the softmax function. By differentiating the smoothed maxi-
mum score with respect to each input, our model directly utilizes derivative-sensitive param-
eters such as the similarity score (S), gap open penalty (go), and gap extend penalty (ge). As
a result, we define our differentiable local alignment loss as Lswi j = SW(sim(Zi,Z j)). The
(sim) function calculates the similarity between two embeddings and generates a similarity
matrix S. Unlike prior differentiable SW implementations [22, 26] that depend on supervised
learning, our approach integrates the differentiable SW algorithm within a self-supervised
framework.

3.4 Final Loss
Following the approach in [5], our contrastive loss is modeled after the NT-Xent loss from
SimCLR [6]. This loss function calculates absolute pairwise distances between embeddings
(Z1,S1) and (Z2,S2), subsequently forming a Gaussian-weighted positive label distribution.
This distribution is then contrasted against normalized similarity logits using the Kullback-
Leibler divergence. The contrastive loss is mathematically expressed as:

Lc =− 1
T

T

∑
i, j=1

(
G(s1

i − s2
j)

∑
T
k=1 G(s1

i − s2
k)

log
exp(sim(z1

i ,z
2
j)/τ)

∑
T
k=1 exp(sim(z1

i ,z
2
k)/τ)

)
(7)

where τ represents the temperature parameter, G denotes the Gaussian weighting func-
tion applied to the absolute pairwise distances, and (sim) measures the normalized similarity
between embeddings. To ensure consistency between contrastive and local alignment losses,
we synchronize our temporal local loss by utilizing the primary score matrix D12 and D21
from Lsw12 and Lsw21. Following the application of the softmax function to D, the resulting
matrix is referred to as D̃. The logits matrix L is then derived by performing an element-
wise multiplication of D̃12 and D̃T

21. The cross-entropy loss for this logits matrix against the
Gaussian-weighted labels is calculated as follows:

Ll =− 1
T

T

∑
i, j=1

(
G(s1

i − s2
j)

∑
T
k=1 G(s1

i − s2
k)

log
(

exp(Li j)

∑
T
k=1 exp( Lik)

))
,

where D̃12,i j =
exp(D12,i j/τ)

∑
T
k=1 exp(D12,ik/τ)

, D̃21,i j =
exp(D21,i j/τ)

∑
T
k=1 exp(D21,ik/τ)

, L = D̃12 · D̃T
21
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Method Class AP@K Progress τ10 50 100 K=5 K=10 K=15
TCN [27] 80.32 81.44 83.56 76.26 76.71 77.26 82.30 83.51
TCC [10] 86.60 86.78 86.86 81.84 80.94 81.69 83.36 85.26
LAV [15] 89.77 90.35 91.77 87.48 88.36 88.40 85.20 88.75
GTA [14] 89.34 90.20 90.22 87.79 87.48 87.82 88.67 92.47
SCL [5] 92.76 92.80 93.05 88.75 88.51 88.97 91.26 98.20
LRPROP [2] 92.70 94.44 94.36 92.41 90.33 90.86 94.09 99.46
LAC 95.87 95.78 95.16 92.76 91.07 91.37 94.24 97.50

Table 1: Performance comparison of state-of-the-art methods on the Pouring Dataset [27]

Our proposed loss function, referred as Local-Alignment Contrastive (LAC), integrates
contrastive and local alignment losses. It is formally defined as follows:

L= Lc +α · (Ll +β · (Lsw12 +Lsw21)) (8)

where α and β are weights used to balance the components of the loss, set to 0.01 and 1,
respectively.

4 Experiments

Datasets. We evaluate the performance of the LAC model on two datasets using a variety of
evaluation metrics. The Pouring dataset [27], which focuses on the action of pouring liquids,
includes 70 training and 14 testing videos. The PennAction dataset [33], featuring 13 human
actions, contains 1140 training and 966 testing videos. We utilize the key events and phases
for the videos in both datasets as proposed by TCC [10].
Implementation Details. Our encoder, f : RT xCxWxH → Z, maps video inputs V into an
embedding space Z. We use a ResNet50-v2 [16] as our backbone to extract features from the
Conv4c layer with an output size of 10x10x512. These features are then processed through
adaptive max pooling, followed by two fully connected layers with ReLU activation. A
subsequent linear layer projects the features into a 256-dimensional space. To enhance the
model’s capacity to capture long-range dependencies, we integrate sine-cosine positional
encoding and employ a two-layer Transformer encoder. To improve the model’s ability to
capture long-range dependencies, we incorporate sine-cosine positional encoding and apply
a two-layer Transformer encoder. The final embedding layer reduces the dimensionality to
128 for the frame-wise representations.
Evaluation Metrics. Following related work [2, 5, 10, 14, 15], we evaluate our model using
the following metrics: (i) Phase Classification, which assesses the accuracy of action phase
predictions by training an SVM classifier on our embeddings; (ii) Phase Progression, which
evaluates how accurately our embeddings predict action progress using a linear regression
model’s average R-squared value, based on normalized timestamp differences; (iii) Average
Precision@K (AP@K), which evaluates fine-grained frame retrieval accuracy by calculating
the proportion of correctly matched phase labels within the K closest frames; (iv) Kendall’s
Tau, which quantifies the temporal alignment between sequences by comparing the ratio of
concordant to discordant frame pairs.
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Method Class AP@K Progress τ10 50 100 K=5 K=10 K=15
TCN [27] 69.73 70.26 70.01 60.92 61.57 61.52 76.37 63.72
TCC [10] 86.60 86.78 86.86 81.84 80.94 81.69 83.36 85.26
LAV [15] 88.51 88.72 88.97 73.47 73.13 74.27 92.52 93.06
GTA [14] 84.21 84.68 85.28 71.72 72.17 71.52 90.51 83.35
SCL [5] 87.85 87.52 88.15 91.70 90.61 90.58 92.89 98.14
LRPROP [2] 91.90 92.96 93.25 92.46 92.2 92.03 93.03 99.09
LAC 95.57 93.79 93.40 93.87 93.41 92.65 94.21 94.10

Table 2: Performance comparison of state-of-the-art methods on the PennAction Dataset
[33]

Figure 3: Similarity matrix (left) shows video alignment using an optimal path and the re-
spective video aligned frame-by-frame (right).

4.1 Results

We apply the same four metrics to the Pouring dataset [27]. For the PennAction dataset
[33], we evaluate each of the 13 action categories using the same four metrics and report
the averaged results across all categories. To ensure a fair comparison (e.g., consistent data
splits, identical preprocessing), we replicated the evaluations of previous approaches using
the GitHub repositories 1 provided by the original authors. Each model was trained using
its respective pre-trained backbone. An exception was made for LRPROP, as their GitHub
repository is not available.
Results on Pouring Dataset. Table 1 presents a comparison of our method’s performance
against state-of-the-art approaches on the Pouring dataset. Bold and underlined text de-
note the best and second-best results. Notably, it achieves a +3.11% improvement on Phase
Classification using only 10% of the labels. Additionally, our model excels in AP@K and
Progress metrics. However, we observe lower performance in Kendall’s Tau. We hypothe-
size this is due to how the SW’s algorithm encourages skipping unnecessary segments of the
sequence. The introduction of gap open and extend penalties could disrupt the continuity
needed for high Kendall’s Tau scores.
Results on PennAction Dataset. Table 2 compares the performance of our method with
state-of-the-art approaches on the PennAction dataset. Bold and underlined text denote the
best and second-best results. LAC consistently outperforms previous methods across most
metrics, with the exception of Kendall’s Tau. Notably, the improvement in AP@K is more

1github.com/google-research/google-research/tcc, github.com/trquhuytin/LAV-CVPR21,
github.com/hadjisma/VideoAlignment, github.com/minghchen/CARL_code
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Figure 4: Fine-grained frame retrieval for Pouring (left) and PennAction (right) achieved
using nearest neighbors within our embedding space.

pronounced on PennAction than on Pouring, likely due to the fewer number of frames in
PennAction dataset, which may further impact alignment performance.
Qualitative analysis of results. Figure 3 illustrates the alignment process, with the optimal
path depicted on the left and the frame-by-frame alignment on the right. This visualiza-
tion demonstrates the synchronization of the two videos despite differences in their temporal
progression and duration. Such alignment visualizations enable in-depth analysis of devia-
tions or inefficiencies within specific actions in video understanding. Additionally, Figure 4
showcases our embedding-based retrieval system’s ability to accurately identify and retrieve
frames corresponding to specific action sequences across different videos.

4.2 Ablation Study
This section presents multiple experiments on the Pouring dataset that analyze the different
components of our framework.

Architecture Class Progress τ

ResNet-50 + Convolutional 3D 88.04 73.26 71.37
ResNet-50 + Tranformer (w/o pretrained weights) 90.06 89.32 94.87
ResNet-50 + Transformer 95.16 94.24 97.50

Table 3: Different Encoder Architecture on Model Performance.

γ Class Progress τ

0.6 93.44 92.12 94.93
0.7 94.87 92.82 97.29
0.8 95.16 94.24 97.50
0.9 93.93 92.02 94.91

Table 4: Different γ Values on Model
Performance

Loss L Class Progress τ

Lc 93.44 92.12 94.93
Lc +α ·Ll 93.71 92.16 95.01
Lc + α · (Ll + β ·
(Lsw12 +Lsw21))

95.16 94.24 97.50

Table 5: Different LAC Loss Formulations on Model
Performance

Network Architecture. Table 3 demonstrates that our performance evaluation across vari-
ous network architectures highlights the superiority of the ResNet-50 model with pretrained
weights combined with a Transformer.
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Hyperparameter of LAC Loss. Table 4 presents the optimal performance results obtained
at the smoothing parameter γ = 0.8. Table 5 demonstrates that adding the local alignment
loss (Ll) to the contrastive loss (Lc), the classification accuracy increases by 1.72, progres-
sion accuracy by 2.12, and the Tau score by 2.57.

5 Conclusion
The paper introduces a novel approach to representation learning through a Local-Alignment
Contrastive (LAC) loss that integrates a differentiable local alignment loss with a contrastive
loss, all within a self-supervised framework. The method employs a differentiable affine
Smith-Waterman algorithm to enable temporal alignment that dynamically adjusts to varia-
tions in action sequences. This approach is distinct in its focus on capturing local temporal
dependencies and enhancing the discriminative learning of video embeddings, accommodat-
ing differences in action lengths and sequences. Experimental results on the Pouring and
PennAction datasets showcase the method’s superior performance over existing state-of-the-
art approaches.
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