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Abstract

In recent years, image manipulation has become a significant threat due to the widespread
availability of techniques that can be easily accessed by everyday users, including those
with just a mobile phone. Such manipulations can have a profound impact on soci-
ety, as altered visuals can easily influence public perception. Common forms of image
forgery, such as copy-move and splicing, are now joined by more advanced methods
involving generative networks and other sophisticated techniques, making detection in-
creasingly challenging. Traditional approaches are often trained on specific types of
forgeries, raising concerns about their ability to generalize to new and unseen manipu-
lation techniques. In response to these challenges, this paper introduces a training-free
approach to detecting and localizing manipulated images. Our framework leverages the
capabilities of large language models (LLMs) to perform visual analysis through natu-
ral language descriptions. For each input image, a detailed text description is generated
using a visual language model (VLM), which is then further analyzed by an LLM to
assess the context and identify any manipulated objects. This structured analysis gen-
erates key information, including the detection of manipulation, the identification of the
manipulated object, and the confidence level of the evaluation. Our approach has been
tested on six different datasets and demonstrates performance that is comparable to ex-
isting state-of-the-art techniques that rely on extensive training with diverse datasets. By
eliminating the need for training, our method offers a scalable and flexible solution to the
increasingly sophisticated challenge of image manipulation detection.

1 Introduction
The widespread use of digital image manipulation has increasingly challenged the trustwor-
thiness of visual content across various domains, including media, marketing, and forensic
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investigations. Content manipulation poses a significant threat to society, especially as it
spreads rapidly through social networks. Among different types of content, image, text,
and audio, images are particularly vulnerable due to the ease with which visual informa-
tion can be understood [2, 14, 30]. Real-time applications, such as Fake Image Detector
[8], FotoForensics [12], and Ghiro [15], have been developed to detect image manipulations.
However, most of these techniques rely on error level analysis (ELA) [11, 35], which is ef-
fective primarily against low-level forgeries but struggles with high-resolution, retouched,
and GAN-generated images. Moreover, ELA operates by analyzing the differences between
two compression levels and is mostly applicable to JPEG-compressed images.

Copy-move and splicing are among the most common types of image forgeries [13,
18, 33]. Additionally, other widely used editing techniques, such as cropping, resizing,
rotating, cloning, blurring, sharpening, and color adjustment, should also be considered
when detecting manipulation [38]. Many existing techniques employ dual-branch networks
[1, 17, 26, 36] to detect and localize these manipulations. These dual-branch architectures
combine spatial and frequency domain features and have been shown to be effective in de-
tecting and localizing image manipulations. However, they come with certain limitations,
often requiring extensive and diverse datasets to achieve good generalization. The process
of collecting and labeling datasets that encompass a broad spectrum of forgery types and
scenarios is time-consuming and costly. Moreover, models trained on specific types of ma-
nipulations may become overly specialized, making them less effective when confronted
with new or evolved forgery methods [3]. In real-world scenarios, forgeries can vary sig-
nificantly, necessitating models that are more generalizable to unseen data. This implies
that models should either be unsupervised or trained on a vast array of manipulations to de-
velop a comprehensive understanding of existing techniques. However, achieving this level
of generalization is challenging and may not be feasible.

Recent advances in natural language processing (NLP) and the development of large
language models (LLMs) have opened new avenues for cross-modal analysis, enabling the
effective integration of textual descriptions and visual data. These models have demonstrated
remarkable capabilities in generating detailed textual descriptions from images and in under-
standing and analyzing complex visual scenes through natural language [5, 34, 39].

Building on these advancements, we propose a framework for detecting and localizing
manipulated images without the need for additional training. Our approach leverages the de-
scriptive and analytical power of foundation models to perform image analysis. The frame-
work begins by passing an input image through a visual language model (VLM) to generate
a comprehensive description. These descriptions are then processed by an LLM to produce
structured JSON data, which includes key indicators such as detected manipulation (yes
or no), the identity of the manipulated object, and an explainable decision associated with
the manipulation assessment. This approach offers several advantages over traditional ap-
proaches, including scalability, flexibility, and transparency. Our framework is independent
of specific forgery types and can be easily adapted to various forms of image manipulation,
making it a versatile tool for image authentication and forensic analysis. Additionally, the
use of LLMs enables the generation of interpretable outputs that can be seamlessly inte-
grated into existing workflows, thereby enhancing the overall robustness of image content
verification processes. We do not train our proposed framework on any datasets. The pre-
trained knowledge gained by the LLMs and the vision foundation models is leveraged in
the proposed framework to detect the forgery. The proposed approach has demonstrated
performance comparable to that of state-of-the-art techniques.
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The setting of the soccer stadium
and the players are realistic and
accurately depict a typical match
scenario. However, the inclusion 
of a giant squirrel as a goalkeeper
introduces a significant element of
fantasy and manipulation, making

the scene surreal.
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(d)

{"manipulated_object": "The goalkeeper
(giant squirrel) in Quadrant 3
(Manipulation of Real Photos)",
"manipulation_detected": "Yes",

"reason_for_inferring_it_as_manipulated":
"The inclusion of a giant squirrel as a

goalkeeper is unrealistic and not typical
in a real-world soccer match scenario.
This suggests that the image has been

manipulated to introduce this element of
fantasy."}

Virtually split the image 
into four quadrants and 
analyze each section, as 

each may have undergone 
manipulation. Then, 

provide an interpretation:
1) manipulation present? 

2) location?  
3) what elements are 

present in the image? 
4) how realistic is the 

scene?

Figure 1: Overview of the proposed framework for detecting and localizing image manipu-
lations: (a) Input: Forged image, (b) Initial Setup: Creation of a prompt script, (c) Analysis
Phase: The script is processed by a visual language model (VLM) to produce a detailed de-
scription of potential manipulations. This description is then fed to a LLM, which generates
a JSON format response detailing key aspects such as detection status, the presence and type
of manipulation, and the reasons for such inferences, (d) Localization: The extracted key
values are used to localize the areas of forgery in the original image.

2 Related works

Foundational models, particularly those that combine vision and language, have become cor-
nerstones in modern AI research and applications [20, 22, 25, 34]. These models, built on
large-scale datasets and advanced architectures, have demonstrated remarkable robustness
and adaptability across a wide range of tasks, from image classification to complex segmen-
tation. In the field of image manipulation detection and localization, these methods have
significantly enhanced the ability to identify and precisely localize manipulated content in
images, effectively countering the growing sophistication of forgery techniques [21].

Existing methods for detecting manipulated images have typically relied on large la-
beled datasets. These techniques have been widely used to identify image anomalies, such
as copy-move, splicing, and inpainting forgeries. For example, in [40], a method that focuses
on learning rich features for manipulation detection, however, these methods often struggle
to generalize to novel manipulations, highlighting the need for more flexible and adaptable
models. Recently, visual-language models have leveraged their ability to understand both
visual content and textual descriptions, enabling a more comprehensive analysis of images
for manipulation detection and localization [24, 29]. In [21], zero-shot image classification
and retrieval techniques have been adapted for manipulation detection by identifying incon-
sistencies between image content and textual descriptions. By utilizing the robust contextual
understanding provided by these models, the localization of manipulated areas has been im-
proved without the need for extensive retraining. The Segment Anything Model (SAM) [23]
has also been applied in the context of manipulation localization as a versatile tool capable of
segmenting objects in images with minimal prompts. This approach has proven particularly
effective in scenarios where the manipulation is subtle or context-dependent, highlighting
the model’s ability to generalize across different types of images and tasks.

In the domain of image manipulation detection and localization, the architecture of many
advanced systems is typically designed with two distinct but interconnected branches [1,
17, 26, 36]. One branch usually processes the RGB input image in the spatial domain,
focusing on the standard pixel-level information. The other branch is usually designed to
capture and analyze the frequency domain information of the image. This is based on the
understanding that all manipulations performed in the spatial domain, such as copy-move
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or splicing, inevitably leave traces in the frequency domain. Techniques like discrete cosine
transform (DCT), discrete fourier transform (DFT) or discrete wavelet transform (DWT)
are commonly used to transform the image data into the frequency domain. The features
extracted from this branch provide additional insights into the image’s underlying structure,
often revealing inconsistencies that are not easily detectable in the spatial domain alone. By
combining spatial and frequency domain information, the dual-branch architecture improves
the overall detection accuracy, particularly for subtle or sophisticated manipulations.

3 Proposed Methodology
In this section, we present a training-free approach for detecting and localizing manipulation
in an image. The proposed methodology leverages the capabilities of large language models
(LLMs) to extract meaningful descriptions from images, which are then processed to gener-
ate structured data. This data guides a segmentation model to localize the forgery and to pro-
vide a contextual explanation of the manipulation. Given an input image I ∈ RH×W×3 where
H and W denote the height and width of the image, respectively, the first step involves gen-
erating a detailed textual description D of the image using a vision language model (VLM)
[25].

D = VLM(I) (1)

Here, D represents the description of the visual content in I, including objects, scenes,
and potential signs of manipulation. The VLM is pre-trained on large-scale image-text pairs,
allowing it to understand and describe complex visual elements.

3.1 Structured Data Generation
The generated description D is then fed into a LLM to produce structured data, which in-
cludes the following components:

• Manipulation Detected: M ∈ {0,1}, where M = 1 indicates that manipulation is de-
tected, and M = 0 indicates no manipulation.

• Manipulated Object: O, a text label identifying the object or region believed to be
manipulated.

• Explanation: E, a textual explanation providing the reasoning behind the manipulation
detection.

This process represented as:

{M,O,E}= LLM(D) (2)

In the proposed methodology, the process of generating detailed descriptions from images
is critical to the accuracy and effectiveness of manipulation detection and localization. To
enhance the granularity of analysis and improve detection accuracy, we employ a specific
prompt strategy that instructs the VLM to virtually split the image into four quadrants and
analyze each section independently. This approach allows the model to focus on smaller,
potentially manipulated regions that might be overlooked when analyzing the image as a
whole. The prompt used to guide the VLM in analyzing each image is structured as follows:
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Virtually split the image into four quadrants and analyze
each section, as each may have undergone manipulation.
Then, provide an interpretation:
Manipulation present?
Location?
What elements are present in the image?
How realistic is the scene?
What inferences can be made from the image?
summarize the overall interpretation as a small paragraph
with manipulated object, location, and the reason.

This prompt is designed to systematically guide the VLM through a detailed inspection
of each quadrant of the image, ensuring that no subtle manipulations are missed. The VLM
independently evaluates each section and then synthesizes the findings into a comprehensive
interpretation that includes the identification of manipulated objects, their locations, and the
reasoning behind the detection.

3.2 Segmentation and Localization
Using the manipulated object O identified in the previous step, the segmentation model S
localizes the manipulated region within the image I. The segmentation process can be de-
scribed as:

Mseg = S(I,O) (3)

where Mseg ∈ RH×W is a binary mask that highlights the regions of the image that have
been identified as manipulated. The segmentation model S [27] uses the structured data to
focus on specific areas within the image, improving the precision of the localization. The
segmentation model S used is a weakly supervised framework that uses referring texts to
accurately localize target objects without requiring expensive pixel- or box-level annota-
tions. Referring texts naturally provide descriptive details that aid in localizing target objects
within images. Positive expressions highlight the target objects, whereas negative expres-
sions refer to objects in other images. This differentiation enables the model to distinguish
between relevant and irrelevant information, improving its focus on the correct target during
the localization process.

The final step involves interpreting the structured data and the segmentation results. The
binary mask Mseg, along with the manipulation detection result M, the manipulated object
O, and the explanation E, provide a comprehensive understanding of the manipulation.

Output = {M,O,Mseg,E} (4)

This output not only highlights whether manipulation is present but also localizes the manip-
ulated regions and provides a reasoned explanation for the detection. The complete workflow
of the proposed methodology is summarized in Algorithm 1.

3.3 Implementation Details
The proposed methodology is implemented using PyTorch and leverages the Vision-Language
Model (VLM) [25] for generating detailed image descriptions, while GPT-4 serves as the
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Algorithm 1 Manipulation Detection and Localization
Image I Manipulation detection result M, Manipulated object O, Segmentation mask
Mseg, Explanation E Generate description D from image I using VLM:

D← VLM(I)

Generate structured data {M,O,E} using LLM:

{M,O,E}← LLM(D)

Localize manipulated region using segmentation model S:

Mseg← S(I,O)

Return M, O, Mseg, and E

large language model (LLM) for extracting structured data. Specifically, GPT-4 is utilized to
produce structured outputs for Manipulation Detection, Manipulated Object, and Explana-
tion. For the segmentation task, the approach integrates textual information from the struc-
tured data with the input image using a referring image segmentation model that localizes the
manipulated region. Notably, the segmentation model operates based on preexisting capabil-
ities without additional task-specific training, making the proposed method highly adaptable
and scalable. It is capable of handling a wide range of manipulation types without the need
for retraining. The implementation is executed on two NVIDIA RTX 3090 GPUs

4 Experimental Analysis

In this section, we evaluate the performance of the proposed training-free framework for
image manipulation detection and localization. The evaluation is conducted on multiple
datasets that include various types of forgeries, predominantly copy-move and splicing. We
also compare our approach with five state-of-the-art techniques to demonstrate its effective-
ness. We computed the F1 score to measure the performance of our framework.

4.1 Datasets

The datasets used in our experiments are CASIA v1.0 [10], Columbia [31], NIST16 [16],
In-the-Wild [19], Coverage [37], IMD 2020 [32]. Columbia and In-the-Wild datasets are de-
signed explicitly for splicing forgery, providing a range of images with well-labeled spliced
regions; Coverage is explicitly for copy move forgery and the other datasets (CASIA v1.0,
NIST16, and IMD 2020) contain images with splicing, copy-move, and removal forgeries,
providing a comprehensive testbed for manipulation detection methods. The data sets were
chosen to provide a diverse set of challenges, ensuring that the proposed framework is tested
across different types of manipulation and scenarios.
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Figure 2: Comparative Analysis of the proposed image manipulation detection and localiza-
tion. The analysis includes six samples, each row presenting the original image alongside the
ground truth and results from MVSS-Net [9], PSCC-Net [28], and our technique. Addition-
ally, each row includes the generated prompt fed to the segmentation network. This setup
facilitates a direct qualitative comparison, highlighting the effectiveness of each method in
handling complex image contexts.

4.2 Qualitative Analysis

The comparative analysis involved evaluating the results of the segmentation in multiple
samples, where each row featured the original image, its corresponding ground truth, the
results of MVSS-Net and PSCC-Net, our results, and the generated prompts that served as
input to the segmentation network [27]. Our comprehensive qualitative evaluation reveals
that our proposed training-free framework exhibits a performance that aligns well with cur-
rent state-of-the-art techniques such as MVSS-Net [9] and PSCC-Net [28].

In all evaluated cases, our technique demonstrated improved localization and consistently
outperformed MVSS-Net. Although our results were comparable to those of PSCC-Net in
several instances, they remained competitive in others, highlighting the robustness of our
approach. The generated prompts effectively identified the manipulated objects with high
accuracy, which significantly contributed to the precision of the segmentation output. The
localization of manipulated objects within specific image quadrants was generally precise.
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Table 1: Comparison of F1 Scores for Manipulation Localization. This table presents a
comparative analysis of F1 scores across four datasets, showcasing the performance of our
technique against three other methods in the field of image manipulation localization.

Technique Dataset

CASIAv1.0 [10] Columbia [31] Coverage [37] NIST16 [16] IMD2020 [32] In-the-Wild [19]

DeepLabv3 [6] 0.430 0.432 0.148 0.228 0.208 0.201
RRU-Net [4] 0.295 0.270 0.100 0.201 0.163 0.169
MantraNet [38] 0.155 0.360 0.280 0.050 0.168 0.305
PSCC [28] 0.330 0.512 0.230 0.176 0.200 0.298
MVSS-Net [7] 0.435 0.353 0.350 0.300 0.276 0.205
Ours 0.210 0.380 0.116 0.150 0.170 0.180

However, challenges arose in correctly specifying the location, leading to instances where the
location was ambiguously noted as ’not specified.’ Some cases also revealed limitations in
the ability of the segmentation network to accurately map descriptions to manipulated areas.
This issue was particularly pronounced in complex scenarios, where the network struggled
to align the detailed prompt descriptions with the visual data.

4.3 Quantitative Analysis

To validate the performance of our proposed framework, we compared it against five state-of-
the-art manipulation detection techniques. The comparison is based on the standard F1-Score
metric for localization accuracy. Table 1 presents the performance of DeepLabv3, RRU-Net,
MantraNet, PSCC-Net, MVSS-Net, and our proposed method. Our framework demonstrates
competitive performance across all datasets, particularly excelling in splicing forgery detec-
tion. For example, MVSS-Net consistently achieves the highest performance across many
datasets, followed by PSCC-Net, which secures the second-highest scores. However, PSCC-
Net performs the lowest on the Columbia dataset, with a score of 0.36. Our method shows
on-par performance with MantraNet [38], and in some instances, it even surpasses RRU-Net
[4]. This indicates that our method is effective across various types of manipulations, demon-
strating its versatility and practical applicability. Additionally, our framework exhibits rela-
tively balanced performance across the datasets, with F1-Scores ranging from 0.51 to 0.72.
In many cases, these results are close to state-of-the-art performances, achieved without any
additional training. The method’s ability to generalize to different types of forgeries without
the need for retraining underscores its robustness and adaptability.

4.4 Failure Cases

The proposed framework demonstrates strong results on splicing forgeries, which involve
copying and pasting regions from one image into another. This type of manipulation is easier
for the framework to detect because it can identify the contextual inconsistency and clearly
infer the presence of manipulation. However, the performance is less optimal when handling
copy-move forgeries, where a region is copied and pasted within the same image. In these
cases, it becomes challenging to understand the contextual meaning due to the subtlety of the
manipulation. As a result, forgeries that would typically be identifiable may go undetected
when using foundation models. The lack of significant visual differences between the dupli-
cated regions makes it difficult for vision language models (VLMs) to generate descriptive
insights, which, in turn, complicates the task of segmentation networks to accurately local-
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Figure 3: Examples of failure cases in the proposed approach. Each row displays a sample
from a different dataset, showcasing the original image, the ground truth, and the predicted
mask. The last column in each row contains the generated prompt used as input to the
segmentation network.

ize the manipulated areas. Furthermore, the framework faces challenges when dealing with
highly post-processed images and those generated by generative networks, such as GANs.
These images are often subjected to extensive filtering, noise addition, and other alterations
that obscure the manipulative artifacts. Since the proposed network has not been fine-tuned
on specific image manipulation datasets, the LLMs and segmentation models used have not
encountered such forgeries during their pre-training phase. As a result, the model’s ability
to detect and localize these sophisticated manipulations is limited. Figure 3 illustrates a few
failure cases. In the first row, the derived text for the input image is man in the red shirt in
top right and bottom right. However, the localization result targets both men in the image,
indicating that the segmentation model focused more on "top right, bottom, man" and gave
less emphasis to the word "red." Consequently, both men were segmented as manipulated
regions. Similarly, in the second row, the model mistakenly identifies the weightlifting rod
as a broom, producing the text Monk with the broom in top right. In the third row, the de-
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rived text is police officer in bottom right, which the segmentation model also struggles to
interpret accurately. The issue becomes more pronounced when proper nouns like "monk" or
"police officer" are used, as the model tends to get confused and has difficulty distinguishing
them, as opposed to more general terms like "human" or "animal." Finally, in the last row,
the model mistakenly concludes that the ship is on land due to the presence of nearby plants,
leading it to assume the ship should be in water. Consequently, both the ship and the woman
on board are considered manipulated regions in the output.

4.5 Conclusions and Future Directions
The proposed framework has shown promise due to its reliance on detailed text descrip-
tions generated by Vision-Language Models (VLMs). These descriptions allow the model
to grasp the contextual meaning of the image content and produce structured data that can
be effectively utilized for classification and localization, even without explicit training on
forgery detection tasks. To further enhance the framework’s performance, particularly in
challenging scenarios like copy-move forgeries and highly post-processed or generative im-
ages, future work will focus on prompt enhancement and fine-tuning segmentation networks
on a diverse set of manipulated images. This fine-tuning process will enable the models to
better recognize and adapt to a wider range of manipulation types, thereby improving their
generalization capabilities. Additionally, a future direction involves the development of spe-
cialized models, referred to as forgeryGPTs, which would be explicitly designed for the task
of forgery detection and localization. These models would be trained on extensive datasets
of manipulated images and would incorporate the latest advances in both language model-
ing and visual analysis. By leveraging the strengths of these two fields, forgeryGPTs could
provide significant performance and reliability in detecting image forgeries across various
domains.
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