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Abstract

Face recognition systems (FRS) can be compromised by face morphing attacks,
which blend textural and geometric information from multiple facial images. The rapid
evolution of generative AI, especially Generative Adversarial Networks (GAN) or Diffu-
sion models, where encoded images are interpolated to generate high-quality face mor-
phing images. In this work, we present a novel method for the automatic face morphing
generation method MorCode, which leverages a contemporary encoder-decoder architec-
ture conditioned on codebook learning to generate high-quality morphing images. Ex-
tensive experiments were performed on the newly constructed morphing dataset using
five state-of-the-art morphing generation techniques using both digital and print-scan
data. The attack potential of the proposed morphing generation technique, MorCode,
was benchmarked using three different face recognition systems. The obtained results
indicate the highest attack potential of the proposed MorCode when compared with five
state-of-the-art morphing generation methods on both digital and print scan data.

1 Introduction
Face Recognition Systems (FRS) are extensively deployed in various access control applica-
tions, including border control, because of their high accuracy and user convenience. Nev-
ertheless, these systems are susceptible to various forms of attacks such as presentation and
adversarial attacks, which can compromise their security. Of particular concern are mor-
phing attacks, which have gained prominence for their ability to undermine the security of
automatic border-control scenarios. Morphing is the process of blending two or more facial
images to result in a single composite facial image that reflects both texture and geometric
information corresponding to facial images used for morphing. Therefore, the generated
morphing images indicate a vulnerability to human observers, including border guards [9]
and automatic FRS [24]. NIST Face Analysis Technology Evaluation (FATE) Morph [15]
illustrates the vulnerability of several FRS to morphing attacks. Therefore, that indicates
that, higher the accuracy of FRS implies higher vulnerability.
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Face morphing attacks have garnered significant attention, with the objective of main-
taining identity-related features from facial images that represent multiple identities. The
primary focus is on preserving the individual’s identity within the morphed image, as this
can enhance the attacker’s potential to launch successful morphing attacks on the FRS. To
this extent, researchers have proposed several 2D [24] and 3D face morphing generation [20]
algorithms that have indicated a higher attack potential when presented to automatic FRS.
The available face morphing generation algorithms can be broadly classified as [24] (a) fa-
cial landmark-based and (b) deep learning-based. Facial landmark-based methods use pixel
information from facial images of multiple identities to obtain the morphing image, whereas
deep learning-based methods generate or synthesize the morphing face image based on the
compact representation (also called latent) corresponding to multiple identities. Because
morphing attacks are applicable to border control scenarios, the goal of morphing generation
techniques must be to generate facial images fulfilling the quality constraints laid down by
the International Civil Aviation Organization (ICAO), which requires a high-quality facial
image.

Early work on generating face morphing images was based on facial landmark-based
face morphing techniques. Given two facial images, facial landmark-based methods first
extract the facial landmarks (approximately 64 points) after alignment. Triangulation is then
performed, followed by wrapping and blending to generate the morphing image. Landmark-
based methods include open-source software from open CV [12] and FaceMorpher [1] which
are employed in the literature to generate morphing attacks. One of the major limitations
of facial landmark-based methods is ghost artifacts that are prominent in the eye, mouth,
and nose regions, hindering image quality issues. Therefore, post-processing using facial
landmark-based methods [12] further improves the quality of the morphed images.

The evolution of generative AI techniques has enabled the generation of face-morphing
images that overcome ghost artifacts. Early works used the vanilla GAN [3], in which the
latent from the facial images to be morphed is averaged to obtain a single latent, which is
then used to construct the morphed image. However, the quality of the image rendered in [3]
was low because of the output dimensions of 64×64 pixels. The first work on generating an
ICAO-quality morphing image using StyleGAN was presented in [22], which also used latent
averaging. However, the use of GAN degrades the identity information, which degrades the
attack potential of the generated face-morphing image. To overcome this, MIPGAN [25]
was introduced, in which the fusion of the latent from StyleGAN was optimized to achieve
the highest attack potential using the FRS as a loss function. MIPGAN has higher attack
potential than other GAN-based approaches [25]. The pixel2style2pixel (pSp) encoder-based
latent extraction and fusion using spherical interpolation was proposed in [18]. Finally, the
fused latent was used to generate the face morphing image by employing StyleGAN2. The
use of the pSp encoder, spherical interpolation, and StyleGAN2 combination indicated a
higher attack potential for the morphed image, and it is worth noting that there is no need for
identity-based optimization.

The introduction of diffusion models for image generation has attracted researchers to
adapt the model for face morphing generation. In [5] [2], denoising diffusion probabilis-
tic models (DDPM) is adapted to generate face morphing images by manipulating the la-
tent code. However, identity information is not sufficient to generate high attack potential.
Therefore, in [27], identity-prior-based optimization was introduced to DDPMS to gener-
ate morphed images with a higher attack potential. However, the results indicate a marginal
increase in attack potential. In [26], a transformer-based GAN model with identity loss func-
tions was used to generate face morphing images. However, the attack potential of morphing
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images generated using [26] did not indicate a higher attack potential compared to conven-
tional MorDiff [5] [2]. As per existing research, it is crucial to demonstrate the vulnerability
of the Face Recognition System (FRS) by exhibiting a higher attack potential with the gen-
erated face-morphing image. In this regard, it is essential to utilize latent representations
in generative networks. Consequently, we were inspired to incorporate a Vector-Quantized
Generative Adversarial Network (VQ-GAN) [7] into our work, which conditions the latent
facial image with codebook to achieve high-quality morphing generation.

In this work, we introduce a novel method for 2D face morphing generation using a
codebook learned using VQ-GAN [7] which we refer to as MorCode. The novelty of the
proposed method lies in the introduction of latent conditioning, which results in a discrete
and compact representation of the latent. Thus, it is our assertion that the representation
of latent using codebooks will enable a high-quality face morphing generation algorithm.
Furthermore, the proposed method employs spherical interpolation to blend the latent cor-
responding to multiple face images, which contributes to high-quality morphing generation.
The main contributions of this work are as follows:
• Proposed a novel 2D face morphing generation using codebook and spherical interpolation

to achieve high quality face morphing generation.
• Introduced a new dataset MorCode Morphing Dataset (MMD) with the proposed face

morphing generation technique using publicly available face dataset FRGC V2. Newly
generated dataset is comprised of 160 data subjects resulting in a total of 1277 bona fide
and 2526 morphing images.

• Extensive experiments are carried on the newly generated dataset and comparison of the
proposed morphing technique is quantitatively benchmarked with four different existing
face morphing techniques using Generalized Morphing Attack Potential (G-MAP) vulner-
ability metric. The attack potential of the proposed an existing morphing techniques are
evaluated against three different deep learning based FRS such as ArcFace [6], MagFace
[13] and AdaFace [11].

• The proposed method is open sourced to support the reproducibility : https://github.
com/Aravinda27/MorCode

The rest of the paper is organised as follows: Section2 discuss the proposed MorCode
method for 2D face morphing generation method, Section 3 presents the new dataset gener-
ated using the proposed morphing techniques, Section 4 presents the vulnerability evaluation
results of the proposed and existing morphing generation methods against three FRS system
and Section 5 draws the conclusion.

2 MorCode: Proposed 2D Face morphing generation
In this work, we present a new method for generating a high quality 2D face morphing attack
using Vector Quantized Generative Adverserial Network (VQGAN). VQGAN [7] utilizes a
noise-conditioned score network (NCSN++)-based encoder-decoder architecture, which is a
score-based generative model. The application of NCSN++ differs from facial morphing;
however, its U-Net structure and discrete codebook of acquired representations for each im-
age possess the capability to capture the rich features that are essential for the face morphing
generation task. Figure 1 shows the block diagram of the proposed morphing generation
technique. The proposed method can be structured in three steps (a) Encoder (b) Spherical
Interpolation and (c) Decoder. The underlining idea of the proposed method includes the
step from image to latent space manipulation and final image image decoding to ensure the
generated morphed image that can preserve the identity information resulting in the higher
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attack potential. More particularly, the use of perceptually rich codebook in VQGAN allows
the representation of the given face image as the spatial collection allows the high quality
representation of the latent that enable the high quality image generation [7].
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Figure 1: Block Diagram of the proposed method MorCode to construct high quality mor-
phed images.

In the following, we present in detail different building blocks of the proposed face mor-
phing generation method.

2.1 Encoder

The encoder architecture consists of serial connection of convolution layer followed by
ResNet block and the downsample layer. The use of ResNet blocks will learn the feature
representation while preserving spatial dimensions. Subsequently, a downsampling layer re-
duces the spatial dimensions of the feature maps, conserving only the most salient features.
The downsampling is performed twice, each time followed by two residual blocks to fur-
ther refine the features. After another single residual block, an attention block (Attn Block)
is applied to capture long-range dependencies within the data. The output of the attention
block passes through the final residual block before a convolutional layer with three filters
(Conv(3)), producing a pre-quantization convolutional representation preQuantConv.

Given the two facial images xa and xb, the encoder will map into the latent space result-
ing in the latent representation za and zb respectively with dimensions compressed by the
downsampling factor f . The encoder facilitates this dimensionality reduction, mapping the
high-resolution input images from their original space RH×W×3 to a more manageable latent
space Rh×w×c, where h = H/ f , w =W/ f , and c represents the depth of the latent space. We
use f = 4 and downsample the image dimensions by a factor of 4 while representing latent
space dimensions. Given by za = E(xa), zb = E(xb)
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2.2 Spherical Interpolation
In the next step, we perform spherical interpolation on the latent representations za and zb.
This is a critical step where we generate a single, morphed latent representation zab that
encapsulates the characteristics of both za and zb while ensuring a smooth transition within
the latent space. Given by zab = slerp(za,zb;γ).

The spherical interpolation utilizes the geodesic path on the unit hypersphere and is math-
ematically represented as:

zab =
sin((1− γ)Ω)

sin(Ω)
za +

sin(γΩ)

sin(Ω)
zb (1)

where Ω is the angle between za and zb, and γ is the interpolation factor that dictates
the blend between the two latent representations. The resultant zab possesses dimensions
analogous to za and zb, enabling us to handle it within the latent space as we would with any
individual latent vector.

2.3 Vector Quantization
The spherically interpolated output zab is then quantized using a codebook Zk. The quan-
tization process maps the continuous latent features to a discrete set of codes within the
codebook to obtain the quantized latent representation ẑab. This quantization allows for the
generation of a compact, discrete representation of the interpolated or blended data, which
is beneficial for high perceptual image quality reconstruction. Given by ẑab =V Q(zab)

2.4 Decoder
The decoder mirrors the encoder’s structure but operates in reverse, aiming to reconstruct
the input from its quantized representation ẑab. Starting with the quantized tensor ẑab, the
decoder applies a convolutional layer with 512 filters (Conv(512)) and proceeds through a
series of upsampling and residual blocks (ResBlock x3, UpSample, ResBlock x3, UpSam-
ple, ResBlock x3). Each upsampling step increases the spatial dimensions, enabling the
reconstruction of the original image size. An attention block is then used similarly to the
encoder, followed by a single residual block and a final convolutional layer with three filters
(Conv(3)). The reconstructed morphed image Mab can be defined as Mab = D(ẑab).

Figure 2 shows an example of a face-morphing image generated using the proposed
MorCode method. The qualitative results of the proposed method were also compared with
five state-of-the-art face morphing generation methods. The qualitative results indicate the
superior perceptual quality of the proposed MorCode, particularly in preserving the shape
and texture features.

3 MorCode Morphing Dataset (MMD)

In this section, we present the MorCode Morphing Dataset (MMD), which is a newly con-
structed face morphing dataset that utilizes the proposed MorCode face morphing generation
technique. MMD dataset was constructed using the publicly available dataset FRGC V2 [16].
We selected 143 subjects with neutral expressions and postures, which were captured under
optimal lighting conditions to reflect the conditions of passport enrolment. We followed
the recommended procedures for creating face morphs, as outlined in [17]. To simulate a
real-life scenario, we utilized a commercial off-the-shelf product from Neurotek [14] to pair
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Bona fide 1 Bona fide 2LMA MIPGAN-2 MorDiffReGen ProposedStyleGAN

Figure 2: Example images from MMD dataset representing Digital samples. The proposed
MorCode face morphing technique is qualitatively compared with the five different existing
techniques.

face identities based on their closest match. We performed face morphing generation using
five existing morphing techniques: landmark-based [8], MIPGAN-2 [25], ReGen Morph [4],
StyleGAN2 [22] and MorDiff [5].

Bona fide 1 Bona fide 2LMA MIPGAN-2 MorDiffReGen StyleGAN Proposed

Figure 3: Example images from MMD dataset representing print scan using DNP printer
samples. The proposed MorCode face morphing technique is qualitatively compared with
the five different existing techniques.

The MMD dataset comprises two types of media: digital and Print-Scan (PS). The dig-
ital version encompasses conventional morphing images, whereas the PS morphing images
are re-digitized versions of digital morphing images. The inclusion of the PS version was
motivated to reflect the passport issuance scenario in which printed passport images were
accepted. In this work, we utilized DNP printers, which are specifically designed to produce
high-quality passport images featuring facial biometrics. Figure 2 and 3 show examples
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from the MMD dataset corresponding to both the Digital and PS datasets. It is worth noting
that the quality of the images was slightly degraded by PS. The MMD dataset contains 1276
bona fide samples (separately for digital and morphing) and 2526 morphing images (sepa-
rately for six different morphing techniques, including the proposed method, and separately
for digital and PS). Therefore, the MMD dataset has 1276×2 = 2552 bona fide samples and
2526×6×2 = 30312 morphing images.
4 Experiments and Results
In this section, we present a quantitative analysis of the vulnerability of face recognition
systems to the proposed MorCode morphing generation. The quantitative analysis of the
vulnerability was benchmarked using three different deep learning-based FRS that are openly
available: ArcFace [6], MagFace [13] and AdaFace [11]. These FRS were selected based on
their outstanding verification performance reported in the literature 1. We also compared the
performance of the proposed MorCode method with five different state-of-the-art morphing
generations: landmark-based [8], MIPGAN-2 [25], ReGen Morph [4], StyleGAN2 [22] and
MorDiff [5].

G-MAP with MA
Operating Threshold: FAR =FRS Systems Morphing Generation Techniques
1% 0.1%

landmark-based [8] 84.67 17.29
MIPGAN-2 [25] 91.45 15.23
ReGen Morph [4] 29.92 0

MorDiff [5] 90.81 17.47
StyleGAN2 [22] 67.99 1.89

AdaFace [11]

Proposed method (MorCode) 93.22 19.62

landmark-based [8] 85.63 26.20
MIPGAN-2 [25] 90.12 24.59
ReGen Morph [4] 33.44 0.04

MorDiff [5] 84.09 15.74
StyleGAN2 [22] 73.30 3.78

ArcFace [6]

Proposed method (MorCode) 92.25 27.52

landmark-based [8] 92.21 38.49
MIPGAN-2 [25] 93.56 36.44
ReGen Morph [4] 64.19 0.17

MorDiff [5] 93.18 33.57
StyleGAN2 [22] 83.79 8.58

MagFace [13]

Proposed method (MorCode) 96.27 39.48

Table 1: Quantitative performance
with G-MAP MA on MMD dataset
(Digital).

G-MAP with MA and MFRS
Operating Threshold: FAR =Morphing Generation Techniques
1% 0.1%

Landmark-based [8] 84.67 17.29
MIPGAN-2 [25] 90.12 15.23
ReGen Morph [4] 29.92 0

MorDiff [5] 84.09 15.74
StyleGAN2 [22] 67.99 1.89

Proposed method (MorCode) 92.25 19.52

Table 2: Quantitative performance
with G-MAP with MA and multiple
FRS on MMD dataset (digital).

There are four different metrics that are employed to benchmark the vulnerability (a)
Mated Morph Presentation Match Rate (MMPMR)[19] (b) Fully Mated Morph Presentation
Match Rate (FMMPMR)[23] (c) Morphing Attack Potential (MAP) [10] and (d) Generalized
Morphing Attack Potential (G-MAP)[21]. In this work, we quantify the attack potential of
morphing generation methods using the Generalized Morphing Attack Potential (G-MAP)
vulnerability metric, as it is designed to address the limitations of other evaluation metrics,
as discussed in [21] .2 The G-MAP can be computed as follows[21] 3:

G-MAP =
1
|D|

|D|

∑
d

1
|P|

1
|Md |

min
Fl

|P|,|Md |

∑
i, j

{[
(S1 j

i > τl)∧·· ·(Sk j
i > τl)

]
× [(1−FTAR(i, l))]

} (2)

1We employed Commercial Off-the-Shelf technology (Neurotek [14]) to select face image pairs for morphing.
To prevent bias in our vulnerability study, we have decided not to use the same COTS. Due to licensing issues
involving costs, we are unable to access other Commercial Off-The-Shelf (COTS) FRS. Consequently, we were
unable to include the study of COTS within the scope of this research.

2Readers can refer [21] and Table 4 (in [21]) to embrace the more information on G-MAP.
3Taken from [21]
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G-MAP with MA
Operating Threshold: FAR =FRS Systems Morphing Generation Techniques
1% 0.1%

landmark-based [8] 88.41 17.34
MIPGAN-2 [25] 92.16 13.85
ReGen Morph [4] 35.32 0.24

MorDiff [5] 92.40 21.57
StyleGAN2 [22] 73.61 3.22

AdaFace [11]

Proposed method (MorCode) 93.26 6.61
landmark-based [8] 90.14 25.34

MIPGAN-2 [25] 92.57 22.67
ReGen Morph [4] 42.93 0.55

MorDiff [5] 88.15 23.15
StyleGAN2 [22] 75.99 5.54

ArcFace [6]

Proposed method (MorCode) 94.15 5.49
landmark-based [8] 91.14 39.16

MIPGAN-2 [25] 92.58 34.71
ReGen Morph [4] 58.98 1.21

MorDiff [5] 94.17 33.34
StyleGAN2 [22] 86.69 13.13

MagFace [13]

Proposed method (MorCode) 93.22 21.13

Table 3: Quantitative performance with G-MAP
MA on PS version of MMD dataset.

G-MAP with MA and MFRS
Operating Threshold: FAR =Morphing Generation Techniques
1% 0.1%

Landmark-based [8] 88.41 17.34
MIPGAN-2 [25] 92.16 13.85
ReGen Morph [4] 35.32 0.24

MorDiff [5] 88.15 21.57
StyleGAN2 [22] 73.61 3.22

Proposed method (MorCode) 93.22 5.49

Table 4: Quantitative performance with G-
MAP with MA and multiple FRS on MMD
dataset (PS).

Where, P denote the set of paired probe images, F denote the set of FRS, D denote the set of
Morphing Attack Generation Type, Md denote the face morphing image set corresponding
to Morphing Attack Generation Type d, τl indicate the similarity score threshold for FRS
(l),|| represents the count of elements in a set during metric evaluation and FTAR(i, l) is the
failure to acquire probe image in attempt i using FRS (l). In this work, we present two results
by varying the parameters of G-MAP, as mentioned in [21] (a) G-MAP with Multiple probe
Attempts (MA) by setting D and F⋖ to 1 (b) G-MAP with MA and multiple FRS (G-MAP
MA and MFRS) by setting D= 1. In both experiments, we set FTAR = 0.

To compute the vulnerability of the FRS (or attack potential of morphing generation
techniques), we enrol the morphing image and probe the identities that are used to generate
the morphing image. The probe facial images correspond to different independent attempts
made by the individual identity. A morphing image is considered vulnerable if the probe
attempts made by all identities exceed the preset threshold at the given FAR. In this study,
we used the preset thresholds of the FRS with FAR = 1% and 0.1%. Therefore, the higher
the value of G-MAP, the higher is the vulnerability of the FRS for the given morphing attack
generation technique.

Tables 1 and 3 show the quantitative benchmarks of the vulnerability of three different
FRS using G-MAP MA for digital and print-scan morphing data. Based on the obtained
results, the following can be observed.

• The vulnerability performance of the FRS varies across digital and PS-morphing im-
ages. MagFace [13] FRS indicates the highest vulnerability in a digital database with
a G-MAP MA of 96.27% at FAR = 1%. With the PS database, all three FRS indicated
a similar performance in which ArcFace [6] indicated a marginally higher vulnerabil-
ity at FAR = 1%. However, with the lower FAR values (0.1%), all FRS indicate lower
vulnerability, and among different FRS, MagFace [13] indicates a higher vulnerability.

• The proposed MorCode indicates the highest attack potential compared to five differ-
ent morphing generation techniques on the digital morphing images. All three FRS in-
dicate the highest vulnerability for the proposed MorCode with G-MAP MA = 93.22%
(for AdaFace), 92.25% (for ArcFace), and 96.27% (for MagFace), with FAR = 1%.
Similar observations can also be made with a lower FAR value of 0.1%. Among the
three different FRS, MagFace [13] indicates a higher vulnerability for the proposed
MorCode, irrespective of the operating threshold. The improved attack potential of
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the proposed MorCode can be attributed to the shape and texture information captured
from the identities that contribute to morphing generation.

• The proposed MorCode indicates the higher vulnerability on all three FRS especially
at higher FAR values. The attack potential of the proposed method at FAR = 1%
indicates similar performance across all three FRS. However, at FAR = 0.1%, the pro-
posed method indicates degraded performance, which can be attributed to the granular
noise in the morphing image being further enhanced during the print-scan operation.
The effect of the print-scan process on the proposed methods can also be visualized in
Figure 3, where the degradation in the image quality is noted more compared to other
existing morphing techniques.

Tables 2 and 4 illustrate the attack potential of morphing generation techniques, which
are quantified using G-MAP with MA and multiple FRS. In this work, the given morphing
image is considered to have attack potential if it can successfully deceive all three FRS that
were used in this work when probed (with various attempts) with the identities that were used
to generate the morphing images. Based on the obtained results following can be noted:

• The proposed MorCode has indicated a highest attack potential on digital MMD dataset
compared to the five different state-of-the art morphing generation techniques. The
proposed method indicates an attack potential of G-MAP (MA and MFRS) = 92.25%
and 19.52% at FAR = 1% and FAR = 0.1% respectively. The second-best performance
was noted with the MIPGAN-2 [25] morphing technique.

• With PS version of MMD dataset, the proposed MorCode indicates the highest attack
potential at higher FAR = 1% with G-MAP (MA and MFRS) = 93.22% . However, at
lower FAR values, the performance of the proposed method indicated degraded results.
MorDiff [2, 5] demonstrated the best performance with G-MAP (MA and MFRS) =
27.57% at FAR = 0.1%.

• It is interesting to note that, the proposed method has indicated the similar attack
potential across both digital and PS medium at lower FAR = 1%.

• When compared to the landmarks based morphing generation, the generative deep
learning based techniques have indicates higher vulnerability as indicated in the Table
2 and 4.

5 Conclusion

This paper introduces MorCode, a novel face morphing attack generation method. Lever-
aging a VQGAN-conditioned encoder-decoder architecture, MorCode generates morphing
images by spherically interpolating latent representations of two target faces. Through ex-
tensive experiments on a newly constructed dataset encompassing both digital and print-
scan data, MorCode demonstrated superior attack efficacy against three state-of-the-art face
recognition systems compared to five other morphing generation methods. These findings
underscore the potency of MorCode for generating highly effective face morphing attacks.
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