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Abstract
Deepfakes pose a critical threat to biometric authentication systems by generating

highly realistic synthetic media. Existing multimodal deepfake detectors often struggle
to adapt to diverse data and rely on simple fusion methods. To address these challenges,
we propose Gumbel-Rao Monte Carlo Bi-modal Neural Architecture Search (GRMC-
BMNAS), a novel architecture search framework that employs Gumbel-Rao Monte Carlo
sampling to optimize multimodal fusion. It refines the Straight through Gumbel Softmax
(STGS) method by reducing variance with Rao-Blackwellization, stabilizing network
training. Using a two-level search approach, the framework optimizes the network ar-
chitecture, parameters, and performance. Crucial features are efficiently identified from
backbone networks, while within the cell structure, a weighted fusion operation inte-
grates information from various sources. By varying parameters such as temperature and
number of Monte carlo samples yields an architecture that maximizes classification per-
formance and better generalisation capability. Experimental results on the FakeAVCeleb
and SWAN-DF datasets demonstrate an impressive AUC percentage of 95.4%, achieved
with minimal model parameters.

1 Introduction
The advancement of deep generative models [12] has brought about highly convincing syn-
thetic audio and visuals, posing significant security risks. These technologies can potentially
circumvent biometric systems that depend on unique individual characteristics. For instance,
visual deepfakes employ techniques to change facial features, simulate wrongful acts, and
modify appearances. Moreover, the latest developments in deepfake technology have made it
possible to replicate human voices in real-time [4]. Techniques for cloning voices use neural
networks to create speech that sounds strikingly similar to a specific person, which compli-
cates the reliability of authentication systems and opens up possibilities for impersonating
public figures and committing financial deception.

Neural Architecture Search (NAS) [14] identifies optimal neural network designs within
a predefined architecture space. Recent multimodal NAS (MMNAS) [24] explores attention
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mechanisms but relies on static network topologies. Recently [23] proposed a multimodal
DNN architecture that combined feature-level fusion with individual feature selection using
Softmax. he impact of varying sample numbers on medical image analysis has been explored
using the Gumbel-Softmax distribution within the NAS framework [2]. Recently [19] used
Straight through Gumbel-Softmax based estimator-based bimodal NAS for audio-visual fake
detection with reduced model parameters. However, the STGS-BMNAS suffers from high
variance introduced by the Gumbel noise often suffers from unstable training dynamics.

The aim of this work is to develop a highly stable automatic architecture for audio-visual
deepfake detection. So we propose Gumbel-Rao Monte carlo based bi-modal neural ar-
chitecture search (GRMC-BMNAS) which adaptively learns architectures from a pool of
operations for audio-visual deepfake detection and trains faster and offers better results on
the test set performance. GRMC-BMNAS adopts a two-level search similar to [19] where
it learns unimodal features from the backbone network by sampling the search space by
varying the temperature parameter and Monte Carlo samples. In the second-level search,
we utilize the weighted fusion strategy by varying the temperature and Monte Carlo sam-
ples. Increasing Monte Carlo samples expands the search space of primitive operations,
allowing for a more accurate selection based on softmax probabilities as shown in Figure 1.
As illustrated in Figure 2, the average entropy of GRMC-BMNAS consistently outperforms
both STGS-BMNAS and the standard Softmax baseline [23]. This indicates that GRMC-
BMNAS achieves a lower entropy, suggesting a faster convergence during training. Our
proposed framework matches the performance of STGS-BMNAS [19] while requiring sig-
nificantly less training time and computational resources (GPU days). Moreover, our model
demonstrates superior generalization on test data. The main contributions of this paper are
as follows:
• To achieve faster, generalizable design of automatic architecture for bi-modal learning

(extendable to multimodal learning), we propose an automatic approach named Gumbel-
Rao Monte Carlo approximation based NAS for audio-visual deepfake detection which
adopts two level schema.

• The GRMC-BMNAS is an end-to-end framework which is fully searchable using two level
schema. The Gumbel-Softmax trick uses Gumbel noise to approximate categorical sam-
ples in a differentiable manner. In GRMC, multiple Gumbel noise samples are drawn to
enhance this approximation. Monte Carlo estimation averages these samples to approxi-
mate expectations, while Rao-Blackwellization conditions on discrete outcomes to reduce
variance, improving the estimator’s efficiency.

• Our study assessed the GRMC-BMNAS model for audio-visual deepfake detection through
extensive experiments. Empirical evidence indicates that our model trains faster and has
fewer parameters compared to existing state-of-the-art models.

The rest of the paper is organized as follows. Section 2 discusses about the related work,
Section 3 presents proposed work, Section 4 discusses about datasets, experimental protocol,
architecture search and evaluation and results, and Section 6 concludes the paper.

2 Related work

In recent years, deep learning techniques have been extensively used to create convincing
fake videos by altering both visual and auditory components. Notable research includes
methods like the Siamese Network proposed in Emotions Don’t Lie, [16] which compares
affective cues from both modalities within a video. The Modality Dissonance Score (MDS)
network, introduced in Not Made for Each Other [5], highlights differences in audio-visual
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Figure 1: Block diagram showing the proposed GRMC-BMNAS employs a two-stage search
to optimize bimodal fusion. The first stage identifies crucial features, while the second stage
determines the optimal architecture using a pool of operations.

Figure 2: Average entropy plot for two learnable parameters for the proposed GRMC-
BMNAS, and the existing STGS-BMNAS [19] and Softmax [23].

pairs using contrastive loss. Additionally, approaches focusing on phoneme-viseme [1] mis-
match reveal how deepfake techniques struggle to accurately replicate mouth shape dynam-
ics corresponding to specific sounds. Techniques like multimodal trace extracts [20] and
cross-modal learning further enhance deepfake detection by analyzing audio-visual corre-
spondences. Some methods even rely on self-supervised learning [8] and anomaly detec-
tion using unlabeled real data. Overall, these advancements contribute to better identifying
inconsistencies in deepfake videos. Recently [17] employs a two-stage approach. First,
self-supervised learning extracts features from real videos. Subsequently, these features are
fine-tuned for deepfake classification using supervised learning.
3 Proposed method: GRMC-BMNAS
This work introduces a new framework called GRMC-BMNAS for deepfake detection, which
optimizes network exploration by sampling from the Gumbel distribution and using the
Monte Carlo approximation to average these samples. Rao-Blackwellized conditions on
discrete outcomes reduce variance and improve estimator efficiency. At the first level, fea-
tures from the backbones are sampled and cells are explored within a directed acyclic graph
(DAG). A cell is a DAG consisting of ordered sequences on a node, where each node is
a latent representation with directed edges linked to primitive operations that transform the
node. The second level involves a DAG of nodes within a cell, each representing an operation
chosen from a predefined pool.

3.1 Gumbel distribution
The Gumbel distribution, also known as Type I within the generalized extreme value distribu-
tions, is tailored for modeling extreme events and anomalies. A ‘Gumbel’ random variable,
which adheres to this distribution, is characterized by a duo of parameters: location parame-

Citation
Citation
{PN, Ramachandra, Rao, Mitra, and Rathod} 2024

Citation
Citation
{Yin, Huang, and Zhang} 2022

Citation
Citation
{Agarwal, Farid, Fried, and Agrawala} 2020

Citation
Citation
{Raza and Malik} 2023

Citation
Citation
{Feng, Chen, and Owens} 2023

Citation
Citation
{Oorloff, Koppisetti, Bonettini, Solanki, Colman, Yacoob, Shahriyari, and Bharaj} 2024



4 :

ter µ ∈R and non-negative scale parameter β ∈R≥0. The corresponding probability density
and cumulative density functions are given by:

f (x) =
1
β

e−
x−µ

β
e−e

− x−µ

β

(1) F(x) = e−e
− x−µ

β

(2)

F−1(u)=−β log(−log(u))+µ

(3)
The inverse cumulative density function (ICDF) is also called quantile function given by

equation 3 and equation 3 is used in inverse transform sampling to transform sample from
Uniform distribution U(0,1) into a Gumbel via a double logarithmic relation.

3.2 Gumbel-max trick

The Gumbel-max technique is a strategy for drawing samples from a categorical random
variable denoted by I ∼Cat(π). It involves the addition of Gumbel-distributed noise, which
is independent and identically distributed, to the log probabilities before normalization.
More specifically I = argmaxi∈D {G(i)+ log θi} ∼Cat(π), where G(1),G(2),G(3)...G(D) are
the i.i.d samples drawn from Gumbel distribution 3.

3.3 Gumbel-Softmax distribution

Instead of producing discrete or ‘hard’ samples from a categorical distribution that lacks
structure, one can create ‘soft’ samples, which are especially beneficial for estimating gra-
dients. To grasp the relationship between these hard and soft samples, it’s essential to
analyze the hard samples when they are expressed in their one-hot encoded form, that is,
⊮ω ∈ {0,1}N . Then z = onehot(argmaxi∈D {G(i)+ log θi})

From [10, 15] we derive PDF of this distribution and denoted by GS(π,λ ). More specif-
ically, the ith index of soft sample Sλ ∈ {RN

≥0 : |Sλ |= 1} is defined in 4:
The temperature parameter λ in the Gumbel-Softmax distribution modulates its entropy

and that of its samples. It serves as a measure of how much the soft sample Sλ deviates from
a sample from Cat(π). As λ trends towards zero, the distribution samples shift towards one-
hot representations, aligning the Gumbel-Softmax distribution closely with the categorical
distribution.

Continuous one-hot vector relaxation excels in learning representations and sequences.
However, for tasks requiring discrete values, such as reinforcement learning actions, com-
pressed data, or architecture search, we discretize the continuous output using argmax. In
this family, the forward computation of f is unchanged, but backpropagation is computed
“through” a surrogate. This surrogate is known as straight through gumbel softmax (STGS)
defined in equation 5.

Si;λ =
exp((log θi + G(i))/λ )

∑ j∈D exp((log θi)+G( j))/λ )
(4) ∇ST GS :=

∂ f (Sλ )

∂ Sλ

∂ Sλ

∂ φ
(5)

where Sλ = so f tmax(φ +G) with φ = logθ and G is the i.i.d Gumbel variable.

3.4 Gumbel-Rao Monte Carlo Estimator (GRMC)

The GR estimator aims to reduce the variance associated with GS-ST by introducing a local
expectation.
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∇GR =
∂ f (D)

∂D
E
[

dso f tmaxτ(Θ+G)

dΘ
|D
]
(6)

θ j +G j|D =

{
−log(E j)+ logZ(θ) if j=i
−log( E j

exp(θ j)
+ Ei

Z(θ) ) o.w.
(7)

However, this expectation is in multiple variables and is not analytically tractable. Hence
[18] used Monte Carlo integration with K samples from G|D.

∇GRMCK =
∂ f (D)

∂D

[
1
K

K

∑
k=1

dso f tmaxτ(θ +Gk)

dθ

]
(8)

where Gk ∼ θ +G|D i.i.d. using the reparameterization and K is the number of similar
distributions or sampling size. Note that the total derivative dso f tmaxτ(θ +Gk)/dθ is taken
through both θ and Gk.

3.5 Analysing our proposed GRMC-BMNAS
To better understand our proposed method, we establish three propositions:

1. Proposition 1: For the two learnable parameters α (first level search) and γ (second
level search) the Gumbel-Rao Monte Carlo (GRMCK) estimator yields lower variance
compared to the Straight-Through Gumbel-Softmax (STGS) estimator then:

Let the estimators denoted by (6) and (7) be ∇ST GS and ∇GRMCK . Let ∇α = dE[ f (D)]/dα ,
∇γ = dE[ f (D)]/dγ represent the actual gradient we are attempting to estimate. Then
for all values K ≥ 1, we have

E
[
∥∇GRMCK −∇α∥2

]
≤ E

[
∥∇ST GS −∇α∥2

]
(9) E

[∥∥∇GRMCK −∇γ

∥∥2
]
≤ E

[∥∥∇ST GS −∇γ

∥∥2
]

(10)

2. Proposition 2: Increasing the number of Monte Carlo samples K in the GRMCK es-
timator further reduces mean squared error compared to STGS. Let θ K

GRMCK be the
GRMCK estimator with K samples, θST GS be the STGS estimator, θ be the true gra-
dient, Var(θ K

GRMCK) be the variance of GRMCK with K samples, Var(θST GS) be the
variance of STGS estimator. Then, the mean squared error (MSE) for both estima-
tors can be expressed as follows: MSE(θ K

GRMCK) = E(θ K
GRMCK −θ 2), MSE(θST GS) =

E[θST GS −θ 2], then by Jensen inequality we have

E[(θ K
GRMCK −θ

2)]≤Var(θ K
GRMCK) (11)

3. Proposition 3: Let θST GS be the gradient estimator using the STGS estimator and
θ K

GRMCK be the gradient obtained using GRMC estimator with K samples. Let θ denote
the true gradient. The asymptotic biases of two estimators are given by

(a) Asymptotic bias of STGS estimator:
The STGS estimator generally retains a non-zero bias as the number of samples
from gumbel distribution increases

(b) Asymptotic bias of GRMC estimator:
The GRMC estimator designed to reduce variance and improve the gradient esti-
mation, has an aymptotic bias that approches zero as the number of Monte Carlo
sample K increases. Formally,

lim
K→∞

E[θST GS]−θ ̸= 0 (12) lim
K→∞

E[θST GS]−θ = 0 (13)

(c) Comparative statement: |limK→∞E[θGRMC]−θ |< |limK→∞E[θST GS]−θ |
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3.6 Modality feature extraction

Similar to [19] we employ pre-trained ResNet-34 models for both image (facial) and speech
feature extraction. Instead of using the final output, we extract features from intermediate
layers of the neural network to capture richer and more abstract representations of the input
data. Instead of using the final output, we extract features from intermediate layers of the
neural network to capture richer and more abstract representations of the input data.

3.6.1 First level search: GRMC relaxation over the cells

We extract single-modal features from pre-trained backbone networks for both image (I) and
speech (S) cues. These extracted features are denoted as Ii and Si respectively. Then we
formulate the first level nodes in a sequence. Then F= {I(1), I(2)..., I(NA),S(1),S(2)...,S(NB)...
Cell(1)...,Cell(N)} Let Fa, Fb be any two nodes from F. Let α be the weight parameter
connecting between F(a), F(b) then each edge is selected based on the unary operation. Let
OF be the set of candidate operations

OF =

{
Identity(x) = x selecting an edge

Zero(x) = 0 discarding an edge
where each operation refers to a function o. to be applied on the cell(a) then by applying

the gumbel rao.

ō(a,b)λ = ∑
o∈O

 1
K

K

∑
k=1

exp(α(a,b)
o +Gk

(a)|D)

∑o′∈O exp(αo +Gk
(b)|D)

o(x)

(14)

∇GRMCK =
∂ f (ō(a,b))
∂ ō(a,b))

∂ ō(a,b)
∂φ

(15)

where K = sampling size which influences the entropy of the Gumbel Rao distribution
and φ = log(α).

A cell is densely connected and receives input from all its predecessors ov =∑u<v ō(u,v)(o(i)).
In the evaluation stage, since we want deterministic predictions, the probabilities obtained
from the Gumbel Rao distribution can be directly used without the need for sampling or
argmax operation as, (a,b) = αo(a,b). Using softmax probabilities during evaluation pro-
vides deterministic predictions without relying on sampling. Softmax offers probabilistic
interpretations and is more robust to noise compared to the deterministic argmax approach.

3.6.2 Second level: Weighted fusion

Following the approach in [19], we employ the same predefined candidate operations. Each
operation takes two input tensors x,y, and produces an output tensor z, all of which have
dimensions RN×C×L. These operations are detailed in Table 1.
The second level of GR-BMNAS optimizes a weighted fusion strategy within a cell struc-
ture. A cell is a directed acyclic graph composed of nodes representing latent representations
and edges representing operations. The cell’s architecture is defined by edge and operation
configurations, while weight parameters are learned during optimization.
Weighted fusion strategy: In this stage, the inner structure of Cells(n) is an ordered se-
quence of Cn then Cn = I,S,N(1), ....N(M)

A cell comprises three nodes: an input node in(i)c and two intermediate nodes c( j), c(l).
The input node processes the backbone network’s output and generates two intermediate
representations using a weighted fusion of candidate operations determined by the Gumbel-
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Operation Function

Zero(x,y) The Zero operation, eliminates an entire node,
effectively discarding its contribution .

Sum(x, y):
The DARTS framework [14], introduced ,

employs a method to combine two features using summation.
Sum(x,y) = X +Y

Attention(x,y)
The Attention operation, as described in [22], employs scaled dot-product attention,

where a query x and key-value pairs y are used.
Attention(x,y) = So f tmax(xyT /(

√
C× y))

LinearGLU(x,y)
The LinearGLU operation combines two inputs x,y,

using a linear layer followed by the gated linear unit (GLU) activation [7].
LinearGLU(x,y) = xW1

⊙
Sigmoid(yW2)

ConcatFC(x,y)
The ConcatFC operation involves concatenating two inputs,

(x,y) and and passing the concatenated vector through a fully connected (FC) layer with ReLU activation.
ConcatFC(x,y) = ReLU((x,y).W +b)

Table 1: Candidate operations used in the second level search

Rao Monte Carlo method.

= ∑
os∈Os

 1
K

K

∑
k=1

exp((γ(i)+Gk
(i))/D)

∑o′∈Os exp((γ(i)ōs +Gk
(i))/D)

×wi( f (c( j),cl)) (16)

The weights, γ determine the contribution of candidate operations. During evaluation, we
directly use the probabilities from the Gumbel-Rao distribution for decision-making, elimi-
nating the need for sampling or selecting the maximum value o(i) = γ

(i)
c . The edge weights

(β ) are also relaxed using straight-through gumbel rao similar to the first level. The output
node combines the results from all transformation nodes.

3.7 Optimizing Neural Architectures through Parameter learning

We employ our proposed GRMC method to jointly optimize both weight parameters and
architecture in an end-to-end training process. The objective of architecture search is to
minimize the loss function, Lω while simultaneously reducing the number of model pa-
rameters i.e., min

ω,α,γ
EA∼p(α,γ)

λ ,K
|Lω(A))|. The primary objective is to minimize the expected

performance of architectures sampled from the search space i,e., p(α,β ,γ)λ ,K
(A). Our method

involves sampling network architectures from a distribution parameterized by α , β , and γ ,
controlled by a temperature parameter λ and Monte carlo samples K. The loss is computed
for the sampled architecture, and gradients are calculated with respect to both architecture
parameters and network weights using a straight-through estimator. By optimizing these
parameters, we aim to find an optimal architecture with minimal parameters.

4 Experiments and Results
4.1 Datasets

FakeAVCeleb: We evaluate our method on the FakeAVCeleb dataset [11], containing 19,500
fake and 500 real videos of 500 celebrities.
SWAN-DF dataset [13] is the first publicly available collection of high-quality audio-visual
deepfakes, built upon the SWAN database of real-world videos. It contains 24,000 fake and
2,800 real video samples. More details regarding the dataset split is given in the supplemen-
tary material.
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4.2 Evaluation methodology

We employ a two-pronged evaluation strategy. First, we assess model performance on a
combined dataset of FakeAVCeleb and SWAN-DF. Second, we evaluate generalization by
training on one dataset and testing on the other. Since both databases are biased towards fake
videos than the real videos.To mitigate dataset bias, we apply 36 different data augmentation
techniques, resulting in 50,742 training, 10,718 validation, and 8,963 test samples similar to
[19]. Detailed information regarding dataset partitioning and augmentation techniques can
be found in the supplementary material.

4.3 Architecture search and evaluation

Our experiments involve a two-stage operation selection process. Initially, edges are se-
lected or discarded from a pool OF . Subsequently, operations from a different pool OS are
considered. The number of monte carlo samples (K) is varied across different temperature
parameter λ settings for larger and optimal search space for lower training loss (see train-
ing and validation loss graphs for different monte carlo samples and different temperature
values in supplementary material). The algorithm stops when the selection of operations
within the neural cell stabilizes for both learnable parameters, α and γ which is measured as
E(α) = −∑a,b ∑o∈OF αo

(a,b) log(αo
ab) and E(γ) = −∑a,b ∑o∈OS αo

(a,b) log(γo
ab). Experiments

were conducted on V100 Tesla GPUs with 16GB memory. The model was trained using
PyTorch with Adam optimizer, a batch size of 8 for 100 epochs, and specific hyperparam-
eters for learning rates, weight decay, and momentum (more details in the supplementary
material). The optimal architecture determined through the search process, is trained for 100
epochs with a batch size of 64. Its performance is then evaluated on a held-out test set.

4.4 Performance comparision

We assess model performance using standard metrics: Area Under the Curve (AUC) and
classification accuracy (ACC) similar to [19].
SOTA models: We compare our method to state-of-the-art audio-visual deepfake detection
techniques, including Not made for each other [5], Voice-Face [3], Audio-Visual Anomaly
detection [8], ID-Reveal [6], Multimodal-trace [20], Ensemble learning [9], and POI-AV
[21] and STGS-BMNAS [19].
Training: To ensure fair comparison, all models were trained on our dataset using identi-
cal pre-processing steps and adhering to strict data partitioning to prevent overlap between
training, validation, and testing sets.

Table 2 presents a comparison of our proposed GRMC-BMNAS model with SOTA
methods using a combined dataset. Our model surpases the recent SOTA models POI-AV
[21], Multimodaltrace [20], and ID-Reveal [6], STGS-BMNAS [19] on combined datasets
in terms of accuracy (ACC) and area under the curve (AUC) metrics, while using fewer
model parameters. Our model exhibits lower variance compared to STGS-BMNAS, sup-
porting Proposition 1 (Figure given in the supplementary material). Additionally, our model
achieves lower mean squared error (MSE) for learnable parameters α and γ , corroborating
Proposition 2 (For figure see supplementary material). Optimal architecture with minimal
GPU days is obtained with K=100 and λ = 0.1 is shown in Figure 5 . Receiver operating
characteristic (ROC) curves for λ = 0.1 and K=100, distinguishing between real and fake
data, are provided in the supplementary material.

Model performance on unseen data: Table 3 presents the performance of our model on
unseen data. Our model significantly outperforms STGS-BMNAS demonstrating its superior
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Method AUC(%) ACC(%) Params(M) GPU
days Search

Voice-face [3] 82 86 174 - Gradient
Audio-visual

anamoly detection [8] 93 - 41 - Gradient

Not made
for each other [5] 81 84.56 122 - Gradient

ID-Reveal [6] 78 80.1 7.3 - Gradient
MultimodalTrace [20] 84 91.26 15 - Gradient
Ensemble-learning [9] 84 86 12 - Gradient

POI-AV [21] 93.9 90.9 - - -
BM-NAS [23] 92.26 91.4 0.62 4 Gradient

STGS-BMNAS[19] 94.4 95.5 0.26 2 Straight
through estimator

GRMC-BMNAS (Ours) 95.5 96.5 0.20 1.5 Straight
through estimator

Table 2: Comparison of our proposed GRMC-BMNAS with SOTA approaches tested on our
test data

Trained on
↓

Tested on
↓

GRMC-BMNAS STGS-BMNAS
FakeAVCeleb SWAN-DF FakeAVCeleb SWAN-DF
AUC ACC AUC ACC AUC ACC AUC ACC

FakeAVCeleb 94.7 93.5 91.6 91.2 92.7 91.8 85.6 84.7
SWAN-DF 90.8 91.2 95.1 94.8 84.8 83.2 93.1 92.8

Table 3: Generalisation of our proposed model to the seen and unseen data

Temperature (λ ) No of Samples (K)
10 100 1000

λ = 0.1 AUC 92.16 95.5 96.96
Model

parameters 341760 205565 189574

λ = 0.5 AUC 91.75 94.04 90.45
Model

parameters 322456 192452 175642

λ = 1.0 AUC 91.16 93.95 90.2
Model

parameters 299490 187852 167845

Table 4: Evaluation of searched architecture with
different temperature values and with varying
Monte carlo samples

Video

Frame_1

Spectogram_1

Frame_2

in1_C1

in1_C2

Spectogram_2

in2_C2
Frame_3

Frame_4

Spectogram_3

Spectogram_4

in2_C1

C1_S1
LinearGLU

C1_S2
ConcatFC

out_C1

Reduction
Output

C2_S1
LinearGLU

C2_S2
ScaleDotAttn

out_C2

Table 5: Best architecture obtained with
K=100 and λ = 0.1

generalization capabilities. This improved performance can be attributed to the model’s
reduced variance and lower mean squared error as established in previous sections.
4.5 Ablation study
Table 4 presents the outcomes of an ablation study examining the influence of temperature
and Monte Carlo samples on model performance. Consistent with Proposition 2, increasing
the number of Monte Carlo samples generally leads to smaller model sizes and higher AUC
values, albeit at the expense of increased computational cost. Based on these findings, an
optimal architecture was determined with λ = 0.1 and K=100. Respective architectures
produced using different parameter settings can be found in the supplementary material.

5 Conclusion
This paper introduces GRMC-BMNAS, a novel architecture search method for audio-visual
deepfake detection. Our approach leverages a two-stage Gumbel-Rao Monte Carlo sampling
process to efficiently discover optimal architectures. By reducing variance and mean squared
error, GRMC-BMNAS surpasses existing methods like STGS-BMNAS in both training effi-
ciency and generalization performance.
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