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Abstract

Counterfactual (CF) techniques extend XAI by shifting from a path- to a goal-focused
paradigm, deriving what changes are required to produce a shift in the predicted class.
We present a novel method for CF image generation inspired by human organ transplants.
The CF generation procedure copies segments of pixels from the source (of the opposite
class) to the target until the desired class is reached, based on an efficientnet classification
network. The method is combined without of distribution detection with a Convolutional
Neural Network (CNN) trained on the original training set together with fake images
contaminated by patches from other cardiovascular scanning types. The methods were
employed on a set of chest X-rays labelled either as Cardiomegaly or Healthy. The out of
domain detection reached accuracies of 90% or higher and rejected other medical scans
better than purely white patches.

1 Introduction
Machine learning for image-based prediction has become an integral tool in the diagnosis of
many diseases, such as heart disease, breast cancer, diabetes, and liver disease [9]. However,
explaining these predictions and gaining trust and acceptance of end users such as doctors
and patients remains daunting. Multiple approaches including GRAD-CAM heatmaps [8],
Layer-Relevance Propagation (LRP) [33] and so-called DeepLift methods [20] have been
explored with varying degrees of success. The presence of out of domain (OOD) samples
poses significant challenge for accurate predictions, as the contamination of only a few im-
ages from another domain may yield distinctly poorer performance [20].
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In recent years, counterfactual (CF) techniques have attracted increased levels of attention
and have been applied to many medical fields in the task of disease classification and di-
agnosis. It rests on the concept of explaining a prediction by demonstrating how an object
from a different class appearst when it is shifted across the decision boundary [18]. Within
cardiovascular imaging, Thigarajan et al. [38] used a CF method to explain and visualise
detection of anomalies on chest X-ray images.
This study introduces a new method to produce counterfactual images via copying segments
by transferring image segments within the same domain but featuring different pathologies.
The method was augmented by an out of domain. Our research questions are a) Does the
rejection success depend on what domain the intrusion comes from? b) Does the rejection
success depend on what domain the network is trained on? c) Does the rejection success de-
pend on whether the network is trained on images with a diagnosis or from healthy subjects?

2 Previous Work

Cardiomegaly X-ray Prediction. Within image-based classification, convolutional neural
networks (CNNs) have, to date, achieved accuracies of 90% or higher [10, 27, 42], reflective
of their potential as clinical expert systems [29, 30]. For chest X-ray datasets, a number of
deep learning methods have been employed, producing accuracies between 70 and 80% [3].
Many of these approaches use hybrid models integrating CNN with other architectures, such
as U-Net [39].

Counterfactuals. The counterfactual approach has demonstrated efficacy in satisfying the
information needs of end-users, and in clarifying medical disease diagnoses [22]. Although
user-studies remain limited, preliminary surveys indicate promising results. For example,
Delaney et al. [5] have shown that users presented with counterfactual images were more
likely to correctly classify images across different domains. Frameworks for producing a va-
riety of workable counterfactual explanations have been created in different contexts [24, 31].
One such framework by Nagesh et al. [26] adopted a variational autoencoder-based method-
ology that yielded counterfactuals that outperformed previous approaches, both qualitatively
and quantitatively. Additionally, other studies have reported that exposure to counterfactual
explanations increases participants’ trust in the models. Individuals who viewed counterfac-
tual images reported reduced levels of stress and frustration compared to the control group
[22]. Both users and system designers benefit from the counterfactual explanation, which
facilitates improved model comprehension and debugging. Furthermore, counterfactual ex-
planations preform robustly in traditional quantitative assessment [26]. Using the counter-
factual maps as a framework, Oh et al. [28] developed an attention-based feature refining
model to improve the diagnostic model’s generalisation. Recently, Tan et al. [36] proposed
two different assessment criteria to evaluate better utilisation of counterfactual explanations.

Image Patch Translation. Various imaging modalities and processing techniques have
been used to enhance medical education [6, 13]. Patch-based medical image segmenta-
tion techniques have also been applied with Quantum Tensor Networks [34] and latent as-
pect models for contextual classification [23]. One assessment of a proposed segmentation
scheme was conducted using 20 cardiac MRIs and 20 CT scans [44]. Barnes et al. [2] in-
troduced a novel approach to image modification with application in medical retargeting and
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completion of medical images. Patch-based image synthesis and inpainting approaches offer
potential for improving the synthesis of medical images [21, 32].

Superpixel Segmentation. Superpixel image segmentation refers to an image processing
technique that groups similar pixels into larger perceptually meaningful regions known as
superpixels [35]. Superpixels are typically more uniform and compact than individual pix-
els, facilitating easier analysis and processing [1]. This segmentation method is commonly
used in tasks such as object detection, image classification, and image editing [40]. The
segmentation of a chest X-ray is shown in Figure 1.

Figure 1: Segmentation via superpixels of chest X-ray

Out-Domain Detection Out-of-domain detection (OOD) in the medical imaging field is
crucial for ensuring the reliability and accuracy of diagnostic models. This process involves
identifying images or data that significantly differ from the training dataset, which can occur
due to variations in imaging protocols, patient demographics, or disease presentations [4].
Techniques such as deep learning-based anomaly detection and domain adaptation strate-
gies have been employed to enhance the robustness of medical imaging systems against
out-of-domain samples. For instance, methods leveraging convolutional neural networks
(CNNs) have shown promise in distinguishing between in-domain and out-of-domain im-
ages by learning feature representations that capture the underlying data distribution [14].
Additionally, the use of generative adversarial networks (GANs) has been explored to syn-
thesise in-domain-like images from out-of-domain samples, thereby improving model per-
formance [43]. Addressing out-of-domain detection is essential for maintaining the clinical
applicability of AI systems in diverse medical settings, as it directly impacts patient safety
and diagnostic accuracy.
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3 Method
Image Patch Translation. A synthetic image is generated through this patch-based image-
to-image transfer by copying a set of patches from the counterfactual image to the original
image. The translated patches are selected using a modified version of the ViCE algorithm
[11] that we have adapted for images. Each image was segmented into a number of patches
via the superpixels function [25]. Unlike conventional approaches that use smaller patches
(e.g. 2x2 or 10x10 pixels method) to create CF images, our method reflects anatomical
significance of chest area. It allows larger and more realistic transplants that better match
medical pathology, such as cardiomegaly, where large section of heart are involved.

Segment Transfer. Given two patches, one from the original image, and one from the
counterfactual image, we adapt the morphmix algorithm from the MiMICRI system [12] to
transfer the selected patch from the counterfactual image into the original image. Morphmix
first aligns the counterfactual patch centroid to the centroid of the original image patch.
The algorithm then copies pixels from the counterfactual into the original using a flood-fill
starting from the centroid pixel. In cases where the counterfactual image patch is smaller
than the original image patch, we estimate missing pixel values by interpolating between
corresponding pixels in the counterfactual and original image.

Crossing Decision Boundary. The algorithm iteratively replaces patches from the orig-
inal with copies of the corresponding patch from the counterfactual image. The iterations
continue until either a) the predicted class for X becomes the class of Y or b) a user-defined
threshold of maximum translated fraction has been reached. By default, the threshold for the
number of patches that can be replaced is the total number of patches in X (i.e., the entire
image is replaced). This threshold can be adjusted by users to limit the extent of amount
of changes made to the image before the procedure is deemed to be pruned. In the case
study, EfficientNet [37], a family of CNNs [16] designed for high efficiency and effective-
ness in image classification, was used to distinguish between CM and Healthy. Utilising a
compound scaling method, it uniformly scales the network’s depth, width, and resolution,
optimising performance and resource use. An example of a successful transplant in one step
is displayed in Figure 2

Figure 2: Example successful translation

Pseudocode. Based on the class prediction operator predictClass(X), a domain operator
inDomain(X) and the functions nextSegment, mostAlignedSegment and trans f erPatch, the
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pseudocode for the algorithm is presented as Algorithm 1.

Algorithm 1 Image counterfactual algorithm
Require: X target image, Y source

Class(X)← predictClass(X)
count← 0
while Class(X) ̸=Class(Y )∧ count ≤ nsegments(X) do

i← nextSegment(X)
j← mostAlignedSegment(X ,Y, i)
X ′← trans f erPatch(X , i,Y, j)
if inDomain(X ′)≡ TRUE then ▷ Check if segment is valid

X ← X ′

Class(X)← predictClass(X)
count← count +1

end if
end while

Out of Distribution detection The classifier used for our patch-based counterfactual ex-
planation method is a convolutional neural network with the architecture in Table 1.

Table 1: Specification of the CNN
Layer Type Size

(Conv2D) 128 x 128 x 32
(Activation) 128 x 128 x 32
(Conv2D) 128 x 128 x 16
(LeakyReLU) 128 x 128 x 16
(Batch Normalisation) 128 x 128 x 16
(Max Pooling) 64 x 64 x 16
(Dropout) 64 x 64 x 16
(Flatten) 1 x 65536
(Dense) 1 x 100
(Activation) 1 x 100
(Dropout) 1 x 100
(Dense) 1 x 2
(Activation) 1 x 2

Note: Conv2D= Two-dimensional convolutional neural network with a 3x3 pixel kernel,
LeakyReLU= Rectified Linear Unit with a positive gradient while not active.

The network classifies images into the classes CXR (Chest X-ray) and unreal (fake). The
input is a grayscale 128 x 128 pixel matrix (range 0-1) and the output a two valued binary
class probability vector. The R packages superpixels, OpenImageR, and magick were used
for image processing, keras3 and Mimicri for the translation section and shiny for the user
interface 1

1https://nightingale.zdv.uni-mainz.de:3838/cmgame
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Dataset The presented case study uses the chest X-ray data set from the National Institute
of Health (NIH), United States [41], with over 100,000 scanned images with annotations
performed by doctors. A subset with 5552 images in total with only the cardiomegaly and
healthy labels were used in this study. To create the desired out of domain sample, the
images were distorted, with blank areas or patches from other imaging. The intruding seg-
ments were chosen from the following public image sets: a) Tufts Medical Echocardiogram
DataSet (Echos) [15], b) Completely white patches, c) Chest Computer Tomography (CT)
from Lincoln University College, Omega Hospitals [7]. The network was trained with car-
diomegaly and healthy images, a sample of the distortion images is shown in Figure 3

Cardiomegaly Healthy

Echocardiography

White

CT
Figure 3: A 2x3 table with images and headers
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4 Results

4.1 Image similarities
The closeness between a randomly selected image of each type as measured via cosine sim-
ilarity is presented in Table 2.

Table 2: Cosine similarities sample
Source OCM OH ECM EH WCM WH CCM CH
OCM - 0.86 0.69 0.83 0.88 0.85 0.66 0.81
OH - - 0.75 0.93 0.94 0.96 0.80 0.92

Note: CM:Cardiomegaly; H:Healthy; O:Original; E:Echos; W:White; C:Computer To-
mography The white distortion leads to smaller dissimilarity between images compared to a
contamination from the other scanning domains.

4.2 Domain detection.
The generic model from Table 1 was trained on training data in three different configurations:
a) Separate models for each source of distortion (echo, white, CT); b) Separate models per
training class (CM/Healthy); c) One model where all training classes and distortions are
included.

For each image in the test set, segment size was chosen randomly within the size vector
(6,9,12,15,18,21,24,27), the testing image segmented with superpixels, a target segment to
transfer was chosen randomly and the corresponding segment in the source (distorted) image
was found via the bounding box of the assigned patch. The test set accuracies (in percent)
of correctly classified images (in/out of domain) for each combination of intrusion type and
pathology are presented in Table 3, Table 4, and Table 5, respectively. The numbers are
based on a test sample of 319-320 images of each cell (Label+Distortion).

Table 3: Accuracy when training on same domain
Source Cardiomegaly Healthy
Echo 91.2 92.9
White 83.5 85.1
CT 97.7 99.4

Table 4: Accuracy when training same label
Source Cardiomegaly Healthy
Echo 97.1 94.7
White 69.4 80.4
CT 97.6 96.4

Overall, the network is rejecting intrusions from other medical images better than the
purely white patches, and performs worse when the space of distortions becomes less homo-
geneous.



8 LANE, VALKO, BANDI, LOKESH REDDY, KRAMER: PATCHHEALER

Table 5: Accuracy when training all
Source Cardiomegaly Healthy
Echo 80.6 79.3
White 78.9 78.6
CT 80.6 80.4

4.3 User tests
A user interface has been developed with the graphics embedded as portrayed in Figure 4. It
provides the "player" of the gamified Shiny app options to select a patch for translation in the
source and which segment it should replace. Following the algorithm, the system will notify
the user when the decision bounder has been crossed, i.e. the CM image has been converted
into a healthy prediction.

Figure 4: Example successful translation

Early testing showed a high rate of success, with an average of 30 percent of the pixels
being transplanted at first try.

5 Discussion
The classification reached very balanced results with an accuracy close to 80%, reflecting its
effectiveness in identifying relevant instances while minimising false positives.

The transplant results demonstrated the potential of this approach to effectively transfer
content between classes in the same domain, enabling the generation of images that depict
medical imaging outcomes from opposing categories while retaining a realistic visual ap-
pearance. Overall, the algorithm achieved succession rate approximately 85%, requiring
the translation of roughly three fifths of the target image to achieve the desired class shift.
The proposed approach offers several advantages compared to existing methods. It operates
directly on raw image patches, preserving the spatial relationships and contextual informa-
tion within the scene. This allows for more natural and realistic translations, compared to
methods reliant on hand-crafted features or pre-trained segmentation models.

The domain check method was trained on patchwise intrusions similar to the reached
maintains a check of the method’s integrity against attempts to use services with "faked"
data, such as combining images from different scan techniques. It thus guards against syn-
thetic results with a level of accuracy comparable to state of the art from challenges on



LANE, VALKO, BANDI, LOKESH REDDY, KRAMER: PATCHHEALER 9

medical images [45], and considerably higher than detection in many other domains [19].
It is apparent that the detection of "fake" images is less accurate when the out of domain
contamination is more similar to the original. This issue resembles the "phishing" technique
of making the intrusion resemble a normal occurrence as close as possible [17].

Despite these promising findings, several avenues for future research remain. One direc-
tion involves developing more sophisticated patch alignment techniques to further enhance
translation accuracy and consistency. The domain check technique should be trained with
more sophisticated data resembling expected user intrusion tactics. Additionally, investigat-
ing the impact of patch extraction strategies and incorporating semantic information into the
patch translation process could further improve the quality and realism.

6 Conclusion
In conclusion, the present study has demonstrated the potential of image-to-image patch
translation for generating semifactual images of a different class. This was done through
an architecture with a neural network for image classification, identification of the nearest
counterfactual from a data set with two classes, superpixel image segmentation into patches,
selection of the matching patches in the opposing image, a morphing algorithm matching
segment geometries for translating patches between images of different classes, and a con-
volutional model for rejecting attempts to translate images from other domains.

The tests indicate that the detection of hostile images displayed a high dependence on the
degree of similarity between the original and the fake, as the accuracy was much lower when
they were closer to eachother, illustrating the security problem of detecting insider threats
and phishing.

The method could be used as a tool demonstrating the effect of transplants and as an
XAI gamified technique to illustrate image classification. While the proposed method for
generating counterfactual images shows promising results in terms of accuracy and inter-
pretability, further work is necessary to evaluate their effectiveness in real-world scenarios.
Future research should focus on refining patch alignment methods, incorporating seman-
tic information, and investigating the application of this approach to more complex image
transformations.
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