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Abstract

Despite the recent progress in deep learning based computer vision, domain shifts are
still one of the major challenges. Semantic segmentation for autonomous driving faces
a wide range of domain shifts, e.g. caused by changing weather conditions, new geolo-
cations and the frequent use of synthetic data in model training. Unsupervised domain
adaptation (UDA) methods have emerged which adapt a model to a new target domain
by only using unlabeled data of that domain. The variety of UDA methods is large but
all of them use ImageNet pre-trained models. Recently, vision-language models have
demonstrated strong generalization capabilities which may facilitate domain adaptation.
We show that simply replacing the encoder of existing UDA methods like DACS by a
vision-language pre-trained encoder can result in significant performance improvements
of up to 10.0% mIoU on the GTA5→Cityscapes domain shift. For the generalization per-
formance to unseen domains, the newly employed vision-language pre-trained encoder
provides a gain of up to 13.7% mIoU across three unseen datasets. However, we find that
not all UDA methods can be easily paired with the new encoder and that the UDA per-
formance does not always likewise transfer into generalization performance. Finally, we
perform our experiments on an adverse weather condition domain shift to further verify
our findings on a pure real-to-real domain shift.

1 Introduction
Computer vision has experienced several breakthroughs in the past decade enabled by deep
neural networks (DNNs) [11, 18, 30, 44]. Domain shifts, i.e. when the training and inference
distribution differ, are still a major challenge for DNNs and can cause severe performance
drops, e.g. when models are trained on synthetic data and inference is done on real data [21,
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54, 60]. These can significantly hamper the application especially to safety-critical areas like
autonomous driving and medical image analysis. Consequently, the mitigation of domain
shifts is a major objective and several research fields emerged.

The most popular field is unsupervised domain adaptation (UDA) where only unlabeled
samples from the target domain are available and the objective is to adapt the model towards
this specific target domain. A broad variety of UDA methods have been developed in the
past years utilizing methods like adversarial adaptation [60, 61], contrastive learning [28,
67, 72], self-training [59, 75] and knowledge distillation frameworks [21, 55, 71]. Next
to unsupervised domain adaptation so-called domain generalization (DG) methods gained
increasing research attention [4, 7, 13, 25, 29, 32, 41, 53, 58, 70, 73]. Here, no target data
is available and the objective is to obtain a model which generalizes well across multiple
unseen target domains. Very recently, the utilization of vision-language models (VLMs)
enabled a major performance increase as well as methodological progress in the field of
domain generalization with works like Rein [66], CLOUDS [2], and VLTSeg [26]. These
approaches demonstrate that large-scale vision-language pre-training like CLIP [44] can be
leveraged to significantly improve domain generalized semantic segmentation as well as
detection [63] performance. Surprisingly, the field of UDA research falls back behind DG
research because so far all existing UDA methods use ImageNet pre-trained models leaving
the strong potential of vision-language models unexplored except a very recent study from
Englert et al. [12]. For this reason, we equip selected UDA methods with a state-of-the-
art vision-language pre-trained encoder and show their strong potential for unsupervised
domain adaptation. We also evaluate the domain generalization capabilities of the UDA
methods on unseen datasets and show that a simple UDA method with a vision-language pre-
trained backbone provides state-of-the-art generalization capabilities. Next to the established
synthetic-to-real and real-to-real benchmarks which contain a mixture of different domain
shifts (e.g. GTA5→Cityscapes contains synthetic and geolocation shift) we evaluate both
the adaptation and generalization performance for a single pure adverse weather condition
shift on the ACDC [50] dataset. This is motivated by the results from Sakaridis et al. [50] that
UDA methods perform very different on different domain shifts and in some cases worsen
the performance. Overall, our study makes the following contributions and novel findings:

• Extensive evaluation of UDA methods, in particular DACS [59], equipped with a state-
of-the-art vision-language pre-trained backbone demonstrating that this can boost the
UDA target performance by 10.0% mIoU and across three unseen datasets by 13.7%
mIoU

• Analysis of UDA methods revealing that not all methods are similarly compatible with
a VLM-based encoder; this indicates the need for new UDA methods tailored towards
vision-language models

• Extensive evaluation on unseen datasets showing that the UDA and generalization
performance are not necessarily correlated and that recent DG methods can provide
better generalization than UDA methods

2 Related Work
Unsupervised Domain Adaptation (UDA) Methods There exists a broad variety of UDA
methods which can be coarsely clustered into input, feature, output space and hybrid adap-
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tation methods [54]. In the input space several approaches apply a GAN-based style trans-
fer between domains [3, 6, 20, 31, 65] or augmentation and image mixing techniques [1,
39, 59]. In the feature space adversarial and contrastive learning UDA methods are often
used [19, 34, 37, 38, 60], whereas in the output space self-training, contrastive learning and
knowledge distillation are common techniques [60, 67, 72, 75]. Hybrid approaches combine
multiple of the mentioned techniques and have become increasingly popular for UDA in re-
cent years [54, 65]. However, hybrid approaches are mostly complex and for this reason we
also include simpler approaches like DACS [59] in our study.
UDA Architectures The vast majority of UDA approaches employed ImageNet pre-trained
VGG-16 [56] and ResNet-101 [18] networks as their backbones [20, 33, 51, 60], so that these
architectures became the de-facto standard. With the emerging vision transformers and the
foundational work DAFormer [21] the mix vision transformer (MiT-B5) proposed by [68]
became a popular backbone for UDA methods [22, 67]. However, all of these backbones are
ImageNet pre-trained and do not harness the strong generalization power of vision-language
pre-training. Only the recent study from Englert et al. [12] investigates foundation models
for UDA methods but our study differs in three important aspects. First, we also include
previous, simpler UDA methods like DACS [59] and demonstrate that these methods also
significantly benefit from vision-language pre-training. Second, Englert et al. [12] focus on
the DINOv2 model [42] where the target domain Cityscapes [9] is used to retrieve similar
samples from the web and therefore results may not transfer to other settings. We instead
focus on the vision-language pre-trained model EVA02-CLIP [57]. Third, we follow the
benchmark protocol from DG approaches [4, 25, 26, 41, 66] enabling a comparison to those
studies. Our study shares similarities with the work from Piva et al. [43] w.r.t. their eval-
uation methodology; however, vision-language models are missing in their study and UDA
and DG have made significant progress since then.
UDA Benchmarks Synthetic-to-real and real-to-real shifts are mostly used for benchmark-
ing in UDA. The most common synthetic datasets are GTA5 [46] and SYNTHIA [47] and re-
cently Urbansyn [17]. As target domain for the synthetic-to-real domain shift the Cityscapes
dataset [9] is widely employed which is also often used as real source domain for the real-to-
real domain shift. Real target domains are often the ACDC [50], FoggyCityscapes [48] and
DarkZurich [49] datasets. All these domain shifts represent a mixture of at least two domain
shifts or rely on artificially generated shifts like in the FoggyCityscapes dataset.
Vision-Language Models (VLMs) CLIP by Radford et al. [44] was the foundational work
in the field of vision-language models which was trained with image-text pairs and a con-
trastive loss for the alignment of vision and text embeddings. VLMs like CLIP benefit from
large-scale multi-modal datasets like Laion-5B [52] or Commonpool [15] and their size is an
inherent advantage since the image-text pairs are easier to collect than e.g. single-class labels
for ImageNet [44]. VLMs are commonly used for pre-training and then employed in a trans-
fer learning setting for a downstream task, e.g. semantic segmentation [10, 16, 36, 45, 74]
but so far not for UDA in semantic segmentation except the study from Englert et al. [12].

3 Method

In this section, we describe the details of our study, focusing on the evaluated UDA methods,
the model architectures and the domain shifts of the ACDC dataset.
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3.1 UDA Methods
In contrast to Englert et al. [12] we decide to not only focus on the most recent and usu-
ally more complex UDA methods, but deliberately also include previous methods. That
shows how previous UDA methods and principles like adversarial adaptation benefit from
the new vision-language pre-trained backbone and how they perform on a pure domain shift.
We select previous, highly influential UDA methods: AdaptSegNet [60], ADVENT [64]
and DACS [59]. In addition, we include the recent state-of-the-art methods SePiCo [67],
DAFormer [21], and MIC [24]. AdaptSegNet [60] is one of the earliest UDA works and
utilizes adversarial domain adaptation by employing a domain discriminator in both the fea-
ture and output space. Similar to AdaptSegNet, ADVENT [64] applies adversarial learning
and self-training on the entropy maps of the output space. DACS [59] is an easy-to-apply
method which is incorporated by several subsequent UDA methods, combining input space
cross domain image mixing and adaptive self-training. SePiCo [67] as one of the current
state-of-the-art methods proposes multiple contrastive losses along with a teacher-student
framework to align the source and target domains. DAFormer [21] was the first work using
a vision transformer backbone for UDA and applied self-training, rare class sampling and an
ImageNet feature distance loss to preserve ImageNet knowledge. We include both the initial
DAFormer method and its follow-up approach MIC [24] with HRDA [22].

3.2 UDA Architectures
Encoder & Initialization For the encoder choice, we follow recent domain generalization
approaches [26, 66] and employ the EVA02-CLIP-L-14 vision encoder [57] which has shown
strong generalization capabilities for segmentation. EVA02-CLIP [57] relies on a sequence
of CLIP and masked image modeling pre-training. Note that we only use the vision encoder
of the pre-training and refer to it as EVA02-L. Hümmer et al. [26] demonstrated the strong
generalization capabilities of the EVA02-CLIP encoder which makes it a natural candidate
for our study. Both Wei et al. [66] and Englert et al. [12] focused on DINOv2 [42] pre-
trained weights as their initialization. We are not using DINOv2 pre-training in our study
since the Cityscapes dataset, which is one of our main target domains, is used to sample
the pre-training dataset of DINOv2, reducing the significance of evaluations. Moreover, we
include the established UDA architectures DeepLabv2 with a ResNet-101 backbone [5] and
the DAFormer architecture with a MiT-B5 backbone [21] as it is common practice in UDA
and DG benchmarking [21, 23, 41, 67, 72].
Decoder We employ an ASPP-based decoder with different dilation rates from the DAFormer
architecture [21]. The ASPP-decoder receives multi-level features from different levels of
the encoder and performs up-sampling to obtain a common size of the feature maps in case
of a hierarchical encoder like a ResNet-101 or a MiT-B5. When using the EVA02-L encoder
this upsamling has no effect since the encoder is non-hierarchical.

3.3 Domain Shift Datasets
Most of the real-to-real domain shifts for benchmarking are a mixture of at least two differ-
ent domain shifts like Cityscapes→ACDC and Cityscapes→DarkZurich. Those benchmarks
contain a geolocation shift, a weather/condition shift and also have been recorded with differ-
ent cameras. In contrast, we aim to evaluate UDA methods in scenarios which exclusively
cover only a single, well defined domain shift, e.g. only a geolocation or only an adverse

Citation
Citation
{Englert, Piva, Kerssies, De~Geus, and Dubbelman} 2024

Citation
Citation
{Tsai, Hung, Schulter, Sohn, Yang, and Chandraker} 2018

Citation
Citation
{Vu, Jain, Bucher, Cord, and Perez} 2019

Citation
Citation
{Tranheden, Olsson, Pinto, and Svensson} 2021

Citation
Citation
{Xie, Li, Li, Liu, Huang, and Wang} 2023

Citation
Citation
{Hoyer, Dai, and Van~Gool} 2022{}

Citation
Citation
{Hoyer, Dai, Wang, and Van~Gool} 2023{}

Citation
Citation
{Tsai, Hung, Schulter, Sohn, Yang, and Chandraker} 2018

Citation
Citation
{Vu, Jain, Bucher, Cord, and Perez} 2019

Citation
Citation
{Tranheden, Olsson, Pinto, and Svensson} 2021

Citation
Citation
{Xie, Li, Li, Liu, Huang, and Wang} 2023

Citation
Citation
{Hoyer, Dai, and Van~Gool} 2022{}

Citation
Citation
{Hoyer, Dai, Wang, and Van~Gool} 2023{}

Citation
Citation
{Hoyer, Dai, and Van~Gool} 2022{}

Citation
Citation
{H{ü}mmer, Schwonberg, Zhong, Cao, Knoll, and Gottschalk} 2023

Citation
Citation
{Wei, Chen, Jin, Ma, Liu, Ling, Wang, Chen, and Zheng} 2024

Citation
Citation
{Sun, Fang, Wu, Wang, and Cao} 2023

Citation
Citation
{Sun, Fang, Wu, Wang, and Cao} 2023

Citation
Citation
{H{ü}mmer, Schwonberg, Zhong, Cao, Knoll, and Gottschalk} 2023

Citation
Citation
{Wei, Chen, Jin, Ma, Liu, Ling, Wang, Chen, and Zheng} 2024

Citation
Citation
{Englert, Piva, Kerssies, De~Geus, and Dubbelman} 2024

Citation
Citation
{Oquab, Darcet, Moutakanni, Vo, Szafraniec, Khalidov, Fernandez, Haziza, Massa, El-Nouby, et~al.} 2023

Citation
Citation
{Chen, Papandreou, Kokkinos, Murphy, and Yuille} 2017

Citation
Citation
{Hoyer, Dai, and Van~Gool} 2022{}

Citation
Citation
{Hoyer, Dai, and Van~Gool} 2022{}

Citation
Citation
{Hoyer, Dai, and Van~Gool} 2023{}

Citation
Citation
{Niemeijer, Schwonberg, Term{ö}hlen, Schmidt, and Fingscheidt} 2024

Citation
Citation
{Xie, Li, Li, Liu, Huang, and Wang} 2023

Citation
Citation
{Zhang, Zhang, Zhang, Chen, Wang, and Wen} 2021{}

Citation
Citation
{Hoyer, Dai, and Van~Gool} 2022{}



SCHWONBERG, WERNER ET AL.: STUDY ON UNSUPERVISED DOMAIN ADAPTATION 5

weather condition shift. The available datasets for such an evaluation are limited. To the best
of our knowledge only the ACDC [50] and the DarkZurich [49] datasets offer a well-defined
single domain shift with 1:1 scene correspondences. DarkZurich is not included in our ex-
periments because the pure day-to-nighttime shift is already contained in ACDC. Diverse
datasets like BDD100K [69] or IDD [62] do not contain the required metadata which enable
a pure domain shift evaluation. Since ACDC offers direct scene correspondences between
normal daytime weather and night, snow, fog and rain conditions, we chose the clean →
adverse weather condition domain shift and the ACDC dataset for evaluation. We refer to
the normal weather daytime images as DACDC

normal and the adverse weather domains as DACDC
snow ,

DACDC
fog etc. while the official train, validation and test set with all subdomains are denoted

as DACDC
train , DACDC

val and DACDC
test .

Next to this pure shift of the ACDC dataset we follow common practice in the UDA
and DG field [14, 21, 41, 60, 66] and employ the GTA5 [46] and the SYNTHIA [47](SYN)
dataset as the synthetic source domains with 24966 and 9400 images, respectively. As the
real-world domain we utilize Cityscapes [9] (CS), Mapillary Vistas [40] and BDD100K [69]
with 2975/500, 18000/2000, 7000/1000 train/validation images respectively. We denote the
respective datasets with a subscript as e.g. DCS

train or DCS
val . All values of this study are reported

on the respective validation datasets. For the DG evaluation only the validation sets of the
corresponding domains are used. The ACDC dataset [50] which is both used as source and
target domain contains 1000 images in each sub-domain from which 400 are training, 100
validation and 500 are test images. For half of them reference images under normal weather
conditions are available and were used for our new clean ACDC domain shift evaluation.

3.4 Experimental Settings

Implementation Details All experiments are based on the open source framework MMSeg-
mentation [8] and were conducted on a single A100 GPU with 80GB memory. The crop res-
olution for all experiments was fixed to 512×512 except for MIC [24], where a 1024×1024
resolution was used. The number of training iterations was set to 40k as common practice
and a batch size of four was used. For ADVENT and AdaptSegNet with a ResNet-101 back-
bone the SGD optimizer with a learning rate of 2.5e− 03 was used. In all other cases, the
AdamW [35] optimizer was selected in line with previous approaches [21, 26, 66]. For the
MiT-B5 backbone a learning rate of 6e− 05 and for the EVA02-L encoder of 1e− 05 was
used. Hyperparameters specific to the respective UDA methods were set as given by the
authors without change.
Metric As the evaluation metric we use the mean intersection over union (mIoU) averaged
across 19 classes which are shared among all synthetic and real datasets. Only for SYNTHIA
the mIoU across 13 classes is reported as common standard in UDA [55, 64, 67, 72].

4 Results

In this section, we show the results and start with the evaluation of the UDA performance
with vision-language pre-training followed by the domain generalization evaluation. All
results obtained with the vision-language pre-trained encoder EVA-02-CLIP will be high-
lighted with this green color.
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4.1 UDA with vision-language pre-training
We equipped four of the selected UDA methods with the vision-language pre-trained EVA02-
L encoder and compared it to the current two standard architectures ResNet-101 and MiT-B5,
both initialized with ImageNet pre-trained weights. We could not include the combination
of MIC and EVA02-CLIP in our study, but future work should investigate this combination.

GTA5→Cityscapes

Architecture UDA Method (in % mIoU)
Encoder Decoder AdaptSegNet [60] ADVENT [64] DACS [59] DAFormer [21] Src. Only Oracle

Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.

ResNet-101 DeepLabV2 44.0 60.4 43.4 59.6 55.3 76.0 57.9 79.5 36.0 72.8
MiT-B5 DAFormer 47.5 60.8 47.1 60.3 60.3 77.2 67.6 86.6 47.6 78.1
EVA02-L DAFormer 59.5 73.1 59.2 72.7 70.3 86.4 68.0 83.5 60.5 81.4

Table 1: UDA performance on the GTA5 → Cityscapes domain shift using different model
architectures. "Source only" denotes training on DGTA5, without any UDA methods, and
"Oracle" training on DCS

train. "Abs." refers to the absolute mIoU on the DCS
val dataset whereas

"Rel." denotes the performance in % relative to the oracle performance.

Results for the three model architectures on the common synthetic-to-real domain shift
GTA5→ Cityscapes are presented in Table 1. We observe that equipping the simple DACS [59]
method with the EVA02-L backbone causes a performance gain on Cityscapes of 10.0%
mIoU compared to the standard MiT-B5 encoder and also significantly raises performance
relative to the oracle performance (supervised training on DCS

train) from 77.2% to 86.4%. We
reason that similar to previous works [2, 26, 66] the vision-language pre-training provides a
stronger backbone which better adapts to the target domain. However, the DAFormer [21]
approach does not benefit from the EVA02-L backbone and the performance remains at a
level similar to that for the MiT-B5 backbone. This may be caused by the ImageNet fea-
ture distance (FD) loss which is designed to preserve the ImageNet pre-trained knowledge
by minimizing the feature distance between the ImageNet and the synthetic object classes.
We analyze the feature distance loss of the DAFormer [21] training as plotted in Figure 1.
The FD-loss is 5-10× higher for the EVA02-L backbone than for the MiT-B5 backbone and
shows a different behavior at the beginning. This is reasonable since the loss is based on the
ImageNet classes which do not align with the vision-language pre-trained EVA02-L back-
bone. The FD-loss is part of DAFormer [21], HRDA [22] and MIC [24] and provides a
performance increase of 3.5% mIoU according to the original paper [21] but makes those
methods hard to transfer to backbones which are not initialized with ImageNet pre-trained
weights. The UDA methods AdaptSegNet [60] and ADVENT [64] do not yield further gains
to the source only performance with the EVA02-L backbone. These results indicate that the
gain of a new backbone depends on the UDA method.

In Table 2 we compare the performance of DACS [59] and DAFormer [21] with the
newly employed EVA02-L backbone to the published state-of-the-art performances of other
approaches using a ResNet-101 and MiT-B5 backbone. We observe that the performance
with the DACS method performs similar to recent works like SePiCo [67] for both GTA5 and
SYNTHIA as the source domain. However, compared to MIC [24] the performance is less
which may be also caused by the lower resolution. Notably, the performance of DAFormer
[21] reduces for SYNTHIA→Cityscapes with the EVA02-L backbone but increases signif-
icantly for Cityscapes→ACDC. We further evaluated on a pure adverse weather domain
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Figure 1: Feature Distance Loss over the
40k training iterations of the DAFormer [21]
adaptation with three different backbones.

Encoder Method GTA5 → CS SYN → CS CS → ACDC

ResNet-101

AdaptSegNet [60] 42.4 46.7 33.4*
ADVENT [64] 45.5 48.0 32.7*

DACS [59] 52.1 54.8 -
DAFormer [21] 56.0 - -

SePiCo [67] 61.0 66.5 -
HRDA [22] 63.0 69.2 57.6*
MIC [24] 64.2 70.7 60.4*

MiT-B5

DAFormer [21] 68.3 67.4 55.4*
SePiCo [67] 70.3 71.4 59.1*
HRDA [22] 73.8 72.4 68.0*
MIC [24] 75.8 74.0 70.4*

DACS [59] 70.3 72.3 72.0EVA02-L DAFormer [21] 68.0 64.7 68.0

Table 2: Comparison with state-of-the-art
UDA methods. * marks the performance on
the ACDC test set DACDC

test . All values taken
from respective papers except EVA02-L.

shift, using the ACDC [50] reference images under normal weather conditions DACDC
normal and

their counterparts taken under adverse weather conditions e.g. DACDC
fog etc. As shown in

Table 3 we both adapted the model solely to the respective sub-domains and also to DACDC
train

which contains all sub-domains. First, we can see that the ranking of the different UDA
methods differs to the ranking on the GTA5→Cityscapes benchmark. Both AdaptSegNet
[60] and ADVENT [64] perform better with the EVA02-L encoder on the ACDC shift than
DAFormer. This may be related to the FD-loss of DAFormer. In contrast, the state-of-the-art
UDA method MIC [24] with the MiT-B5 backbone also shows the best performance on the
ACDC shifts, mostly with a significant margin of up to 8.6% mIoU on the rain dataset and
5.8% difference for the mean. For certain cases we observe that UDA methods which per-
form better on the synthetic-to-real benchmark may perform worse on this benchmark. The
DACS method with the EVA02-L backbone performs 5.6% mIoU worse on the synthetic-to-
real benchmark than MIC while being better by 5.0% in the mean across the adverse weather
conditions. However, the gain over the source only performance with the EVA02-L encoder

Target Domain DT DT

Enc. UDA Method GTA5→CS DACDC
fog DACDC

rain DACDC
snow DACDC

night mean DACDC
train

R
es

N
et

-1
01

Source Only 36.0 65.2 51.9 52.8 32.4 50.6 50.0
AdaptSegNet [60] 44.0 64.4 55.6 54.5 35.8 52.6 51.6
ADVENT [64] 43.4 64.1 53.0 54.1 34.1 51.3 52.2
DACS [59] 55.3 68.0 57.8 59.4 37.8 55.7 55.6
DAFormer [21] 57.9 68.2 54.4 58.5 38.5 54.9 56.6

M
iT

-B
5 Source Only 47.6 70.9 63.6 61.4 36.4 58.1 59.2

DAFormer [21] 67.6 73.5 59.2 64.5 47.1 61.1 64.2
SePiCo [67] 67.3 76.7 62.7 63.7 47.6 62.7 66.2
MIC [24] 75.9 79.6 71.3 69.1 53.5 68.4 72.0

Source Only 60.5 81.4 75.6 74.0 59.0 72.5 74.1
AdaptSegNet [60] 59.5 81.2 75.8 74.3 54.7 71.5 72.2
ADVENT [64] 59.2 80.9 75.5 69.9 54.0 70.1 73.1
DACS [59] 70.3 82.6 75.6 77.7 57.6 73.4 75.6E

VA
02

-L

DAFormer [21] 68.0 78.3 70.4 74.2 53.9 69.2 70.3

Table 3: UDA performance from DACDC
normal to DACDC

fog , DACDC
rain , DACDC

snow and DACDC
night . The

values for GTA5 → Cityscapes are given for comparison.

on the pure ACDC shift is limited and only DACS [59] provides a minor improvement. That
shows that different UDA methods perform differently for different shifts and the 5.0% gap
to the performance of MIC [24] is mainly attributed to the pre-training of the encoder. In line
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with the results from [50], we observe that certain methods even show worse performances
than a source-only trained model for certain domains. DAFormer [21] with MiT-B5 adapted
to the rain images reaches a 4.4% mIoU lower performance. Also ADVENT [64] and Adapt-
SegNet [60] with a ResNet-101 encoder slightly reduce the performance on the fog domain.
With the EVA02-L backbone all UDA methods except DACS [59] reach a lower performance
in average and the DAFormer [21] performance drops by 3.3% mIoU compared to source
only. While this may be related to the FD-loss also AdaptSegNet [60] and ADVENT [64]
undergo a clear performance drop of up to 2.4% mIoU in average. The adaptation to DACDC

train
mostly leads to higher performance compared to the mean of adapting to single sub-domains
especially for the MiT-B5 backbone, e.g. a gain of 3.6% mIoU for MIC [24], and EVA02-
L. For the ResNet-101 backbone the performance is mostly similar or even smaller. This
might be caused by the different abilities of the vision transformer backbone who can utilize
the larger amount of target data more effectively and benefit from the larger diversity of the
target domain.

4.2 Domain generalization of UDA methods
The domain generalization performance of UDA approaches to entirely unseen domains is
rarely evaluated but highly relevant because the adaptation to e.g. a certain real target do-
main should intuitively also improve the generalization to other unseen target domains. For
this reason, we evaluate the domain generalization performance across different backbones
following the same protocol as pure DG approaches [14, 26, 41] and compare it with state-
of-the-art DG approaches similar to [43]. The results are shown in Table 4. Combining
a simple UDA method like DACS [59] with EVA02-L improves the DG performance by
25.2% over the ResNet-101 and by 13.7% mIoU over the MiT-B5 backbone which high-
lights the strong generalization capabilities of vision-language pre-trained backbones. It
also further improves DG performance compared to pure domain generalization methods
and outperforms VLTSeg [26] by 2.1% mIoU in average across Mapillary Vistas, BDD100K
and ACDC. That confirms the observation from Piva et al. [43] that UDA methods can pro-
vide a better generalization than DG methods. Intuitively, this can be expected since the
adaptation to real images should also increase the performance on other unseen real do-
mains since there are basic patterns which can be learned from the unlabeled real domain.
The observation for the MiT-B5 backbone is similar. Recent DG methods perform similarly
or outperform the generalization of several UDA methods with this backbone but cannot
compete with the recent UDA approach MIC [24]. DIDEX [41] as a recent DG method
outperforms both DACS [59] and DAFormer [21] by 4.9% and 3.7% mIoU in the DG mean
respectively. However, MIC [24] performs 5.4% mIoU better in the DG mean. In contrast,
for the ResNet-101 backbone, CLOUDS [2] outperforms DAFormer with its generalization
by a large margin of 7.7% and 10.6% on BDD100K and Mapillary respectively. This is
not a contradiction to the results of Piva et al. [43] since DG methods made a significant
progress recently by e.g. using foundation models like CLOUDS [2] which enabled them to
surpass the generalization of UDA methods. Notably, we observe that the UDA target do-
main performance on Cityscapes does not necessarily translate into a similar generalization
performance. While we can see a clear performance gain of DAFormer over DACS with the
MiT-B5 backbone on Cityscapes of over 7% mIoU the performance gap is reduced to 1.2%
mIoU on the DG mean. For other backbones we make similar observations, like a Cityscapes
ResNet-101 performance difference of 11.3% mIoU between AdaptSegNet and DACS but
only 3.4% mIoU difference on the DG mean. This may be related to a method-dependent
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DS =DGTA5 DT =DCS
train Domain Generalization

Enc. UDA/DG Method DCS
val DMV

val DBDD
val DACDC

val DG mean

FAmix [14] 49.5 52.0 46.4 36.1 44.8
CLOUDS [2] 55.7 59.0 49.3 - -
VLTSeg [26] 51.2 52.2 43.3 - -

AdaptSegNet [60] 44.0 40.8 40.0 27.1 36.0
ADVENT [64] 43.4 40.4 40.2 27.5 36.0

DACS [59] 55.3 46.3 39.4 32.4 39.4R
es

N
et

-1
01

DAFormer [21] 57.9 48.4 41.6 35.0 41.7

DGinStyle [27] 58.6 62.5 52.3 46.1 53.6
HRDA [23] 57.4 61.2 49.1 44.0 51.4

CLOUDS [2] 58.1 62.3 53.8 - -
DIDEX [41] 62.0 63.0 54.3 50.1 55.8

AdaptSegNet [60] 47.5 48.4 44.2 34.7 42.4
ADVENT [64] 47.1 47.6 44.8 34.8 42.4

DACS [59] 60.3 58.0 51.3 43.5 50.9
DAFormer [21] 67.6 58.6 52.2 45.5 52.1

SePiCo [67] 67.3 60.0 52.3 47.8 53.4

M
iT

-B
5

MIC [24] 75.9 69.3 57.6 56.8 61.2

VLTSeg [26] 65.6 66.5 58.4 62.6 62.5
Rein [66] 65.3 66.1 60.4 - -

AdaptSegNet [60] 59.5 63.1 56.0 54.3 57.8
ADVENT [64] 59.2 62.8 57.4 54.9 58.4

DACS [59] 70.3 68.2 61.2 64.4 64.6E
VA

02
-L

DAFormer [21] 68.0 64.8 58.1 61.6 61.5

Table 4: Domain generalization (DG) and UDA performances on various real datasets of
GTA5→Cityscapes UDA models and DG methods. The DG mean is calculated across Map-
illary, BDD and ACDC. gray marks domain generalization methods which were trained on
GTA5 without any adaptation. For these, values are taken from the respective publications.

overfitting of the UDA methods to the target domain which hampers the generalization of
UDA methods.

We also evaluated the DG performance on the pure adverse weather shift of the ACDC
dataset. We can observe from Table 5 that similar to the synthetic-to-real shift a higher
performance in the target domain not necessarily causes a higher domain generalization per-
formance. DACS [59] with ResNet-101 performs 4% mIoU better on the adverse ACDC
weather domains compared to AdaptSegNet [60] but 0.3% worse on the DG mean. SePiCo [67]
has a 2% mIoU higher performance on the target domain than DAFormer [21] but performs
slightly worse in the DG mean. MIC [24] shows its strong generalization capabilities also
in this pure real-to-real benchmark and outperforms DAFormer by a clear margin of 5.8%
mIoU. Surprisingly, all four methods AdaptSegNet [60], ADVENT [64], DACS [59] and
DAFormer [21] with the EVA02-L backbone outperform MIC not only for the generaliza-
tion performance by up to 5.1% mIoU but also on the target domain by up to 3.6% mIoU.
This may be caused by the smaller target dataset compared to the adaptation to Cityscapes
which increases the influence of the pre-trained representations of the EVA02-L backbone. It
also shows how different UDA methods can perform on different domain shifts with different
encoders since the DG ranking for GTA5→Cityscapes is different.

4.3 Discussion
We did not apply any changes to the UDA methods like e.g. changing hyperparameters, a
different resolution or disabling the FD-loss. This may have improved the performance of
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DS =DACDC
normal DT =DACDC

train Domain Generalization

Encoder UDA Method DACDC
val DCS

val DMV
val DBDD

val DG mean

ResNet-101

AdaptSegNet [60] 51.6 52.5 52.0 42.5 49.0
ADVENT [64] 52.2 53.1 51.6 42.9 49.2
DACS [59] 55.6 55.0 48.9 42.1 48.7
DAFormer [21] 56.6 56.3 51.4 44.0 50.5

MiT-B5
DAFormer [21] 64.2 65.5 59.1 49.0 57.9
SePiCo [67] 66.2 64.7 58.6 49.7 57.7
MIC [24] 72.0 70.0 64.7 56.4 63.7
AdaptSegNet [60] 72.2 75.4 68.5 61.6 68.5
ADVENT [64] 73.1 75.3 68.2 61.0 68.2
DACS [59] 75.6 75.8 68.9 61.6 68.8EVA02-L

DAFormer [21] 70.3 72.3 66.5 55.7 64.8

Table 5: Domain generalization and UDA performances for adaptation from ACDC clear
weather reference images DACDC

normal to all adverse ACDC conditions. DG Mean is calculated
over Mapillary, BDD100K and Cityscapes.

the UDA methods. However, in contrast to Englert et al. [12] our aim was to evaluate the
UDA methods without any changes to assess how well they transfer to a different domain
shift and a new encoder architecture with vision-language initialization. Modifying existing
UDA methods may not be trivial because removing or adapting certain components will
likely influence the performance and behavior.

5 Conclusion

We equipped existing UDA methods with a state-of-the-art vision-language pre-trained en-
coder and studied the target performance and the generalization to unseen domains. The
results demonstrate the potential of vision-language pre-training for UDA by reaching a com-
petitive target domain performance with a simple UDA method. They also indicate strong
generalization capabilities for both established benchmarks and a pure → adverse weather
condition domain shift based on ACDC. We show that recent state-of-the-art UDA methods
rely on a loss function which cannot be directly used for the vision-language pre-trained
encoder. Our results indicate that similar to domain generalization new UDA methods are
required to fully exploit the potential of vision-language models for UDA. Our domain gen-
eralization evaluations showed two novel findings. First, the target domain performance is
not necessarily an indicator for their generalization capabilities and second, that recent, pure
DG methods are performing in parts similarly or even superior than UDA methods.
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