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Abstract
Dealing with atypical traffic scenarios remains a challenging task in autonomous driv-

ing. However, most anomaly detection approaches cannot be trained on raw sensor data
but require exposure to outlier data and powerful semantic segmentation models trained
in a supervised fashion. This limits the representation of normality to labeled data, which
does not scale well. In this work, we revisit unsupervised anomaly detection and present
UMAD, leveraging generative world models and unsupervised image segmentation. Our
method outperforms state-of-the-art unsupervised anomaly detection.

1 Introduction
Although great achievements have been made in autonomous driving, reacting to the un-
known remains a significant challenge [6, 24]. Heidecker et al. [24] categorize anomalies
into the sensor, content, and temporal layer: Anomalies in the sensor layer are related to
sensory abnormalities, anomalies in the content layer regard abnormalities in single obser-
vations, such as atypical objects, and the temporal layer considers behavioral anomalies in
the context of multiple frames.

Classically, anomaly detection is based on highly specialized methods, focusing on the
content layer [14, 39, 40]. However, a perpendicular line of work tries to learn a more gen-
eral understanding of the world. Generative world models have shown promising results in
autonomous driving [9, 21, 26, 27, 53]. They embed sensory data into latent states, recon-
struct observations based on those, and predict action-conditioned future states. For anomaly
detection, however, they have not been utilized yet [7]. In this paper, we address to which
extent world models and unsupervised image segmentation can be used for anomaly detec-
tion in autonomous driving and, contrary to many prior anomaly detection models in this
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domain [5, 16, 22], propose an unsupervised anomaly detection method which does not rely
on outliers in the training data. We present Unsupervised Mask-Level Anomaly Detection
for Autonomous Driving (UMAD), leveraging generative world models and segmentation
models. In the experimental setup for this paper, UMAD utilizes the multimodal world
model MUVO [9], which was trained on data from the CARLA simulator [17]. For refined
localization of anomalies, UMAD leverages masks which are generated with the unsuper-
vised image segmentation approach U2Seg [41]. We also provide experimental results for
the zero-shot segmentation model SAM [30]. UMAD improves upon the current SotA by
achieving an FPR95 reduction of 36.90% on the AnoVox benchmark, setting a new baseline
in unsupervised anomaly detection for autonomous driving.

2 Related Work
Recent trends in anomaly detection have shown that utilizing semantic segmentation mod-
els and including Out-of-Distribution (OOD) data during training achieves close-to-perfect
benchmark results [5, 13, 14]. However, we argue that normality should be learned on raw
sensory data and thus in an unsupervised fashion. Including anomalies during training poses
the risk of missing anomalies in a never-ending open-world setting, and utilizing supervised
semantic segmentation [2, 16, 39], bounding boxes [18, 36], or language [47] limits the def-
inition of normality to labeled training data, which does not scale well. Here, we revisit the
field of unsupervised anomaly detection and explore mask-level approaches.

Unsupervised Anomaly Detection. While modeling uncertainty of models on computer
vision tasks in an unsupervised way has already been addressed [19, 20, 23, 29], these mod-
els were not evaluated on anomaly detection benchmarks, but regarding their eligibility to
model uncertainty of general computer vision tasks. Since anomaly detection is not only
relevant in autonomous driving, there are also unsupervised anomaly detection methods in
other domains. For example, Zhou et al. [55] have developed an anomaly detection model
on retinal images, e.g., for detecting retinal diseases or lesions, and Wang et al. [50] have
evaluated their anomaly detection model on the MVTec AD dataset [4] for industrial inspec-
tion. Similarly, self-supervised detection methods exist in such a setting [28, 46, 52]. Others
used the MNIST [3, 25, 32] or CIFAR [25, 31, 49] datasets which contain images of only
small sizes for their evaluation.

In anomaly detection in the surveillance setting, there is also a trend towards supervision
requiring labeled training data [18, 36]. However, there are two recent unsupervised meth-
ods. Abati et al. [1] have developed a novelty detection model that uses a deep autoencoder
in combination with an autoregressive parametric density estimator, using real world data
with the UCSD Ped2 [12] and the ShanghaiTech [38] datasets. Similar to Abati et al. [1],
Park et al. [43] trained MNAD on datasets with images from the real world [12, 37, 38],
which partly contain semantic classes that can also be found in autonomous driving, e.g.,
pedestrians, bicycles, and cars. They compare the reconstruction of an autoencoder to the
initial input image by using the L2 distance and the peak signal-to-noise ratio (PSNR) in
order to calculate abnormality scores.

Mask-Level Anomaly Detection. A trend to improve anomaly detection methods is to
use learned masks to generate instance-level detections. For detecting masks of anomalous
instances in an image, the zero-shot Segment Anything Model (SAM) by Kirillov et al. [30]
was quickly used for the localization of anomalies in images. Here, we give an overview of
recent methods using segmentations during post-processing, as shown in Table 1.
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Method Supervision Temporal Multimodal OOD Data Extra Networks

SAA+ [11] ✓ — ✓ — ✓ [30, 34]
UGains [40] ✓ — — — ✓ [30, 39]
S2M [54] ✓ — — ✓ ✓ [30, 35, 45]
ClipSAM [33] ✓ — ✓ — ✓ [30, 44]

UMAD — ✓ ✓ — ✓ [9, 41]

Table 1: Overview of mask-level anomaly detection methods. The table shows meth-
ods that use segmentation masks for post-processing. Supervision refers to the necessity of
labeled data during training. Temporality denotes the ability of a method to incorporate tem-
poral context. Multimodal models utilize further modalities, such as text or lidar data, for
anomaly detection. OOD data shows whether outliers were needed during training. Finally,
all external networks are shown.

Segment Any Anomaly (SAA+) [11] utilizes pre-trained foundation models for mask-
level anomaly detection without further training. They first employ Grounding DINO [34],
which provides bounding boxes for regions defined by a prompt. To refine those box regions
into masks, they utilize SAM [30]. Similarly, S2M [54] proposes bounding boxes that in-
clude anomalies, followed by SAM. Similar to many other anomaly detection models, they
use outlier exposure during training. UGainS [40] uses the existing anomaly detection model
Rejected by All (RbA) [39] in combination with SAM for localizing anomalous instances
in the observation. Finally, ClipSAM [33] utilizes CLIP text and image encoders [44] to
generate an initial anomaly mask and refine it with SAM.

Research Gap. In autonomous driving, recent trends have moved away from unsu-
pervised anomaly detection [14, 16, 22], and benchmarks are saturated with near-perfect
results [5, 13, 14]. While unsupervised anomaly detection methods from other domain
methods are available, to the best of our knowledge, there exists no unsupervised anomaly
detection model for autonomous driving. Similarly, the recent trend of mask-level anomaly
detection methods works in a supervised manner. Thus, we see a clear need to revisit the
field of unsupervised anomaly detection in order to use vast amounts of unlabeled data for
training, as typically available in autonomous driving.

3 Method
As we have shown in Section 2 and Table 1, UMAD is the first unsupervised mask-level
anomaly detection method in the context of autonomous driving, which means that UMAD
can be trained purely based on unlabeled sensor recordings, that do not have to contain
abnormal driving situations. As shown in Figure 1, first, UMAD takes multimodal data
from several different sensors such as a camera and lidar sensor as input for a world model
to reconstruct and predict future frames. Furthermore, semantic masks are derived from
camera data. More details on the encoder-decoder architecture of the utilized world model
MUVO can be found in [9].

For visual differences, a reconstruction of the current observation is compared to the
accompanying sensor data frame based on multiple methodologies. For temporal differences,
only multiple future predictions from the world model are compared. After a weighted fusion
of the pixel-wise scores, the resulting anomaly map is refined based on the generated masks.
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Figure 1: Overview of UMAD. First, multimodal sensor data is fed into a world model to
reconstruct and predict frames, and semantic masks are derived from camera data. Visual
Differences are used to compare a reconstruction of the current observation to the accom-
panying sensor data frame. The Temporal Difference, on the contrary, solely compares
multiple future predictions from the world model. The pixel-wise scores are then fused and
the resulting anomaly map is refined based on the generated masks.

UMAD first uses the world model to generate a reconstruction of the current frame. This
reconstruction is then compared to the ground truth sensory data from the camera sensor of
the autonomous vehicle. While UMAD only uses camera data, the world model is grounded
and conditioned by further sensor modalities, planned actions, and the provided route. To
compute visual differences, we employ several image comparison methods. The absolute
error ∆ABS and mean squared error ∆MSE are calculated for each pixel individually and mea-
sure the differences in the r,g,b color channels of the reconstruction and the sensory image.
In Eq. 1 and 2, z̃x denotes a ground truth value and ẑx̂ a predicted value.

∆ABS =
|r̃x − r̂x̂|+ |g̃x − ĝx̂|+ |b̃x − b̂x̂|

3
(1)

∆MSE =
(r̃x − r̂x̂)

2 +(g̃x − ĝx̂)
2 +(b̃x − b̂x̂)

2

3
(2)

Contrary to this, the difference based on the Structural Similarity Index ∆SSIM [51] com-
pares two images based on their structure by utilizing batches of multiple proximate pixels.
We compare sliding window patches between the ground truth x and the prediction x̂. In
Eq. 3, µ denotes means and σ (co)variances. The constants κ1 and κ2 are added for numeri-
cal stability [48, 51].

∆SSIM =
(2µxµx̂ +κ1)(2σxx̂ +κ2)

(µ2
x +µ2

x̂ +κ1)(σ2
x +σ2

x̂ +κ2)
(3)

Finally, perceptual difference ∆PD [16] is an image comparison method that leverages a
pre-trained deep convolutional network to extract features and compare two images pixel-
wise based on their content. Similar to Di Biase et al. [16], we utilize weights which are
pre-trained on the ImageNet [15] dataset. In Eq. 4, F i denotes the i-th layer of a VGG
network, and M and N refer to elements and layers, respectively.
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∆PD =
N

∑
i=1

1
Mi

∥F i(x)−F i(x̂)∥1 (4)

For temporal differences ∆T D, we compare multiple predictions of the world model to
each other. The temporal difference is calculated by comparing prior predictions for the
current time step to each other. For this, the mean of the absolute errors between n past
predictions ẑt−i for time t and the current reconstruction ẑt is computed, as shown in Eq. 5.

∆T D =
1
n

(
n

∑
i=1

∆ABS (ẑt−i, ẑt)

)
(5)

All difference maps are then normalized and can be fused by assigning weights wi ∈ [0,1]
to each of them. While the resulting anomaly map assigns anomaly scores to each pixel in the
image, it does not classify instances in an observation as anomalous. For this, we refine the
scores with instance masks to generate mask-level anomaly scores. By utilizing an image
segmentation approach for mask generation, UMAD iterates through each predicted mask
and calculates average instance-wise anomaly scores. More details can be found in [42].

4 Experiments
While there are common anomaly benchmarks in the context of autonomous driving, such
as Fishyscapes [5] or SegmentMeIfYouCan [13], they are limited to camera data and do
not contain data on actions, e.g., steering wheel angle, or additional sensory data. Among
existing anomaly detection benchmarks [8], the recent AnoVox anomaly detection bench-
mark [10] is the only benchmark containing multimodal sensory data and action data of the
ego-vehicle.

Benchmark. The AnoVox benchmark [10] contains both static and temporal behavioral
anomalies. Here, we only generate a subset with static anomalies, i.e., unexpected objects
on the road. It includes images, lidar point clouds, routemaps, panoptic segmentation maps
and was created using the CARLA simulator. For evaluation, we generated 16 abnormal
driving scenarios with 200 frames each using the provided framework for generating a small-
size dataset with anomalies comparable to current benchmarks. The scenarios take place
in different towns under different weather conditions and contain static anomalies, e.g., an
object or an animal standing on the street, as depicted in Figure 2. The dataloader for the
world model samples each 10th frame, i.e., every second.

Experimental Setup. UMAD requires both an unsupervised world model and an un-
supervised segmentation model. Among all published world models [9, 21, 26, 27, 53],
MUVO was the only one with code and weights publicly available during time of writing,
thus we selected it for our experiments. MUVO is a multimodal world model that uses cam-
era and lidar data and is capable of reconstructing observations in both spaces. Available
MUVO weights were trained on a large dataset which was created using the CARLA sim-
ulator [17]. It was trained on different driving scenarios in different towns, under different
weather conditions, and at different times of the day. The training dataset of MUVO does
not contain anomalies and thus establishes the baseline for typical behavior in the context of
anomaly detection. Since AnoVox was also generated with CARLA, retraining MUVO for
our approach was therefore not necessary.
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For image segmentation, all prior works shown in Table 1 utilized the Segment Any-
thing Model [30]. However, SAM was trained in a supervised manner, limiting the use
of large-scale, unlabeled datasets as typically available in autonomous driving. Thus, we
opted for U2Seg for unsupervised image segmentation [41]. U2Seg is an unsupervised im-
age segmentation model that is capable of generating panoptic segmentation masks by using
self-supervised learning and clustering. It would have been beneficial to train U2Seg exclu-
sively on the target domain, but as it was trained on the entirety of ImageNet [15], we lacked
the necessary resources and used a provided checkpoint.

Figure 2: Exemplary Detections. The first columns show the input image and the cor-
responding ground truth. MUVO reconstructions are utilized to generate difference maps,
which are finally refined to mask-level maps. Masks are generated by the unsupervised seg-
mentation model U2Seg. The first two rows show positive cases, while the third row shows
a failure case.

Baseline. As described in Section 2, there are only two recent anomaly detection mod-
els that are trained in a fully unsupervised matter. While both models demonstrate similar
performances, Abati et al. [1] do only provide inference, but not training code for their ap-
proach. Thus, we decided to evaluate our approach against MNAD [43]. MNAD provides
code both for prediction and reconstruction tasks but focuses on frame-wise evaluations. We
were able to reproduce the experimental results of Park et al. [43].

For our evaluation, we trained MNAD on the dataset that was used to train MUVO but
sampled each 100th frame from it, resulting in 2,725 frames. This ensures that MNAD was
trained on images from the same towns, with the same driving conditions, and thus with the
same semantic structure as MUVO. The sampling was necessary to prevent overfitting, as
MUVO was trained on a much larger dataset. UCSD Ped2, however, which was originally
used by Park et al. [43], only contains 2,550 images. The data sampling thus allows a dataset
size which is comparable to the one used to train MNAD in the experimental setup by Park
et al. [43]. Following Park et al. [43], we trained for 60 epochs. Contrary to our approach,
MNAD only localizes anomalies as an intermediate step and uses additional metrics for their
final frame-wise score. Based on these intermediate reconstructions, we use the L2 distance
to compute pixel-wise anomaly scores.

5 Evaluation

For evaluating UMAD and MNAD, we computed the Average Precision (AP), the False Pos-
itive Rate at 95 % True Positive Rate (FPR95), and the Area under the Receiver Operating
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Characteristic curve (AUROC), as they are common metrics in anomaly detection bench-
marks for autonomous driving [5, 13]. All results can be found in Table 2.

Ablation Studies. In order to better understand our method, we perform a set of ablation
studies. First, next to utilizing U2Seg, we were interested in the possible performance gains
of using SAM [30] or ground truth masks. SAM is a zero-shot image segmentation model
that is also used by SotA anomaly detection models. While SAM was trained with labeled
data, it performs well in the context of zero-shot inference. On the other hand, we also
wanted to understand the effects of not refining our anomaly map with masks at all.

Second, rather than averaging all anomaly scores per mask, we were interested in whether
picking the maximum value, inspired by Liu et al. [36], impacts the performance. On a
similar note, we were also interested in picking only the mask with the highest anomaly
score, neglecting the rest.

Experimental Results. Here, we present our findings on the performance of UMAD
compared to the MNAD baseline, as well as our ablation studies. Since the visual differ-
ences and the temporal difference are normalized, they can be individually weighted and
combined in order to form an anomaly map. This process is done in the Weighted Fusion
Model. In the following, we also evaluate the impact of the single difference metrics and
their combinations.

Since MNAD does not use masks, we first compare the pixel-wise L2 distance of MNAD
to the similarly calculated squared error of our model on the raw pixel-wise output without
masks. The experimental results indicate that utilizing world models instead of autoencoders
is beneficial for anomaly detection in autonomous driving: With UMAD in the setting of us-
ing the squared error as visual difference, the AP is 7.03% and the FPR95 78.49%. The AP is
thus 10.36% higher and the FPR95 12.41% lower than in the evaluation of MNAD. Even bet-
ter results can be achieved when using the perceptual difference for visual difference: Here,
UMAD achieves by far the highest average precision, lowest FPR95, and highest AUROC in
the pixel-wise setup without masks: AP is 70.49% higher and FPR95 63.27% lower than in
the experimental results for MNAD. When using masks that are generated with the unsuper-
vised image segmentation model U2Seg and the perceptual difference as visual difference, it
is possible to achieve an AP that is 196.39% higher than the AP in the evaluation of MNAD,
indicating that using masks for anomaly detection is highly beneficial. Using a combination
of the mean squared error, the SSIM, the perceptual difference and the temporal difference,
the FPR95 is 36.90% lower than in the evaluation of MNAD.

When using the zero-shot image segmentation approach SAM, which is also used as
an image segmentation approach in prior anomaly detection models, it is possible to further-
more improve our experimental results. With the perceptual difference as visual difference in
the setup, AP in this setup is 18.93%, FPR95 is 52.77% smaller and AUROC 16.01% higher
than in the respective results for MNAD. To evaluate the full potential of utilizing masks
for anomaly detection, we furthermore evaluated UMAD with masks from a ground truth
instance segmentation map. This setup achieved by far the best experimental results, again
showing the huge potential of leveraging masks in anomaly detection: The best AP score
with this experimental setup is 29.90%, the best FPR95 is 16.93%, and the best AUROC is
83.18%.

In the prior experimental setups, the average anomaly score of the masks was used for
evaluation. Interestingly, we found that the perceptual difference is not suitable for anomaly
detection when assigning the maximum anomaly score to masks rather than their average
score. Generally, however, substituting the average anomaly score per instance with the
maximum score, did not achieve better results. Worst results are achieved when only con-

Citation
Citation
{Blum, Sarlin, Nieto, Siegwart, and Cadena} 2021

Citation
Citation
{Chan, Lis, Uhlemeyer, Blum, Honari, Siegwart, Fua, Salzmann, and Rottmann} 2021

Citation
Citation
{Kirillov, Mintun, Ravi, Mao, Rolland, Gustafson, Xiao, Whitehead, Berg, Lo, Doll{á}r, and Girshick} 2023

Citation
Citation
{Liu, Nie, Long, Zhang, and Li} 2021



8 D. BOGDOLL ET AL.: UMAD: UNSUPERVISED MASK-LEVEL ANOMALY DETECTION

w AB
S

w M
SE

w SS
IM

w
pe

r

w te
m

p

A
P
↑

FP
R 95

↓

A
U

RO
C
↑

A
P
↑

FP
R 95

↓

A
U

RO
C
↑

Ground truth SAM
1 0 0 0 0 17.68 35.56 65.23 13.72 50.58 65.16
0 1 0 0 0 19.05 38.92 63.61 13.77 52.22 64.93
0 0 1 0 0 19.77 21.26 79.03 11.43 46.79 68.26
0 0 0 1 0 29.90 16.93 83.18 18.93 42.32 71.88
0 0 0 0 1 11.41 52.70 49.15 7.11 69.26 47.72
0 1

3
1
3

1
3 0 27.50 17.81 82.47 17.11 44.01 70.83

1
3 0 1

3
1
3 0 26.21 18.16 82.07 16.02 44.55 70.88

1
3

1
3 0 1

3 0 25.52 20.67 79.73 17.11 43.83 71.74
1
3

1
3

1
3 0 0 18.85 22.88 77.73 12.85 46.44 70.20

0 1
4

1
4

1
4

1
4 25.28 18.53 81.83 14.30 45.18 69.85

1
4 0 1

4
1
4

1
4 24.34 19.39 81.27 14.74 44.87 69.95

1
4

1
4 0 1

4
1
4 22.28 21.43 79.05 16.15 45.28 70.88

1
4

1
4

1
4 0 1

4 17.25 24.15 76.92 12.60 48.12 68.42
1
4

1
4

1
4

1
4 0 23.47 19.04 81.34 15.55 44.35 71.12

1
5

1
5

1
5

1
5

1
5 22.38 19.71 80.74 14.52 45.02 70.21

U2Seg Max. Value
1 0 0 0 0 14.04 60.20 59.55 19.00 59.68 40.68
0 1 0 0 0 14.54 60.98 59.93 18.86 59.52 40.76
0 0 1 0 0 12.17 58.44 62.88 10.87 67.03 33.30
0 0 0 1 0 18.88 56.74 64.77 17.26 57.68 42.55
0 0 0 0 1 9.02 68.89 54.44 11.01 74.23 25.97
0 1

3
1
3

1
3 0 17.70 56.76 65.09 20.97 52.01 48.57

1
3 0 1

3
1
3 0 17.13 56.73 65.50 18.71 52.63 47.85

1
3

1
3 0 1

3 0 17.99 57.07 65.47 21.91 51.83 48.49
1
3

1
3

1
3 0 0 13.64 58.31 63.97 18.51 60.24 40.52

0 1
4

1
4

1
4

1
4 17.08 56.54 65.13 16.69 56.77 43.76

1
4 0 1

4
1
4

1
4 16.35 56.92 65.18 15.44 57.88 42.90

1
4

1
4 0 1

4
1
4 17.15 57.09 64.97 18.44 56.67 43.68

1
4

1
4

1
4 0 1

4 12.17 58.44 62.88 16.05 63.27 37.25
1
4

1
4

1
4

1
4 0 17.16 56.84 62.88 19.86 53.36 47.22

1
5

1
5

1
5

1
5

1
5 16.38 57.06 65.04 20.01 56.84 43.82

w AB
S

w M
SE

w SS
IM

w
pe

r

w te
m

p

A
P
↑

FP
R 95

↓

A
U

RO
C
↑

A
P
↑

FP
R 95

↓

A
U

RO
C
↑

No Mask Single Mask
1 0 0 0 0 6.80 78.19 60.19 5.04 93.57 50.54
0 1 0 0 0 7.03 78.49 60.68 5.04 93.57 50.53
0 0 1 0 0 4.72 50.87 73.02 5.83 92.83 51.12
0 0 0 1 0 10.86 32.91 79.51 10.40 88.49 53.26
0 0 0 0 1 4.09 73.37 53.05 5.06 93.57 50.59
0 1

3
1
3

1
3 0 9.51 37.37 53.05 12.66 86.31 54.48

1
3 0 1

3
1
3 0 9.29 38.99 78.70 8.88 89.93 52.59

1
3

1
3 0 1

3 0 9.42 42.34 76.24 8.83 89.94 52.54
1
3

1
3

1
3 0 0 6.93 52.40 72.32 5.05 93.56 50.64

0 1
4

1
4

1
4

1
4 8.29 39.37 77.51 8.88 89.93 52.57

1
4 0 1

4
1
4

1
4 8.14 40.26 77.17 10.37 88.48 53.35

1
4

1
4 0 1

4
1
4 8.50 44.02 75.05 7.30 91.39 51.79

1
4

1
4

1
4 0 1

4 6.16 53.28 71.14 4.30 94.29 50.26
1
4

1
4

1
4

1
4 0 8.83 40.07 77.62 8.83 89.93 52.57

1
5

1
5

1
5

1
5

1
5 8.11 41.12 76.69 8.07 90.66 52.18

MNAD [43] 6.37 89.61 61.96 — — —

Table 2: Evaluation Results. We show evaluation results for six settings of our model
and MNAD with best and second-best results highlighted. The experimental results for a
setup comprising a ground truth image segmentation map, segmentation maps generated
with U2Seg and SAM, a setup where the instance-wise maximum anomaly score is selected
instead of the average anomaly score, a setup without an image segmentation map, and a
setup where only the instance with the highest anomaly score is left in the anomaly map are
depicted. All evaluation metrics in %.
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sidering the instance with the highest anomaly score. We found that often not the anomalous
object, but a different object in the observation has the highest anomaly score. This then
results in completely ignoring the abnormal object.

6 Conclusion
In this work, we presented UMAD, the first fully unsupervised anomaly detection model
for autonomous driving which utilizes generative world models and is capable of combining
anomaly scores and image segmentation approaches for masked anomaly detection. We find
that utilizing world models in combination with image segmentation approaches is highly
beneficial for anomaly detection in autonomous driving. Furthermore, we demonstrate that
perceptual difference, compared to other approaches, is highly suitable for generating re-
construction errors in generative anomaly detection models. UMAD sets a new baseline in
unsupervised anomaly detection for autonomous driving by achieving a FPR95 reduction of
36.90% on the challenging AnoVox benchmark.

Limitations and Outlook. Since the reconstruction quality of the MUVO world model
was, under some circumstances, highly fluctuating and affecting the anomaly detection per-
formance, we are interested in evaluating a more recent world model [21] in the future. Also,
since we lacked the computational resources to train U2Seg on our target domain, a domain
shift exists. Once unsupervised segmentation models become less compute-intensive, we are
interested in ablating the effects of such a domain shift. Furthermore, the perceptual differ-
ence utilizes weights which are pre-trained on the ImageNet [15] dataset. Despite achieving
promising results using the perceptual difference as visual difference, we are interested in
evaluating whether further improvements can be achieved when the VGG network for the
perceptual difference is trained on the same dataset which is used to train the underlying
world model. Finally, we only performed experiments in a simulated environment. In the
future, we want to apply the approach to real-world driving scenarios.
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