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Abstract

For real-world applications, deep neural networks (DNNs) must recognize and adapt
to previously unseen inputs and changing environments. To achieve this, we propose a
novel method to augment DNNs with the capability to identify and incrementally learn
novel classes that were not present in their initial training set. Our approach uses anomaly
detection to retrieve out-of-distribution (OoD) samples as potential candidates for new
classes and uses k empty classes to learn these novel classes incrementally in an unsuper-
vised fashion. We introduce two loss functions, which 1) encourage the DNN to allocate
OoD samples to the new empty classes and 2) minimize the inner-class feature distance
between the newly formed classes. Unlike previous approaches that rely on labeled data
for each class, our model uses a single label for all OoD data and a precomputed distance
matrix to differentiate between them. Our experiments across image classification and
semantic segmentation tasks show our method’s ability to expand a DNN’s understanding
by several classes without requiring explicit ground truth labels.

1 Introduction
In a closed-world setting, where all possible classes are known during training, state-of-the-
art DNNs achieve impressive accuracy when trained in a supervised manner. However, a sig-
nificant challenge arises in practical scenarios when the DNN encounters concepts not seen
during training. Current DNNs offer no performance guarantees on inputs outside of their
training distribution [27]. As a result, open world recognition [2] has emerged as a practically
more relevant problem formulation. Open-world recognition extends a DNN’s capabilities
by integrating out-of-distribution (OoD) detection [1] with class-incremental learning [5],
where the model is continuously updated with new classes. Despite progress in this area, a
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Figure 1: Comparison of two segmentation DNNs which were extended by the classes hu-
man and car. While the segmentation masks are similar for the initial classes, the humans are
much better segmented by the DNN, which was extended by our empty classes approach.
The ground truth contours of the novel classes are highlighted in green.

predominant reliance on supervised learning methods persists. Typically, these approaches
necessitate human annotation for updating models with new classes, which can be impracti-
cal in real-world settings.

The reliance on supervised learning is not the only challenge facing open-world recogni-
tion. To bridge the gap between current research and the practical implementation of DNNs
in complex real-world scenarios, such as perception systems for automated driving, the field
must evolve to tackle dense prediction tasks like semantic segmentation. Unlike image clas-
sification, which is predominantly object-centric and categorizes entire images as either in-
distribution or OoD, semantic segmentation involves more complexity, dealing with scenes
where only specific regions may be OoD. This necessitates careful consideration of OoD
localization, retrieval of semantically meaningful features, and computational efficiency.

This work presents a novel unsupervised approach to extend DNNs with empty classes
for identifying new concepts. Initially trained on known classes, the model incorporates an
out-of-distribution (OoD) detection mechanism to separate known from unknown categories.
We add auxiliary neurons to the DNN output layer to accommodate inputs with potentially
unrecognized classes, forming empty classes for these new categories. We introduce two
loss functions to enhance the model’s ability to categorize similar OoD data, enabling dy-
namic adjustment of feature representations to differentiate between established and newly
discovered classes effectively.

We evaluate our method on the task of semantic segmentation of street scenes using the
Cityscapes dataset [10]. Our approach outperforms the current state-of-the-art in unsuper-
vised class-incremental continual learning [37], particularly in detecting the novel car class
and significantly improving the identification of humans (c.f. Fig. 1). Furthermore, we have
included image classification results for CIFAR10 [18] and Animals101 datasets to vali-
date the performance of our method on low- and medium-resolution images. These results
illustrate that our loss term relies on general principles that work across complexity scales.
Additionally, we show that combining clustering and continual learning in a single step leads
to better performance than the common baseline approach of "cluster first, then learn".

1https://www.kaggle.com/datasets/alessiocorrado99/animals10
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2 Related Work
Open world recognition [2] refers to the problem of adapting a learning system to a non-
delimitable and potentially constantly evolving target domain. As such, it combines the
disciplines of open set learning [33], where incomplete knowledge over the target domain
is assumed at training time, with incremental learning [5], in which the model is updated
by exploring additional target space regions at test time, thereby adapting to novel target
information. Typically, open set recognition is formalized by specifying a novelty detector,
a labeling process, and an incremental learning function, allowing for a generalized charac-
terization of such systems [2].

Most previous approaches consider open-world recognition in the context of classifica-
tion, where novel concepts are in the form of previously unseen classes. While a plethora of
methods have been proposed to tackle the individual sub-problems for classification prob-
lems, for which we refer to [29] for a more comprehensive overview, literature on holistic
approaches for open world classification is rather scarce. In [35], a metric learning approach
is used to distinguish between pairs of instances belonging to the same classes, allowing the
detection of instances that can not be mapped to known classes and thus used to learn novel
class concepts. In [26], the likelihood ratio between known and proxy unknown objects is
used to detect novel classes not included in the initial training set. Moreover, [28] suggests a
semi-supervised learning approach that applies clustering on learned feature representations
to reason about unknown classes. Related to this, [38] describes a kernel method using an al-
ternative loss formulation to learn embeddings to be clustered for class discovery. Recently,
similar concepts have been tailored to specific data modalities, such as tabular data [36].

In the domain of semantic segmentation, open world recognition is also covered under
the term zero-shot semantic segmentation [3]. To predict unseen categories for classified
pixels, a wide range of methods leverage additional language-based context information [3,
21, 39], or proxy. Besides enriching visual information by text, unsupervised methods, e.g. ,
employing clustering based on visual similarity [37] or contrastive losses [6, 12], have also
been considered. More recently, [7] adopts semantic segmentation based on LiDAR point
clouds by augmenting conventional classifiers with predictors recognizing unknown classes,
thereby enabling incremental learning.

In a more general context, unsupervised representation learning [30] constitutes a ma-
jor challenge to generalize learning methods to unseen concepts. Methods of this kind
are typically tailored to data modalities, e.g. , by specifying auxiliary tasks to be solved
[13, 40]. In the domain of images, self-supervised learning approaches have emerged re-
cently [4, 19], which commonly apply knowledge distillation between different networks,
allowing for learning in a self-supervised fashion. Other methods include ideas stemming
from metric [15] or contrastive learning [9].

3 Method Description
In this section, we present our training framework for unsupervised class-incremental learn-
ing with empty classes. For the sake of brevity, all equations are introduced for image classi-
fication and adapted to semantic segmentation in Sec. 4. First, we give a motivating example
in Fig. 2, where we enrich data stemming from the TwoMoons dataset2 with OoD samples
and extend the model by three novel classes.

2https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
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Figure 2: (I) A binary classification model is trained on two classes and additional noise
data for entropy maximization. (II) OoD samples in the test data are obtained by entropy
thresholding. (III) The training data is enriched with the OoD samples and a distance ma-
trix, containing their pair-wise Euclidean distances. (IV) The model is class-incrementally
extended by three novel classes.

I) Learning Model For an input image x ∈ X , let f (x) ∈ (0,1)q denote the softmax
probabilities of some image classification model f : X → (0,1)q with underlying classes
C = {1, . . . ,q}. Consider a test dataset which includes images from classes c ∈ {1, . . . ,q,q+
1, . . .}. Note that our framework does not necessarily assume labels for the test data as these
will be only used for evaluation and not during the training. Furthermore, let u( f (x)) ∈ [0,1]
denote some arbitrary uncertainty score which derives from the predicted class-probabilities
f (x). Thus, a test image x is considered to be OoD, if u( f (x)) > τ for some threshold
τ ∈ [0,1].

Next, we extend the initial model f by k ∈ N empty classes in the final classification
layer, which is then denoted as f k : X → (0,1)q+k, and fine-tune it on the OoD data XOoD.
Therefore, we compute pairwise distances di j = d(xi,x j) for all (xi,x j) ∈ XOoD ×XOoD as
a pre-processing step, e.g. using the pixel-wise Euclidean distance or any distance metric in
the feature space of some embedding network. The model f k is then fine-tuned on (a subset
of) the initial training data X train, enriched with the OoD samples from the test data. For the
in-distribution samples (x,y), we compute the cross-entropy loss

ℓce(x,y) =−
q

∑
c=1

1{c=y} log( f k
c (x)) . (1)

Further, we entice the model to predict one of the empty classes q+1, . . . ,q+k for OoD data
by minimizing the class-probabilities f k

1 (x), . . . , f k
q (x), x ∈ XOoD, i.e. , by computing

ℓext(x) =
1
q

q

∑
c=1

f k
c (x) . (2)

Finally, we aim to divide the data among the empty classes based on their similarity. Thus,
our clustering loss is computed pair-wise as

ℓcluster(xi,x j) =
α

q+ k
·di j ·

q+k

∑
c=1

f k
c (xi) f k

c (x j) , (3)

where α ∈R>0 can be adjusted to control the impact of the clustering loss function. Together,
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these three loss functions give the overall objective

L = λ1E(x,y)∼X train [ℓce(x,y)]

+λ2Ex∼XOoD [ℓext(x)] (4)
+λ3Exi,x j∼XOoD [ℓcluster(xi,x j)] ,

where the hyperparameters λ1, λ2 and λ3 can be adjusted to balance the impact of the objec-
tives.

II) OoD Detection OoD detection is a pre-processing part of our framework, which can
be exchanged in a plug and play manner. In our experiments, we implemented entropy
maximization [16] for image classification and thus perform OoD detection by thresholding
on the softmax entropy.

The idea of entropy maximization is the inclusion of known unknowns into the training
data of the initial model in order to entice it to exhibit a high softmax entropy

u(x) =− 1
log(q)

q

∑
c=1

fc(x) log( fc(x)) (5)

on OoD data x ∈XOoD. Therefore, during training the initial model, we compute the entropy
maximization loss

ℓem(x) =−
q

∑
c=1

1
q

log( fc(x)) (6)

for known unknowns x ∈ XOoD, giving the overall objective

L = λ E(x,y)∼X train [ℓce(x,y)]

+(1−λ ) Ex∼XOoD [ℓem(x)] . (7)

In the Two Moons example, these OoD data was uniformly distributed noise. For image clas-
sification, we employ the domain-agnostic data augmentation technique mixup [41]. This is,
an OoD image is obtained by computing the average of two in-distribution samples. Entropy
maximization was also introduced for semantic segmentation of street scenes [8, 17], where
the OoD samples originate from the COCO dataset [20]. Furthermore, the OoD loss and
data was only included in the final training epochs, which means that existing networks can
be fine-tuned for entropy maximization.

III) Distance Matrix Next, we compute pair-wise distances for the detected OoD samples,
which constitute the OoD dataset for the incremental learning. For simple datasets such as
TwoMoons or MNIST, the distance can be measured directly between the data samples. For
MNIST, this is done by flattening the images and computing the Euclidean distance between
the resulting vectors. For more complex datasets, we employ embedding networks to extract
useful features of the images. These embedding networks are arbitrary image classification
models, trained on large datasets such as ImageNet [11] or CIFAR100 [18], which need to be
chosen carefully and individually for each experiment as the clustering loss strongly depends
on their ability to extract separable features for the known and especially the novel classes.

The feature distances are either computed in the high-dimensional feature space di-
rectly, or, for the sake of transparency and better visual control, in a low-dimensional re-
arrangement. Applying the manifold learning technique UMAP [23] to the entire test data,
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we reduce the dimension of the feature space to two . The distance matrix is then computed
as the Euclidean distances in the low-dimensional space for all pairs of OoD samples.

IV) Incremental Learning For class-incremental learning, we minimize three different
loss functions defined in Eqs. (1) to (3). The cross-entropy loss (1) is computed for in-
distribution to mitigate catastrophic forgetting [22]. The OoD samples are pushed towards
the novel classes by the extension loss (2), which is minimized whenever the probability
mass is concentrated in the empty classes, i.e. ,

ℓext(x)→ 0 for
q+k

∑
c=q+1

f k
c (x)→ 1, x ∈ XOoD . (8)

The cluster loss (3) is computed for all pairs of OoD candidates contained in a batch. Thus, it
has a runtime complexity of O(n2), as for n OoD candidates, we need to compute n2−n

2 terms.
Furthermore, the minimum of the cluster loss is probably greater than zero, as samples which
belong to the same class rarely share exactly the same features. To reach this minimum for
two OoD samples xi,x j with a large distance, they should be assigned to different classes, i.e.
, whenever f k

c (xi) is significantly different from zero, we desire that f k
c (x j) becomes small.

4 Adjustments for Semantic Segmentation
Let H×W denote the resolution of the images x∈X . Then, the softmax output of a semantic
segmentation DNN f : X → (0,1)H×W×q provides class-probabilities for image pixels, de-
noted as z= (h,w)∈Z . Thus, the OoD detector must not only identify OoD images, but also
give information about their pixel positions. To store these information, we generate OoD
instance masks by thresholding on the obtained OoD score and by distinguishing between
connected components in the resulting OoD mask.

For semantic segmentation, the loss functions are computed for pixels of OoD objects
instead of images. Let Zs denote the set of pixel positions which belong to an OoD candidate
s ⊆ x. The extension loss is computed equivalently to Eq. (2) as

ℓext(s) =− 1
|Zs| ∑

z∈Zs

1
q

q

∑
c=1

f k
z,c(x) . (9)

For two OoD candidates si ⊆ xi,s j ⊆ x j with distance di j, the cluster loss is computed as

ℓcluster(si,s j) =
α

q+ k
di j

q+k

∑
c=1

f k
c (xi) f k

c (x j) , (10)

where
f k
c (x) =

1
|Zs| ∑

z∈Zs

f k
z,c(x) (11)

denotes the mean softmax probability over all pixels z ∈Zs for some class c ∈ {1, . . . ,q+k}.
For OoD detection in semantic segmentation, we adapt a meta-regression approach [31,

32], using uncertainty measures such as the softmax entropy and further information derived
from the initial model’s output, to estimate the prediction quality on a segment-level. Here,
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a segment denotes a connected component in the semantic segmentation mask, which the
initial model predicts. That is, meta-regression is a post-processing approach to quantify un-
certainty aggregated over segments, and considering that the model likely is highly uncertain
if confronted with OoD objects, it can be applied for OoD detection. In contrast to image
classification, where images are either OoD or not, semantic segmentation is performed on
images that simultaneously contain in-distribution and OoD pixels. Aggregating uncertainty
scores across segments simplifies the detection of OoD objects as contiguous OoD pixels
since it removes the high uncertainty for class boundaries.

For an initial DNN, we use the training data to fit a gradient boosting model as meta
regressor, which then estimates segment-wise uncertainty scores u(s) for all segments s ⊆
x ∈ X .

5 Numerical Experiments

We perform several experiments for image classification on CIFAR10 [18] and Animals10,
as well as on Cityscapes [10] to evaluate our method for semantic segmentation. To this
end, we extend the initial models by empty classes, i.e. , neurons in the final classification
layer with randomly initialized weights, and fine-tune them on OoD data, retraining with a
fixed encoder. For evaluation, we provide accuracy scores - separately for known and novel
classes - for image classification, (mean) Intersection over Union (IoU), precision, and recall
values for semantic segmentation.

The OoD classes in the following experiments were all chosen so that they are seman-
tically far away from each other. For example, the Animals10 classes horse (1), cow (6)
and sheep (7) are semantically related, as they are all big animals which are mostly on the
pasture, whereas elephant (2) and spider (8) are well separable classes, which is also vis-
ible in the two-dimensional feature space. However, in the appendix, we will also provide
evaluation metrics averaged over multiple runs with randomly picked OoD classes.

5.1 Experimental Setup

We consider the following dataset splits for each experiment: the training data denotes im-
ages with ground truth for the initially known classes. We train the initial model on these
images and replay them during the training of the extended model to avoid catastrophic for-
getting. The test data consist of unlabeled images which include both known and unknown
classes. This dataset is fed into the OoD detector to identify OoD data, on which the model
gets extended. The evaluation dataset includes images with ground truth for known and
novel classes and is used to evaluate the models. If such labels are available for the test data,
evaluation images may be the same as the test images.

Our approach requires prior OoD detection. Here, we only provide the experimental
setup for fine-tuning the extended model. For all experiments, we tuned the weighting pa-
rameters λ1,λ2,λ3 in Eq. (4) by observing all loss functions separately over several epochs
using different parameter configurations to ensure that each loss term decreases. The fol-
lowing descriptions of the experiments include the network architecture, known and novel
classes, information about the dataset splits, and the distance matrix generation. We refer to
the appendix for further information about the experiments, including the TwoMoons exper-
iment.
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Figure 3: Visualized ground truth (left) and prediction of the Animals10 dataset by the initial
(middle) and extended (right) model. The four novel classes 3,4,8 and 9 are outlined in
orange. The extended model’s accuracy is ∼ 95%.

Figure 4: Visualized ground truth (left) and prediction of the CIFAR10 dataset by the initial
(middle) and extended (right) model. The two novel classes 10 and 11 are outlined in orange.
The extended model’s accuracy is ∼ 89%.

Image Classification
supervised unsupervised ablation studies

dataset OoD accuracy initial oracle ours baseline −detection −−distance

CIFAR10 10 11 known 91.45% 91.86% 90.51% 90.29% 88.90% 86.94%
novel - 89.53% 70.00% 33.40% 78.80% 87.00%

Animals10 3 4 8 9 known 96.29% 95.80% 93.76% 92.78% 94.46% 95.20%
novel - 97.65% 96.68% 72.59% 97.02% 97.90%

Table 1: Quantitative evaluation of the image classification experiments. For all evaluated
models, the accuracy is stated separately for the previously known and the unlabeled novel
classes. The highest scores for the unsupervised approaches are bolded.

CIFAR10 We employ a ResNet18, which is trained on the whole CIFAR10 training split,
including all ten classes. For testing, we enrich the CIFAR10 test split with images from
CIFAR100. Therefore, we split CIFAR100 into an unlabeled and a labeled subset: the classes
{0, . . . ,49} are possible OoD candidates; thus, all samples belonging to these classes are
considered to be unlabeled. We extend the CIFAR10 test data by the classes apple (0) and
clock (22), mapping them onto the labels (10) and (11), respectively. We evaluate our models
on the labeled test data. The labeled CIFAR100 subset includes the classes {50, . . . ,99}
and is used together with the CIFAR10 training data to train a ResNet18 as an embedding
network. To compute the distances, we feed the whole test data into this embedding network
and extract the features of the penultimate layer. These are further projected into a 2D space
with UMAP. Then, the distance matrix is computed as the pixel-wise Euclidean distance
between the 2D representations of the OoD images.

Animals10 As an initial model, we employ a ResNet18, which is trained on six out of
ten classes. As novel classes, we selected butterfly (3), chicken (4), spider (8), and squirrel
(9). The distances are computed as for CIFAR10, but employing a DenseNet201, which is
trained on ImageNet with 1,000 classes as an embedding network.
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Cityscapes For comparison reasons with the baseline, we adapt the experimental setup
from [37], where the class labels human (person, rider), car and bus are excluded from
the 19 Cityscapes evaluation classes. Like the baseline, we extend the DNN by two empty
classes and exclude the class bus from the evaluation. Thus, we train a semantic segmenta-
tion DeepLabV3+ with WideResNet38 backbone on 2,500 training samples with 15 trainable
classes. We apply meta-regression to the Cityscapes test data and crop out image patches
tailored to the predicted OoD segments, i.e., , connected component of OoD pixels. After-
ward, we compute distances between these image patches analogously to Animals10 as the
Euclidean distances between 2D representations of features, which we obtain by feeding the
patches into a DenseNet201 trained on 1,000 ImageNet classes.

5.2 Evaluation & Ablation Studies

We compare our evaluation results to the following baselines. For image classification, we
employ the k-means clustering algorithm to pseudo-label the OoD data samples and fine-
tune the model on the pseudo-labeled data using the cross-entropy loss. For semantic seg-
mentation, we compare with the method presented in [37], which also employs clustering
algorithms in the embedding space to obtain pseudo-labels. Furthermore, to get an idea of
the maximum achievable performance, we train oracle models that have learned all available
classes in a fully supervised manner.

We evaluate our image classification approach for the ablation studies on “clean” OoD
data (−detection). Therefore, we do not detect the OoD samples in the test data by thresh-
olding on some anomaly score but by considering the ground truth. In this way, we simulate
a perfect OoD detector. Since the results of our method are also affected by the quality of the
distance matrix, we further analyze our method for a synthetic distance matrix (−−distance),
where two OoD samples xi,x j ∈ XOoD have a distance d(xi,x j) = 0 if they stem from the
same class, d(xi,x j) = 1 otherwise. Thus, the OOD samples are labeled by the distance ma-
trix, and the fine-tuning is supervised, allowing a pure comparison of our loss functions with
the cross-entropy loss. We do not provide ablation studies for semantic segmentation since
the Cityscapes test data does not include publicly available annotations.

Image Classification As shown in Tab. 1 and visualized in Figs. 3 and 4, our approach
exceeds the baseline’s accuracy for novel classes by 36.60 and 24.09 percentage points (pp)
for CIFAR10 and Animals10, respectively. This is mainly caused by in-distribution samples,
which are false positive OoD predictions, or by OoD samples, which are embedded far away
from their class centroids. Consequently, different OoD classes are assigned to the same
cluster by the k-means algorithm. As our approach uses soft labels, the DNN is more likely
to reconsider the choice of the OoD detector during fine-tuning.

In the ablation studies, we omit the OoD detector (−detection) and instead select the OoD
samples based on their ground truth. Thereby, we observe an improvement in the accuracy
of novel classes for the CIFAR10 and Animals10 datasets, while the performance remains
constant for FashionMNIST and significantly decreases for MNIST. We further compute a
ground truth distance matrix (−−distance) with distances 0 and 1 for samples belonging
to the same or to different classes, respectively. Since this is supervised fine-tuning, these
DNNs are comparable to oracles. We observe that the oracles tend to perform better on
the initial and worse on the novel classes. However, this might be a consequence of class-
incremental learning.
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Semantic Segmentation
supervised unsupervised

dataset class metric initial oracle ours baseline

Cityscapes

0, . . . ,14 mean IoU 56.99% 77.28% 59.72% 57.52%
15 (human) IoU - 81.90% 33.87% 40.22%
16 (car) IoU - 94.94% 84.14% 81.27%
0, . . . ,14 mean precision 65.75% 88.03% 84.63% 78.53%
15 (human) precision - 89.22% 37.80% 68.74%
16 (car) precision - 96.83% 87.11% 86.56%
0, . . . ,14 mean recall 80.88% 85.38% 65.38% 65.78%
15 (human) recall - 90.90% 76.54% 49.65%
16 (car) recall - 97.99% 96.11% 93.05%

Table 2: Quantitative evaluation of the semantic segmentation experiment on the Cityscapes
dataset. IoU, precision, and recall values are provided for both novel classes and averaged
over the previously known classes. The highest scores for the unsupervised approaches are
bolded.

Semantic Segmentation The quantitative results of our semantic segmentation method,
reported in Tab. 2, demonstrate that the empty classes are “filled” with the novel concepts
human and car. The performance on the previously-known classes is similar to the baseline
even without including a distillation loss [24]. For the car class, our method outperforms
the baseline with respect to IoU (+2.87 pp), precision (+0.55 pp) and recall (+3.06 pp).
We lose performance in terms of IoU for the human class due to a higher tendency for false
positives. However, the false negative rate is significantly reduced, which is indicated by an
increase in the recall value of 26.89 pp.

When examining the OoD masks, we observed that the connected components are often
very extensive, which is caused by neighboring OoD objects. Thus, the embedding space
contains many large image patches that are not tailored to a single OoD object but rather to
a number of parked cars, a crowd of people, or even a bicyclist riding next to a car, which
appreciably impairs our results.

6 Conclusion & Outlook
In this work, we proposed a solution to open-world classification for image classification and
semantic segmentation by learning novel classes in an unsupervised manner. We suggested
postulating empty classes, which allows one to capture newly observed classes in an incre-
mental learning approach. This way, the model can detect new classes in a flexible manner,
potentially whitewashing mistakes of previous OoD detectors.

As our method employs several hyperparameters, e.g. , to specify the number of novel
empty classes, we envision an automatic derivation of the optimal number of new classes
as future work. In this regard, replacing the Elbow method in the eventual clustering by
more suitable criteria appears desirable [34]. Moreover, we shall investigate approaches
to improve the generalizability of our approach to embedding models of arbitrary kind to
derive distance matrices that are not tailored to specific datasets. Furthermore, the semantic
segmentation performance could be improved by incorporating mask-level information and
obtaining OoD candidates based on mask- instead of segment-level [14, 25].
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