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Abstract
Progress in deep learning-based computer vision has been significantly accelerated

by the surge in available datasets for training and testing. However, the failure to meet
ethical and regulatory standards in datasets containing privacy-sensitive content such as
facial images has caused public concern and even led to the withdrawal of datasets. While
traditional anonymization strategies, such as pixelization, offer a seemingly straight-
forward solution, they lack the ability to maintain the necessary facial details crucial
for applications like training face detection models. To reconcile the need for high-
quality data with stringent privacy standards, we explore an innovative method for de-
identification that employs Stable Diffusion using synthetically generated faces as image
prompts alongside a noisy version of the original face to guide anonymization, which
we term StablePrivacy. Our experiments demonstrate the capability to preserve detailed
features for training high-quality face detection models while offering state-of-the-art
privacy protection.

1 Introduction
One of the factors driving the recent fast-paced development of deep learning-based com-
puter vision is the increasing availability of ever-larger datasets. As in many related fields,
they have helped to advance the state of the art for tasks like face recognition or detec-
tion [15, 48, 51]. However, unlike models used for other objectives, models for these tasks
require huge amounts of privacy-sensitive face images. Current practices of collecting and
storing this material often violate regulations, such as the GDPR in Europe [47] and the
CCPA in California [34] or at least raise ethical concerns [1]. To tackle these legal and eth-
ical challenges, sensitive data like face images should be protected appropriately prior to
publication.
There are several techniques to achieve this [29, 37, 41]. The most straightforward is to re-
move the sensitive information directly on the image level by pixelization, blurring, or simi-
lar methods. These standard practices have been applied to many datasets [3, 45]. However,
they obfuscate the face, compromising the usefulness of the data for training or benchmark-
ing of many deep learning-based models [16, 22, 24].
More recent approaches try to achieve face de-identification by replacing the original face
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with a synthetic surrogate [17, 18, 21, 25, 28]. The advantage of this is that the utility for
downstream tasks can be better preserved by retaining a face-like appearance or even more
detailed attributes such as expression, gender or exact head position. It has been shown that
such approaches can limit the negative effect of anonymizing training data for face detec-
tion [22] or instance segmentation [21] on performance. Therefore, they achieve a better
trade-off between privacy and data utility retention [25].
However, existing approaches either offer comparatively weak protection against automatic
recognition [17, 18, 21, 25] or significantly degrade image quality [28] affecting data utility
for downstream applications.
To address these shortcomings, we explore the use of Stable Diffusion [39] guided by syn-
thetically generated faces, which are not privacy-sensitive, as image prompts and a noisy
version of the original image. By this means, our method can create high-quality images as
it can access rough structural information of the original image without the need for com-
pletely occluding the face region before processing, which is typical for other approaches.
Notably, at the same time, it does not compromise privacy as demonstrated by state-of-the-art
performance for protection against recognition on the Labeled Faces in the Wild (LFW) [15]
benchmark. In summary, we make the following contributions:

• To the best of our knowledge, we are the first to explore the application of a latent
diffusion model guided by synthetically generated source faces as image prompts and
a noisy version of the original for de-identification.

• We develop strategies such as automated source selection and dynamic anonymization
depending on face size, to tailor our approach to the task of de-identifying large and
diverse datasets, thereby improving privacy protection and processing speed.

• We demonstrate superior protection against automatic recognition on the LFW bench-
mark compared to existing approaches.

• We show that a high-quality deep learning-based face detection model can be trained
on our anonymized data, outperforming models trained on data de-identified by exist-
ing approaches.

2 Related Work
Privacy Protection in Image Datasets. Obfuscation techniques, like blurring or pixeliza-
tion, are probably the most widely used techniques to anonymize faces in images. They have
been applied to many datasets to improve privacy and regulatory compliance [3, 45]. While
they are simple to use and their computational cost is low, they significantly reduce data
utility by obscuring parts of the image, making the anonymized data less useful for training
and testing deep learning-based algorithms. Lee et al. [24] show that simply blurring faces
in training data not only reduces the performance of resulting segmentation models on the
anonymized classes, i.e., person, but also on those occurring concurrently with them (mo-
torcycle, backpack, and others). The same is true for other tasks that depend on detailed
depictions of the face to learn their objective such as face detection [22]. More recently,
synthesis-based de-identification approaches have emerged as an alternative, promising a
better privacy–data utility trade-off. They synthesize image data which is used to replace the
original face image.
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Synthetic Face Generation. The foundation of synthesis approaches for privacy enhance-
ment is derived from significant advances in generative machine learning methods like Gen-
erative Adversarial Networks (GANs) [11] or diffusion models [14, 44].
Recently, diffusion models [14, 44] have been shown to beat GANs concerning image quality
and diversity [7]. Nevertheless, the use of diffusion models for de-identification is underex-
plored. The basic idea of diffusion is to learn to reverse the gradual addition of noise to
images. This is done using an approximated loss function for training the model derived
from the variational lower bound of the log-likelihood. Empirically, Ho et al. [14] found that
simplifying it as a mean squared error objective delivers good results:

Lsimple(θ) := Et,x,ε

[
∥ε − εθ (xt , t)∥2

]
. (1)

Since then, several improvements have been suggested. Nichol and Dhariwal [33] introduced
classifier guidance which improves the image quality over class-conditioned diffusion mod-
els. Later, Ho and Salimans [13] proposed classifier-free guidance, simplifying guidance by
removing the dependence on a separate classifier.
Building on these advances, Stable Diffusion is a state-of-the-art open-source large-scale
text-to-image model [39]. Its main improvement over its predecessors, such as DALL-E [36],
is the usage of a pretrained autoencoder to downsample the input to the latent space before
passing it through the diffusion process. This allows the model to focus on the semantics of
the data rather than barely perceptible details contained in the pixel space. It also means that
training can happen on a much lower dimension making it computationally more efficient.
Our approach to improving privacy in image datasets is based on Stable Diffusion. Yet, as
we will show in Sec. 3, two more recently developed modifications are necessary for de-
identification. One is IP-Adapter [50], adding image prompt capabilities to Stable Diffusion.
It consists of a pretrained image encoder (CLIP [35]) which is applied to the prompt image,
a small projection network to convert the embedding into the required dimensionality and
additional cross-attention layers to pass the image prompt into Stable Diffusion’s U-Net [40]
via decoupled cross-attention. Only the projection network and the added cross-attention
layers need to be trained, making this a compute-efficient way to adjust Stable Diffusion to
specific needs.
The other modification is SDEdit [32], allowing for guided image editing by first perturbing
the image with Gaussian noise and then using the standard reverse diffusion process. As
the input image is not converted to random noise but only distorted to a certain degree, the
output is guided by the rough structures of the input image. The degree to which the original
image is perturbed depends on the strength parameter, which can range from zero to one.
The combination of Stable Diffusion, IP-Adapter and SDEdit has, to the best of our knowl-
edge, not been explored for de-identification yet.
Synthesis-Based De-Identification. Instead, most previous synthesis-based approaches
such as CIAGAN [28], DeepPrivacy [18] or Leibl et al. [25] rely on GANs. Both CIAGAN
and DeepPrivacy first obscure the facial region of an image and then use either key points
(DeepPrivacy) or detailed facial landmarks (CIAGAN) to guide the inpainting of the face.
Leibl et al. also rely on detailed landmarks to guide the anonymization process. In contrast
to all of these approaches, we do not use landmarks or key points. Instead, we employ a
noisy version of the input image as guidance.
LDFA [21] uses a diffusion model similar to our approach. Yet, as it does not utilize synthetic
source faces to steer the process, it can only achieve comparatively weak anonymization.
Differentiating Synthesis-Based De-Identification from Face Swapping. Though techni-
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cally similar, synthesis-based de-identification and face swapping are optimized for different
objectives. Face swapping is designed to create realistic images where the source person’s
face replaces that of the target person. These approaches typically do not include mech-
anisms to prevent the recovery of the target person’s identity. Their unlimited access the
target person’s features can lead to identity leakage [25]. Moreover, face swapping typically
manipulates a small number of images or videos, which makes it feasible for a user to hand-
pick source and target to achieve the most realistic results. In comparison, de-identification
focuses on anonymizing the targets in large-scale datasets, requiring a fully automated pro-
cess and balancing image quality and data utility with privacy protection.

3 Method Overview

Figure 1: Visual overview of StablePrivacy. It is designed to anonymize images from a target
dataset while preserving their utility. The process begins by masking the facial region of the
original image. Both the original and the masked images are then converted into the latent
space of Stable Diffusion. There, the previously unaltered image gets superimposed with
Gaussian noise, ensuring the underlying structure remains vaguely intact with a shortened
forward diffusion process (strength = 0.7) using the SDEdit [32] technique. The masked
and noisy versions of the original are then passed to Stable Diffusion’s U-Net for reverse
diffusion. At the same time, a source image is selected from a library of synthetic face
images ensuring a minimum distance to the target face in face similarity space. The source,
which is not privacy-sensitive, is forwarded to IP-Adapter and used as an image prompt
providing further guidance. With these inputs, the Stable Diffusion component generates the
de-identified image.

In this section, we explain the details of our approach for synthesis-based face de-
identification which we term StablePrivacy. It leverages Stable Diffusion for generating
realistic inpaintings of the facial region of images we want to anonymize. This process is
guided by a noise-modified version of the original image, employing the SDEdit technique,
along with a source face image passed to Stable Diffusion using the IP-Adapter. A graphical
overview can be seen in Fig. 1.
The source images serve as prompts that direct Stable Diffusion to create faces distinctly dif-
ferent from those in the original, effectively preventing the replication of identifiable features
of the original. Prioritizing privacy protection, our approach employs sources synthetically
generated by StyleGAN2 [20], ensuring that no real individuals’ privacy is compromised.
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For this reason, we compiled a manually curated dataset – termed the source library – con-
taining 1,000 faces, enabling the generation of a diverse range of outputs. We discarded
faces if a significant portion was covered by hair, glasses or other occlusions and balanced
the gender distribution by manually choosing 500 female and 500 male images. Then, we
adjusted the Euler Angles of the heads to approximately 0 degrees [30], ensuring that the
image prompts contain enough relevant features to guide the transfer of the source’s identity
to the output.
To prevent our method from using source faces too closely resembling the original, it in-
cludes a safeguard automatically choosing a source from our library that is sufficiently dif-
ferent from the target. This selection process is based on maintaining a minimum distance in
the face similarity space between the source and the target, as calculated using FaceNet [42].
An empirically determined threshold distance of 1.6 is applied across all experiments.
After an appropriate source is chosen, it is passed to IP-Adapter’s projection network and
finally into the attention layers of Stable Diffusion’s U-Net using decoupled cross-attention.
The degree to which this input influences the output image is controlled by the classifier-free
guidance (CFG) scale.
To delineate the area for modification, our method utilizes a bounding box around the face
which is given by a face detection model or dataset-provided ground truth. The exact size of
the inpainting area can be adjusted by an additional margin around the bounding box.
Using the same bounding box, two versions of the original image are prepared: one with the
face blacked out and another with Gaussian noise superimposed, but ensuring the underlying
structure remains vaguely intact. These are used as further guidance for Stable Diffusion, to
preserve data utility. We regulate the intensity of the noise through a strength parameter [32]
that ranges from zero (no noise) to one (full noise), setting it at an empirically determined
value of 0.7 for our main experiments.
All parameters of our approach, the CFG scale, the size of the inpainting area and the strength
affect the trade-off between privacy and data utility of the anonymized output. We chose their
values based on detailed experiments determining their exact influence which we present in
the supplementary material (Section 2).

4 Experiments
In this section, we first introduce the evaluation metrics utilized for assessing our exper-
iments. Subsequently, we examine the anonymization performance and image quality of
StablePrivacy and give a comparative analysis with established benchmarks. Finally, we
show that it is possible to train a high-quality face detector on our anonymized data.

4.1 Evaluation Metrics
Synthesis-based approaches to de-identification are commonly evaluated regarding their abil-
ity to protect images against automated recognition as well as their image quality [10, 28].
The former is often measured using face verification on LFW. For this, we anonymize one
of the images of each matched pair, given by the dataset, but not the other. Mismatched
pairs also stay unchanged. Then, we use a face recognition model (FaceNet [42] or Arc-
Face [6]) to compute the distance between the two in the embedding space. Afterward, we
use the threshold distance at which the False Acceptance Rate (FAR) is 10−3 to compute
the True Acceptance Rate (TAR), which we employ to compare the performance of different
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approaches. The lower the TAR the better the protection against recognition.
Fréchet inception distance (FID) [12] is typically used to estimate the quality of generated
images. For this, the Fréchet distance between the original dataset’s distribution and the
generated dataset’s distribution of features calculated by Inception v3 [46] trained on Ima-
geNet [5] is computed. Good (low) FID correlates with human perception of similarity. In
this paper, we also use Kernel Inception distance (KID) [2], an improvement over FID which
is applicable to smaller datasets.
To demonstrate the practical applicability of our approach for the de-identification of face
detection datasets while preserving the data-utility, we train the Dual Shot Face Detector
(DSFD) [26] on anonymized versions of WIDER FACE [48]. We evaluate the success of
the training using mean Average Precision (mAP) [8] at an Intersection over Union (IoU)
threshold of 0.5. As there is only one class in face detection, the mAP is equal to the AP.
The value ranges from zero to one, with one indicating the perfect score.

4.2 Anonymization and Image Quality

In this subsection, we assess the anonymization efficacy of our proposed approach within the
context of the LFW benchmark and compare it to other recent de-identification techniques.
See Table 1.
First, we establish the baselines. The original, unaltered images set the upper limit for recog-
nition rates, illustrating what is possible without privacy considerations. On the opposite end
are images subjected to heavy pixelization, which offers the strongest privacy but at the cost
of significantly reduced data utility. This trade-off is evident in the low TAR (FaceNet and
ArcFace) — 0.56% and 0.33%, respectively — and high KID of 0.0417. Our method’s
performance was then compared to state-of-the-art techniques. It can be seen that while
DeepPrivacy, DeepPrivacy2, Leibl et al. and LDFA all significantly reduce the probability
of automatic recognition, they still leave a considerable risk. In comparison, CIAGAN gives
much better protection, but cannot keep up with the image quality of other approaches. Our
method, StablePrivacy, delivers reasonable KID while at the same time substantially out-
performing all others (besides pixelization) on the LFW verification benchmark, for both
FaceNet (0.87%) and ArcFace (1.03%).
Notably, while FaceNet generally re-identifies anonymized faces more effectively in our set-
ting than ArcFace, the opposite holds true for Leibl et al. and our approach. The reason for
this is that both methods use FaceNet to choose appropriate sources to ensure that the gen-
erated faces differ from the originals. This improves the performance when measured with
the same recognition model by optimizing the distance between the de-identified and the
original image on FaceNet’s features, some of which might be specific to that embedding.
However, the comparable performance on ArcFace, which is not used in the anonymization
process, suggests the strategy effectively protects against different recognition models.
A visual comparison of images de-identified by the different techniques is presented in Fig. 2.
It shows that our anonymizations look highly realistic and deal well with common occlusions
like glasses (row one) and hats (row three) as well as difficult poses (row three). At the same
time features that make faces similar in human perception like the shape of the eyes and the
thickness of the lips and eyebrows [43] are clearly different. Further examples are shown in
the supplementary material (Section 3).
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Table 1: Comparison of anonymization performance and image quality of de-identification
methods. StablePrivacy offers the best privacy protection among the synthesis-based face
de-identification approaches.

De-ID Method FaceNet (↓) [%] ArcFace (↓) [%] KID (↓) FID (↓)
Original 98.60 ± 0.76 96.13 ± 1.81 N/A N/A
Face Pixelization 16 × 16 0.56 ± 1.67 0.33 ± 0.26 0.0417 ± 0.0012 43.09
CIAGAN [28] 3.40 ± 0.65 5.83 ± 1.97 0.0105 ± 0.0007 13.30
DeepPrivacy [18] 10.90 ± 1.93 6.63 ± 2.12 0.0014 ± 0.0002 2.37
DeepPrivacy2 [17] 11.64 ± 1.97 8.60 ± 1.76 0.0004 ± 0.0002 1.34
LDFA [21] 12.92 ± 2.51 9.40 ± 2.39 0.0014 ± 0.0002 2.58
Leibl et al. [25] 9.03 ± 1.01 11.47 ± 2.25 0.0146 ± 0.0008 13.26
StablePrivacy 0.87 ± 0.48 1.03 ± 0.48 0.0017 ± 0.0003 3.36

Figure 2: Visual comparison with other anonymization methods. Our anonymizations are
highly realistic and deal well with common occlusions like glasses (rows one) and hats (row
three) as well as difficult poses (row three).

4.3 Training Face Detectors on Anonymized Data

While our prior experiments have illustrated our approach’s capability for enhancing privacy
and generating realistic images, it is important to note that synthesis-based de-identification
can introduce artifacts into the modified images. As highlighted in the literature [22], these
artifacts may cause face detectors trained on such datasets to overfit on them, subsequently
impairing their performance when encountering real data. Therefore, in this section, we
evaluate how effectively data de-identified by our method can train face detectors.
Given that face detection datasets, like WIDER FACE, typically demand anonymizing multi-
ple faces within a single image, our method requires additional processing steps. This entails
cropping each face based on the ground truth bounding boxes from the dataset (expanded by
100x100 pixels), anonymizing these faces individually, and subsequently reconstructing the
images. Further details are provided in the supplementary material (Section 5). Additionally,
we make another adjustment to our approach, aiming to leverage the wide variance in face
sizes encountered in datasets such as WIDER FACE, where sizes range from tiny (less than
5×5 pixels) to extremely large (up to 1000 × 1000 pixels). Considering that smaller faces
are more difficult to identify [23], we tailor the strength parameter of our approach accord-
ing to the face size. Specifically, we use a strength value of 0.7 for faces exceeding 30 ×
30 pixels, and 0.5 for smaller faces. This allows us to use more structural guidance from the
original image resulting in higher image quality and to speed up computation as less steps
need to be calculated during the reverse diffusion process. At the same time, the reduced
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Figure 3: Comparative results for training face detectors (DSFD) on the WIDER FACE
dataset: original and anonymized by different approaches. The use of StablePrivacy signifi-
cantly enhances performance compared to other de-identification approaches.

privacy protection associated with lower strength values for smaller faces is offset by their
limited size. In the supplementary material (Section 6), we explore alternative choices for
selecting the strength value for given face sizes and measure the impact on privacy protec-
tion.
To evaluate the utility of our anonymized data, we train a face detector (DSFD) on WIDER

FACE de-identified by different approaches and evaluate the performance using mAP follow-
ing the procedure established by Kolmp et al. [22]. A comprehensive account of our training
protocols is detailed in the supplementary material (Section 5). Comparing the same ap-
proaches as before, except for Leibl et al. which is unsuitable for this dataset, the outcomes
displayed in Fig. 3 demonstrate that detectors trained on data processed by StablePrivacy
perform better than those trained on other anonymized data. At the same time, StablePrivacy
delivers much better privacy protection as shown in our previous experiments.

4.4 Ablation Study

In this section, we present our ablation study methodically examining the effects of removing
key components of our approach: IP-Adapter, source pre-selection, and SDEdit. We assess
the repercussions on image quality (KID and FID) and de-identification efficacy (FaceNet,
ArcFace). The results are given in Table 2. The removal of the IP-Adapter leads to a strong
decrease in de-identification performance, with the TAR increasing to 24.3 %. This suggests
that without this component, StablePrivacy tends to use the guidance from the noisy version
of the original face to closely reconstruct it. Removal is, therefore, an ill-suited choice, even
though the image quality measured by KID improves to a value of 0.0007. Omitting source
pre-selection results in a TAR of 2.2 %, signaling a significant drop in privacy protection.
This highlights the source pre-selection’s role in enhancing de-identification. Switching to
random noise instead of utilizing SDEdit for controlling the initial face image degradation
before processing with Stable Diffusion slightly enhances the TAR to 0.60 %. However, this

Citation
Citation
{Klomp, Rijn, Wijnhoven, Snoek, and With} 2021



ANDREAS LEIBL, HELMUT MAYER: STABLE PRIVACY 9

Table 2: Ablation Study. The effect on privacy protection and image quality when removing
the IP-Adapter, the source pre-selection or the SDEdit component from our approach.

De-ID Method FaceNet (↓) [%] ArcFace (↓) [%] KID (↓) FID (↓)
StablePrivacy 0.87 ± 0.48 1.03 ± 0.48 0.0017 ± 0.0003 3.36
w/o IP-Adapter 24.30±1.89 19.89 ± 2.92 0.0007 ± 0.0002 1.94
w/o source selection 2.2±0.54 2.00 ± 1.06 0.0050 ± 0.0005 6.10
w/o SDEdit 0.60±0.25 0.53±0.27 0.0028±0.0004 4.56

comes at the expense of significantly reduced image quality, with a KID of 0.0028. The
ablation experiments show that each element of our approach contributes to achieving the
desired privacy–data utility trade-off.

5 Limitations

Figure 4: Limitations. Extreme poses, occlusions (left) and very small faces (right) are
challenging to anonymize for StablePrivacy.

While we show in previous experiments that our method can retain the variety of features
necessary for training a face detector, the WIDER FACE dataset contains several extreme
poses, large occlusions and small faces that cause StablePrivacy to produce unrealistic out-
puts. Examples are shown in Fig. 4 and in the supplementary material (Section 4). The left
image shows rotated and occluded faces that typically occur during sports or other in-the-
wild situations. The output only vaguely resembles human faces. Similarly, the small faces
shown in the right image are more blurry than in the original and contain visual artifacts.

Another limitation of this work is that we assumed the synthetic face images used as the
source library to be free of privacy concerns. In practice, this is not necessarily the case, as
generative models can accidentally memorize [9] training data or be susceptible to Member-
ship Inference Attacks [4]. To guarantee the privacy of source library images, we plan to use
generative methods based on differential privacy [19, 27] in future work.
Finally, we want to point out that while we took care to balance the source library with
respect to gender, there are other sensitive biases such as skin color or age that are not con-
sidered in the current work.
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6 Conclusion
This paper has introduced StablePrivacy, an innovative method leveraging Stable Diffusion
to enhance privacy in face image datasets while retaining data utility critical for training deep
learning-based face detection models. Our experimental results demonstrate StablePrivacy’s
superior performance in balancing privacy protection with data utility. Notably, our approach
exhibits state-of-the-art de-identification capabilities, as evidenced by a significant reduction
in True Acceptance Rate (TAR) measured on the LFW benchmark. At the same time, data
anonymized with StablePrivacy is better suited for training face detector models than other
anonymized data as shown by superior detection performance.

Acknowledgment
The work described in this paper is performed in the H2020 project
STARLIGHT (“Sustainable Autonomy and Resilience for LEAs using AI
against High priority Threats”). This project has received funding from the
European Union’s Horizon 2020 research and innovation program under
grant agreement No 101021797.

References
[1] Abeba Birhane and Vinay Uday Prabhu. Large image datasets: A pyrrhic win for

computer vision? IEEE Winter Conference on Applications of Computer Vision, pages
1536–1546, 2021.
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