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Abstract

Supervised image classification with deep learning holds significant potential of au-
tomated early detection of numerous medical conditions. However, the deployment in
clinics lags behind the technical potential. There is a widespread need to create services
that can interact better with patients and doctors to explain the medical predictions. One,
crucial, feature enhancing this interaction is the ability to make incremental changes to
the input and observe the results. This paper presents an approach whereby users can
translate patches from a source image to a target through a web user interface. While
the prediction is updated through applying the trained network on the merged semifac-
tual scan. The procedure is framed as a game with the stated goal of an upward transition
with minimal effort, i.e. converting the target picture with an unhealthy label into a coun-
terfactual healthy scan by translating patches from a source image of a healthy individual.
Success is measured by minimising the translated fraction, i.e. making the intervention
as non-invasive as possible. Our method relies on superpixel segments, an interpolating
morphing flood fill method to smoothly translate patches between images, and a con-
volutional neural network (CNN). The first case study was performed on chest X-rays
for identification of cardiomegaly (CM) showing that the prediction can be reversed by
copying only a few % of the image when the source and target areas are selected care-
fully. This enables a better understanding of the clinical domain and the deep learning
methods as well as a platform for raising health awareness.

1 Introduction
Supervised learning for image classification has reached a mature stage in heart disease pre-
diction, being applied to cardiovascular scanning outputs to detect a variety of conditions
[6]. Common modalities include magnetic resonance imaging (MRI), echocardiograms and
chest X-rays, and methods include convolutional neural networks (CNN), Transfer learn-
ing, Long short term memory, Generative adversarial networks (GAN), Autoencoders and
hybrids [18]. With accuracies surpassing 90 %, these systems arguably outperform human
capacity in both performance and efficiency [7]. The use of Explainable Artificial Intel-
ligence (XAI) in medical imaging aims to provide more transparent and interpretable AI
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solutions to assist healthcare professionals [12]. Despite this progress, the deployment of
deep learning in clinical imaging settings lags the technical potential, inhibited due to lack
of understanding and trust between the domain experts and developers. To address the men-
tioned gap, the research has increasingly focused on XAI techniques, such as Grad-CAM,
heatmaps and counterfactual visualisations. These techniques have been applied not only for
prediction but also to simulation of treatment effects and even surgical outcomes [36].

We propose a gamified counterfactual technique that allows the user to test the effect of
a virtual transplant of a selected area from a healthy person’s scan onto a similarly arbitrar-
ily chosen segment of a diagnosed image. The method combines segmentation, morphing
image mergers and a CNN classifier to create a competitive framework aimed at reversing
the unhealthy state by translating patches between the images. Our goal is to enhance under-
standing, raise awareness and motivate end users.

2 Previous Work

2.1 Cardiovascular Image Classification

Cardiovascular image classification is a pivotal area in medical imaging, significantly con-
tributing to the diagnosis and treatment of cardiovascular diseases (CVDs). Recent advance-
ments in machine learning and deep learning have propelled significant progress in the field,
introducing novel methodologies and tools for more accurate and efficient analysis. Deep
learning, particularly CNNs, have emerged as the dominant technique for cardiac image seg-
mentation. This process is essential for identifying anatomical structures such as ventricles,
atria, and coronary arteries. The capability of CNNs to learn hierarchical features from imag-
ing data enables highly precise segmentation and analysis [10]. Another key component
of cardiovascular image classification is the analysis of electrocardiogram (ECG) images.
Lightweight CNNs augmented with attention modules have demonstrated high accuracy in
detecting various abnormalities. These models can effectively categorise ECG images into
classes such as abnormal heartbeat, myocardial infarction, and normal ECG, thus facilitating
timely and accurate diagnosis [29].

The advancement of software tools and computational frameworks has further supported
cardiovascular image analysis. These innovations integrate sophisticated image processing
techniques and machine learning algorithms, enhancing both the accuracy and efficiency of
image classification. Such innovations are essential for translating research advancements
into clinical practice [34]. Despite these advancements, numerous challenges persist in the
field of cardiovascular image classification. The scarcity of labelled data, the need for model
generalisability across different imaging modalities, and the interpretability of deep learning
models are key obstacles. Addressing these challenges is crucial for improving the robust-
ness and applicability of cardiovascular image classification systems. Future research should
focus on developing methods to overcome these obstacles, ensuring that the full potential of
these technologies can be realised in clinical settings [10].

2.2 Counterfactual visualisation

Counterfactual refers to hypothetical scenario (what the image would look like with the at-
tribute increased or decreased) often described as "What-if" scenarios. Counterfactual tech-
niques have emerged as a powerful approach in deep learning, enabling the extraction of
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causal insights from complex models [22]. In the domain of cardiovascular imaging, these
methods provide a framework to analyse “what-if” scenarios, assisting clinicians in better un-
derstanding disease progression, treatment impacts, and patient outcomes. In medical imag-
ing, counterfactual analysis can help predict outcomes under alternative treatment regimes
or understand how changes in patient characteristics could affect disease progression. Tradi-
tional models are often limited to correlational analysis, whereas counterfactual approaches
incorporate causal reasoning, thus offering a more nuanced view of patient data [33].

Counterfactual techniques can enhance the predictive performance of deep learning mod-
els by assessing how modifications in imaging features influence the prognosis of cardiovas-
cular diseases. For instance, by the integration of counterfactual reasoning with convolu-
tional neural networks (CNNs), have demonstrated improved risk stratification in patients
with coronary artery disease [2]. By employing counterfactual analysis, clinicians can sim-
ulate alternative therapeutic interventions, assisting in clinical decision-making. For exam-
ple, Nguyen et al. (2020) [23] utilised counterfactual models to evaluate treatment effects
for patients with various medical diseases, revealing valuable insights into optimal patient
management strategies based on patient-specific imaging data. The authors also uncover
significant potential in advancing medical decision-making and diagnosing processes [23].

Counterfactual techniques enable for the modelling of disease trajectories, helping to elu-
cidate how specific factors contribute to the progression of cardiovascular conditions. Empir-
ical studies have employed these methods such as risk prediction model offering probabilistic
model for diagnosing cardiovascular disease [8]. Although counterfactual techniques offer
substantial benefits, they also present several challenges. The development of accurate coun-
terfactual models requires careful consideration of confounding variables and the selection
of appropriate reference scenarios. Additionally, robustness to model misspecifications and
data sparsity are essential issues that need to be addressed for reliable outcomes [8] [25].

Furthermore, the interpretability of models remains a crucial aspect in the medical do-
main. Researchers must ensure that counterfactual analyses are transparently communicated
to clinicians, fostering trust and facilitating clinical adoption [13].

2.3 Gamification for increased medical awareness
Gamification refers to the application of elements such as leaderboards. The primary goal
of gamification is to stimulate of structural and trait-based competitiveness (engagement,
performance growth or informal learning environments) [4]. For educational purposes, gam-
ification have been found to increase student engagement and improve learning outcomes
compared to traditional learning methods [20]. In terms of fitness apps, incommensurate
elements (such as likes) have been found to increase intrinsic motivation more effectively
compared to commensurate elements (points, score) [11].

Gamification has evolved beyond entertainment and is now widely utilised for education
purposes as well. The educational processes can be enhanced by integration of virtual en-
vironment. The theoretical framework was also empirically investigated in various contexts
such as radiology [3]. The robust potential of gamification for medical students as end users
offers prospects not only for enhancing the learning process itself, but for improving training
in decision-making processes and decision-making awareness as part of diagnose processes.
[16].

Empirical studies further explore novel VR-based gaming methods. The findings show
promising results not only with diagnosing from medical images VR simulator as effective
learning tool that facilitate the developments of technical skills among future physicians [14].
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Medical imaging games can be broadly classified a) Games utilised for educational pur-
poses [3];[16], and b) Games utilised for better diagnosing processes [3]; [16];[14].

These innovations enhance the learning experience for medical professionals and in-
crease the trust on AI-assisted diagnoses [26]. In the case of radiographs, Winkel et al. [38]
have presented their RapRad game, where the main objective of the game was an engaging
learning environment combining elements of gaming and medical training. A total of 195
game levels covered various aspects of the presence or absence of pneumothorax, with a
point based scoring model to ensure intrinsic motivation from the users [11]. Another radi-
ology Pocket Game App for training was developed by Prasath who uses a simple interface
where user taps on the correct answer (green correct answer, red incorrect) [27].

3 Method
The translation technique works in three steps, as illustrated in Figure 1.

(a)

(b)

(c)

Figure 1: Description of game steps a) original images: right healthy, left cardiomegaly di-
agnosis b) area selection: right healthy (participants choose area which will be transplanted),
left cardiomegaly (participants choose where to insert translated area from right picture) to
make patient completely healthy c) result: after participants click on transplant, the result
will appear (percentage of healthy or cardiomegaly prediction and percentage of translated
area statement from healthy inserted to cardiomegaly X-ray).
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3.1 Segmentation
In the initial step, the image is segmented into a user-assigned number of areas via the su-
perpixels method [28]. Superpixels are groups of pixels that share similar characteristics,
such as colour or texture, and are used to simplify the segmentation into patches [32]. They
aggregate perceptually similar pixels into meaningful clusters, reducing the complexity of
image data and serving as a preprocessing step for many image segmentation tasks [37]. The
segmentation in the game algorithm uses Simple Linear Iterative Clustering (SLIC) based
on k-means clustering to group pixels based on colour similarity and spatial proximity [1].
Figure 2 illustrates the effect of SLIC with varying parameters governing the size of the
segments.

Figure 2: SLIC Superpixel segmentation with different number of superpixels

The implementation uses the OpenImageR package [21] with a compactness of 20 (fixed),
while the number of superpixels can be selected by the user in the range from 6 to 30.

3.2 Morph insertion
The MIMICRI method, introduced by Guo et al. in 2024 [15], is a Python library 1 designed
to provide domain-centered counterfactual explanations for cardiovascular image classifica-
tion models. It uses a recombination method called Morphmix to fill selected segments in
the target with pixels coming from the chosen segment in the target. A heuristic technique to
align the centroids of the segments designated for replacement was employed. From these
centroids, we apply a flood-fill algorithm to copy pixels from the original image into the
target location. The result is a recombined image with the selected segments replaced appro-
priately, as displayed on an MRI image in Figure 3.

Figure 3: MIMICRI insertion example. Copied with permission from [15]

1https://github.com/IBM/mimicri
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3.3 Prediction
The method is agnostic in regard to the underlying image classification model. In the pre-
sented trial, a convolutional neural network was employed, with an architecture of Convolu-
tion - Activation - Convolution - Leaky Rectified Linear Unit - Batch Normalization - Max
Pooling - Dropout - Flatten - Dense - Activation - Dropout - Dense - Activation.

4 Game presentation

4.1 User Interface
The user interface runs as an R shiny web based app connected to a MySQL database with
three tabs as presented in Figure 4

(a)

(b)

(c)

Figure 4: User Interface: a) Game page b) Instructions c) High score list

4.2 Game features
The goal of the game is to transplant healthy tissue into an image with cardiomegaly (CM).
The main objective lies in achieving an upward transition to at least 50% prediction of
healthy with the smallest possible minimal intervention (minimal transplantation area). Suc-
cessful users can store their results on a high scoreboard to improve engagement [19]. The
progress scoring is provided immediately showing the percentage of the image area, a score
that can be registered to empower intrinsic motivation [4].
Figure 5 illustrates a successful process.
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Figure 5: Example successful translation

4.3 Software
R Shiny [9] was used to create the interface, together with the packages OpenImageR [21]
(superpixels) and shinyjs [5] for the graphical interaction. Deep Learning models are created
using the keras package [17] in a Python virtual environment. File and Database I/O was
handled by the png [35] and RMySQL [24] packages.

4.4 User Explainability Tests
The service was tested by a convenience sample recruited via various online survey platforms
and measured whether testing the game could help users understand cardiomegaly better and
where in a scan they should look for traces of the condition. They were divided into three
groups as specified by their different support visuals of a) seeing a Grad-CAM heatmap of
a CNN cardiomegaly prediction, b) Control (no help), and c) being asked to play the game
for some time. They were ask to select a region in Figure 6 to heal. Psytoolkit [30, 31] was
used.

Figure 6: Segmented image for user survey
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5 Results
Figure 7 illustrates the game-user choice heatmaps across three experimental conditions. The
heatmaps reflect the areas selected by participants in each group when they were prompted
to identify key regions.

a) Control group b) Game play c) Grad-CAM Heatmap

Figure 7: User choice heatmaps based on cue

The intervened groups demonstrate a slight shift to right and down.

6 Discussion
The preliminary test findings indicate that the interventions caused a shift in user selection
towards critical areas beneath the ribs where the CM heart expands. This observation aligns
with predicted anatomical changes during CM diagnosing, arguing that the game success-
fully altered respondent grasp of CM structure, much like previous medical student score-
cards [16]. GRAD-CAM was even more efficient.

7 Conclusions
The presented method highlights a potential pathway for integrating gamification into med-
ical AI for better understanding of the pathological domain as well as the deep learning
mechanisms. User tests indicate an early tendency to select key regions when asked about
where to act against cardiomegaly, indicating that the gamified service can act to train people
in domain knowledge. Considerable future work is needed, particularly in user testing, to
determine the most effective ways to present the service, the optimal scanning systems for
its use, and its integration with other clinical systems.
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