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Abstract
Privacy-preserving inference, in edge computing paradigms, encourages the users of

machine-learning services to locally run a model on their private input, and only share
the model’s outputs for a target task with the server. We study how a vicious server can
reconstruct the input data by observing only the model’s outputs, while keeping the target
accuracy very close to that of a honest server: by jointly training a target model (to run at
users’ side) and an attack model for data reconstruction (to secretly use at server’s side).
We present a new measure to assess the inference-time reconstruction risk. Evaluations on
six benchmark datasets show the model’s input can be approximately reconstructed from
the outputs of a single inference. We propose a primary defense mechanism to distinguish
vicious versus honest classifiers at inference time. By studying such a risk associated
with emerging ML services, our work has implications for enhancing privacy in edge
computing. We discuss open challenges and directions for future studies and release our
code as a benchmark for the community at github.com/mmalekzadeh/vicious-classifiers.

1 Introduction
Emerging machine learning (ML) services build profiles of their users by collecting their
personal data. Users might share some specific data with a service provider in exchange
for some target utility. Health monitoring, wellness recommendations, dynamic pricing, or
personalized content usually attract users to share their data. If the users are aware of the
type of data collected about them, and explicitly confirm their consent, such data collection
and profiling is usually considered legitimate [11]. However, the challenge is to ensure that
the data collected by a server will only be used to deliver the target service they offer to
their users [18]. Such data might be used to make other private inferences about the user’s
personality or identity, which are considered data privacy attacks.

To preserve privacy, current techniques are on-device [34, 45] or encrypted [4, 13]
computations that hide inputs, as well as all the intermediate representations computed by the
model, and only release the outputs to the server. Since such edge inferences for a target task
might not seem sensitive to users’ privacy, the model’s outputs are released to the server in
their raw form; as the server needs these outputs to perform their ultimate analyses and satisfy
the services promised to the users. In various situations, minimal communication between
users and servers is crucial, for example, in tasks such as age or identity verification. The
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server requires the model’s outputs to grant permission for the user to proceed with subsequent
actions like account creation or payment. We argue that such a paradigm of running ML
models at the edge and only sharing the outputs with a service provider does not guarantee a
meaningful privacy protection for edge users.
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Figure 1: Processing user’s input x, the server re-
ceives only the output ŷ=F(x). We show that for
any model F , the server can train an attack model
G to secretly reconstruct the input from observed
output, while providing the target service to the
user with high accuracy.

As shown in Figure 1, we consider a
common scenario of edge or encrypted
inference, in which a user owns private
data x, and a semi-trusted server owns
an N-output ML classifier F . We put no
constraint on the user’s access to F ; e.g.
users can have a complete white-box view
of F . We assume that the server only
observes the model’s output ŷ = F(x)
(a.k.a. logits), which aims to help in
predicting the target information y. Our
main assumption is that ŷ 2 RN is a real-
valued vector of dimension N, where each
ŷn 2 R, for all n 2 {1,2, . . . ,N}, is the
logit score for the corresponding class or
attribute yn. There are several reasons
that a server might ask for observing the real-valued outputs ŷ to reach the ultimate decision
at the server’s side; compared to only observing the argmax(ŷ) or softmax(ŷ). For example,
the logit scores allow the server to perform top-K predictions, to measure the uncertainty in
the estimation, or to figure out adversarial or out-of-distribution samples [26].

Here are the contributions of our paper:
(1) Over-parameterized deep neural networks (DNNs) can be trained to efficiently encode

additional information about their input data into the model’s outputs which are supposed
to reveal nothing more than a specific target class or attribute. We propose jointly training
a multi-task model F (i.e., a vicious classifiers) as a classifier of target attributes as well
as a decoder model G (i.e., an attack model) for reconstructing the input data from the
shared outputs. The trained F can be efficiently useful for the target task, and also secretly
encode private information that allows reconstructing the user’s input data at inference time.
Evaluations on MNIST, FMNIST, CIFAR10, CIFAR100, TinyImageNet, and CelebA datasets
show input data can be approximately reconstructed from just the outputs of a single inference.
To assess the success of a malicious server, we consider two settings, where users share either
the logits outputs or the softmax outputs. For the same model, in the softmax setting, it is
harder to establish a good trade-off between the accuracy of target task and the quality of
reconstructed data, particularly, when the number of classes or attributes is less than 10.

(2) To measure the risk of data reconstruction, previous works [12, 39, 46] mostly use
mean-squared error (MSE), peak signal-to-noise ratio (PSNR), or structural similarity index
measure (SSIM). Euclidean distance-based measures assume that features are uncorrelated,
which is not true for real-world data, such as images where pixels often have high correlation.
We believe the risk of a reconstruction attack depends not only on the similarity of the
reconstruction to the original data, but also on the likelihood of that sample data. To this
end, we propose a new measure of reconstruction success rate based on the Mahalanobis
distance, which considers the covariance matrix of the data. Our proposed measure, called
reconstruction risk, also offers a probabilistic view on data reconstruction attack and thus,
offers a principled way to evaluate the success of an attack across models and datasets.
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(3) Distinguishing honest models from vicious ones is not trivial, and blindly applying
perturbations to the outputs of all models can damage the utility received from honest servers.
Users usually observe a trained model F that is claimed to be trained for a target task, but
the exact training objective is unknown. Whether F only performs the claimed task or it also
secretly performs another task is unknown. To this end, we propose a method for estimating
the likelihood of a model being vicious, based on the idea that a model trained only for the
target task should not be far from the “ideal” solution for the target task; if it is only trained
using the claimed objective function. On the other hand, if the model is vicious and is trained
using another objective function to perform other tasks in parallel to the claimed one, then
the model probably has not converged to the ideal solution for the target task. Our proposed
defense can work even in black-box scenarios (e.g. encrypted computing), and provides a
practical estimation for distinguishing honest vs. vicious models by only using a very small
set of data points labeled for the target task (see Appendix §I).

By uncovering a major risk in using emerging ML services, this paper helps advance
privacy protection for the users’ of ML services. Our proposed analysis is just a first look,
thus we conclude this paper by discussing current challenges and open directions for future
investigations. We open-source our code at github.com/mmalekzadeh/vicious-classifiers.

2 Methodology
Problem Formulation and Threat Model. Let X ⇥Y denote the joint distribution over data
and labels (or attributes). We assume each data point (x,y)⇠ (X ⇥Y) either (1) exclusively
belongs to one of the N classes (i.e., categorical Y = {1,2, . . . ,N}), or (2) has N binary
attributes (i.e., Y = {0,1}N). Let the server train a model F on a target task Y , where
F(x) = ŷ = [ŷ1, ŷ2, . . . , ŷN ] denotes the model’s outputs; i.e., prediction scores (logits) over
Y . For the categorical case, Y = {1,2, . . . ,N}, each ŷi shows the logit score for the class
i (e.g. the score for class i in CIFAR10 dataset). For the binary case, Y = {0,1}N , each ŷi
shows the logit score for the attribute i (e.g. the score for attribute i in CelebA dataset, such as
“smiling” attribute). We allow F to have any arbitrary architecture; e.g. to be a single model
with N outputs, or to be an ensemble of N models each with a single output, or any other
architectural choice. Model F is trained by the server (which acts as the attacker), thus F is
white-box to the server. At test time, the users will have a complete white-box view of F . We
consider two settings: (1) logit outputs, where ŷ 2 RN , and (2) softmax outputs, where using
the standard softmax function, ŷ is normalized to a probability distribution over the possible
classes (see Appendix §A).

Training of Target Classifier and Attack Models. We present an algorithm for jointly
training F and G (Figure 2). The server trains model F that takes data x as input and produces
N-outputs. Outputs are attached to the classification loss function LC, which computes
the amount of inaccuracy in predicting the true attribute y, and thus provides gradients for
updating F . For categorical attributes, we use the standard categorical cross-entropy loss

LC(ŷ,y) =
N

Â
n=1

�yn log ŷn, (1)

and for binary attributes, we use the class-weighted binary cross-entropy

LC(ŷ,y) = 1
N

N

Â
n=1

hnyn log ŷn +(1�yn) log(1� ŷn), (2)

https://github.com/mmalekzadeh/vicious-classifiers
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where hn denotes the weight of class 1 for attribute yn 2 {0,1}, and it is defined as the number
of samples labeled 0 divided by the number of samples labeled 1 in the training dataset.
CelebA dataset [23] used in our experiments is highly unbalanced for several attributes. Our
motivation for using the class-weighted binary loss function is to obtain a fairer classification
for unbalanced labels. While training F , the model’s outputs are fed into another model G,
which aims to reconstruct the original data. The output of G is attached to a reconstruction
loss function LR, producing gradients for updating both F and G.
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Figure 2: F is the target model, G is the attack
model, LC is the classification loss, LR is the
attack reconstruction loss. Both F and G are
DNNs. Hyperparameters bC and b R control
the trade-offs between classification and recon-
struction tasks.

In this paper, we benchmark image datasets
in our experiments; thus, we utilize the loss func-
tions used in image processing tasks [44]. In par-
ticular, we employ a weighted sum of (i) struc-
tural similarity index measure (SSIM) [35] and
(ii) Huber loss [14] which is a piecewise func-
tion including both mean squared error (known
as MSELoss) and mean absolute error (MAE,
also known as L1Loss) [30]. This design choice
of combining a perceptually-motivated loss (i.e.,
SSIM) with a statistically-motivated loss (i.e.,
MSELoss or L1Loss) is inspired by the com-
mon practice used by previous work in image-
processing literature [40, 44]:

LR(ex,x) = aSSIM(ex,x)+ gHuber(ex,x), (3)

where a and g are the hyperparameters for data reconstruction. Note that, depending on the
data type and the attack’s purpose, one can use other reconstruction loss functions.

The ultimate loss function. For optimizing the parameters of F , we use:

LF = bCLC(ŷ,y)+b RLR(ex,x), (4)

where bC and b R are the weights that allow us to move along different possible local minimas
and both are non-negative real-valued. For optimizing the parameters of G, we only use LR,
but notice that there is an implicit connection between G, F , and LC since G acts on ŷ =F(x).
Algorithm 1 (Appendix D) summarizes the explained training procedure.

2.1 Reconstruction Risk
We define S(·, ·) as a measure of reconstruction risk, and S(ex,x) � R means the risk of
reconstructing x is more than R based on the measure S. Considering the reconstruction of
data, ex, we use S to measure privacy loss. A pivotal question is: what is the most suitable
and general S for computing and evaluating the attacker’s success? Previous works (see
Appendix §B) mostly rely on common measures such as MSE or SSIM. We propose our
measure of reconstruction risk and we compare it with other measures in §3.

Basics. For two random vectors x and ex of the same distribution with covariance
matrix SD, the Mahalanobis distance (MD) is a dissimilarity measure between x and ex:

d(x,ex) =
q
(x�ex)SD

�1(x�ex). Similarly, we can compute d(x,µD), where µD is the mean
of distribution that x is drawn from. Notice that if SD is the identity matrix, MD reduces to
the Euclidean distance (and thus the typical MSE). Notice that in practice, e.g. for real-world
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data types such as images, the SD is rarely close to the identity matrix. The pixels of an image
are correlated to each other. Similarly, the sample points of time-series signals are temporally
correlated to each other, and so on. Therefore, for computing MD, we need to approximate
SD using a sample dataset. In our experiments, we approximate SD via samples in the training
dataset. Another characteristic of MD is that when the data follows a multivariate normal
distribution, the probability density of an observation x is uniquely determined by MD:

Pr(x) = 1p
det(2pSD)

exp
⇣
�

(d(x,µD)
�2

2

⌘
. (5)

The multivariate normal distribution is the most common probability distribution that is used
for approximating data distribution [29]. Thus, with the assumption that one can approximate
data distribution using a multivariate normal distribution, MD can be utilized for computing
the probability density of an observation x; i.e., Pr(x).

Our Measure. Motivated by the characteristics of MD, we assume that the risk of a
reconstruction ex of a sample x depends on both d(x,ex) and Pr(x): the more unlikely is a
sample (lower Pr(x)), the more important is the value of d(x,ex) (the more informative is
a specific reconstruction). For the reconstructions of two independent samples x1 and x2

with d(x1,ex1) = d(x2,ex2) and Pr(x1)< Pr(x2), the risk of ex1 should be higher than ex2. Our
intuition is: because x1 is less likely than x2, then x1 is easier to be identified when attackers
observe ex1, compared to x2 when attackers observe ex2. Because x1 is less likely (or more
unique) than x2, then a reconstruction of x1 will give the attacker more information.

In general, the intuition is that reconstructing a data point that belongs to a more sparse
part of the population is riskier than reconstructing those that belong to a more dense part of
the population. To this end, we define the reconstruction risk of a model with respect to a
benchmark test dataset D = {xn}N

n=1 as

R=
1
N

N

Â
n=1

d(xn,µD)
�
d(xn,exn). (6)

The less likely a sample, or the better its reconstruction quality, the higher is its contribution to
the risk of the dataset. Our measure gives a general notion of reconstruction risk that depends
on the characteristics of the entire dataset, and not just each sample independently. Moreover,
our measure can be used across different data types and is not restricted to images or videos.

Remark. Our proposed R is task-agnostic. For example, for face images, background
reconstruction might not be as important as eyes or mouth reconstruction. For task-specific risk
assessments, one might need to perform preprocessing. For example, by image segmentation
and applying the computation of R only to that segment of the photo that includes the face.

3 Experimental Results
Our experimental setup is detailed in Appendix §E. Our main results are reported in Ta-
bles 1 (and Appendix Table 6). We compare the accuracy of the target task and the re-
construction quality for different trade-offs. We consider two settings: during training the
attack model, G receives (i) the logits outputs of F , or (ii) the softmax outputs. To compare
the trade-offs between accuracy and reconstruction quality, we also show two extremes in
training F : classification only (when b R = 0) and reconstruction only (when bC = 0). The
main findings are summarized as follows.
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Table 1: Reconstruction quality vs. classification accuracy in different settings and for
different datasets. We repeat each experiment for five different random seeds and report the
mean and standard deviation.
Outputs Dataset b R/bC PSNR (dB) SSIM R ACC (%)

Logits

MNIST

0/1 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000 99.54 ± 0.11
1/1 22.090 ± 0.095 0.920 ± 0.003 1.378 ± 0.021 99.53 ± 0.09
3/1 22.367 ± 0.075 0.926 ± 0.001 1.394 ± 0.012 99.52 ± 0.04
5/1 22.336 ± 0.049 0.927 ± 0.001 1.392 ± 0.011 99.55 ± 0.04
1/0 22.169 ± 0.052 0.926 ± 0.001 1.398 ± 0.009 10.00 ± 0.00

FMNIST

0/1 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000 94.33 ± 0.12
1/1 20.525 ± 0.056 0.783 ± 0.001 1.243 ± 0.003 94.58 ± 0.05
3/1 20.883 ± 0.061 0.799 ± 0.001 1.272 ± 0.006 94.24 ± 0.08
5/1 20.871 ± 0.068 0.803 ± 0.001 1.271 ± 0.004 94.30 ± 0.16
1/0 21.021 ± 0.032 0.810 ± 0.001 1.281 ± 0.008 10.00 ± 0.00

CIFAR10

0/1 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000 91.86 ± 0.69
1/1 15.388 ± 0.039 0.377 ± 0.002 1.009 ± 0.003 91.34 ± 0.58
3/1 15.550 ± 0.042 0.406 ± 0.001 1.013 ± 0.001 90.84 ± 0.35
5/1 15.581 ± 0.043 0.414 ± 0.003 1.010 ± 0.003 90.62 ± 0.62
1/0 15.784 ± 0.037 0.468 ± 0.000 1.026 ± 0.002 10.00 ± 0.00

CIFAR100

0/1 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000 68.13 ± 0.66
1/1 16.757 ± 0.142 0.473 ± 0.012 1.051 ± 0.003 67.50 ± 0.66
3/1 18.463 ± 0.311 0.646 ± 0.018 1.147 ± 0.023 64.57 ± 1.20
5/1 19.047 ± 0.235 0.701 ± 0.008 1.201 ± 0.015 61.25 ± 1.34
1/0 20.693 ± 0.097 0.821 ± 0.002 1.454 ± 0.011 1.00 ± 0.00

TinyImgNet

0/1 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000 46.96 ± 0.25
1/1 16.763 ± 0.171 0.473 ± 0.014 1.042 ± 0.004 45.98 ± 0.56
3/1 19.036 ± 0.190 0.692 ± 0.011 1.166 ± 0.016 42.71 ± 0.22
5/1 20.072 ± 0.181 0.766 ± 0.009 1.261 ± 0.019 37.57 ± 1.39
1/0 23.166 ± 0.104 0.900 ± 0.004 1.796 ± 0.028 0.50 ± 0.00

CelebA

0/1 0.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000 88.43 ± 0.00
1/1 19.081 ± 0.044 0.813 ± 0.000 1.238 ± 0.002 88.03 ± 0.06
3/1 19.619 ± 0.087 0.837 ± 0.002 1.287 ± 0.009 86.41 ± 0.37
5/1 19.850 ± 0.018 0.845 ± 0.000 1.308 ± 0.002 85.82 ± 0.20
1/0 20.292 ± 0.021 0.858 ± 0.001 1.346 ± 0.002 50.00 ± 0.00

Softmax

MNIST 1/1 16.061 ± 0.186 0.684 ± 0.012 1.037 ± 0.006 99.54 ± 0.05
5/1 21.036 ± 0.127 0.897 ± 0.004 1.272 ± 0.018 99.62 ± 0.04

FMNIST 1/1 18.009 ± 0.243 0.684 ± 0.011 1.086 ± 0.010 94.38 ± 0.06
5/1 19.915 ± 0.182 0.771 ± 0.006 1.204 ± 0.007 94.29 ± 0.35

CIFAR10 1/1 13.934 ± 0.246 0.256 ± 0.031 1.003 ± 0.001 91.75 ± 0.38
5/1 15.389 ± 0.061 0.409 ± 0.004 1.015 ± 0.001 90.47 ± 0.56

CIFAR100 1/1 12.846 ± 0.125 0.202 ± 0.002 1.002 ± 0.001 67.21 ± 0.18
5/1 16.580 ± 0.138 0.510 ± 0.002 1.054 ± 0.001 65.65 ± 1.21

TinyImgNet 1/1 13.466 ± 0.042 0.203 ± 0.003 1.003 ± 0.000 44.08 ± 1.70
5/1 17.168 ± 0.084 0.569 ± 0.010 1.066 ± 0.003 42.38 ± 0.68
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Each experiment includes training F and G on the training dataset, for 50 epochs, and
choosing F and G of the epoch in which we achieve the best result on the validation set
according to loss function in Equation (4). In each experiment, via the test dataset, we evaluate
F by measuring the accuracy of F in estimating the public task using Equations (7) or (8), and
we evaluate G by computing the reconstruction quality measured by PSNR, SSIM, and our
proposed reconstruction risk R in (6). To compute R, we approximate µD and SD via samples
in the training set. For a fair comparison, we use a random seed that is fixed throughout all
the experiments, thus the same model initialization and data sampling are used.

(1) Trade-offs. When the logit outputs are available, the attacker can keep the classifica-
tion accuracy very close to that achieved by a honest model, while achieving a reconstruction
quality close to that of reconstruction only. For instance, even for relatively complex samples
from TinyImgNet, we observe that with about 4% loss in accuracy (compared to classification-
only setting), we get a reconstruction quality of around 19 dB PSNR and 0.7 SSIM; which
is not as perfect as reconstruction only but can be considered as a serious privacy risk. We
observe serious privacy risks for other, less complex data types. We do not perform any
hyper-parameter or network architecture search (as it is not the main focus of our work).
However, our results show that if one can perform such a search and find a configuration
that achieves better performance (compared to our default WideResNet) in classification- and
reconstruction-only settings, then such a model is also capable of achieving a better trade-off.
Thus, our current results can be seen as a lower bound on the capability of an attacker.

(2) Data Type. For grayscale images (MNIST and FMNIST) we demonstrate very
successful attacks. For colored images (CIFAR10, CIFAR100, TinyImgNet), it is harder to
achieve as good trade-offs as those achieved for grayscale images. However, as one would
expect, when the number of classes goes up, e.g. from 10 to 100 to 200, the quality of
reconstruction also becomes much better, e.g. from PSNR of about 15 to about 18 to about 20
dB, for CIFAR10, CIFAR100, and TinyImgNet respectively.

(3) Logits vs. Softmax. As one may expect, transforming logits into softmax probabilities
will make it harder to establish a good trade-off. However, we still observe reasonably
good trade-offs for low-complexity data types. The difficulty is more visible when the data
complexity goes up. For TinyImgNet in the softmax setting, we can get almost the same
reconstruction quality of the logit setting (around 17dB PSNR and 0.57 SSIM); however, the
classification accuracy in the softmax setting drops by about 3% to compensate for this. Notice
that for the CelebA dataset, we cannot transform the outputs into softmax as the attributes are
binary. Instead, we can use the sigmoid function, which is a one-to-one function, and allow
the server to easily transform the received sigmoid outputs into logit outputs. Hence, the
server can train F and G in the logit setting, and after training just attach a sigmoid activation
function to the output layer. The fact that the shortcoming of the sigmoid setting can be easily
resolved by such a simple trick will facilitate such attacks as releasing sigmoid values might
look less suspicious. As a side note, softmax functions, unlike sigmoids, are not one-to-one;
since so f tmax(x) = so f tmax(x+a) for all real-valued a. Thus, such a trick cannot be applied
to categorical attributes with more than two classes, where users might release the softmax
outputs instead of raw ones. In such settings, a server can replace categorical attributes of size
C with C binary attributes. We leave the investigation of such a replacement to a future study.

(4) The value of N. For the CelebA, we observe that the reconstruction quality improves
with the number of binary attributes N; however, the improvement is not linear. With
b R/bC = 3 we have about 0.14 points improvement in SSIM and about 2 dB in PSNR when
going from N = 1 to N = 5 attributes, but when moving from N = 5 to N = 10 we observe an
improvement of only 0.05 in SSIM and about 1 db in PSNR. A similar diminishing increase
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Figure 3: Examples of image reconstruction with the logit outputs for b R/bC = 3/1 in Table 1
for MNIST, FMNIST, CIFAR10, CIFAR100, TinyImageNet, and CelebA datasets (from top
to bottom). For each dataset, the first row consists of the original images and the second row
is the reconstructed data by the attacker.

happens also when we move from N = 10 to N = 40 attributes. In sum, these results suggest
that the proposed attack achieves meaningful performance on CelebA with just a few outputs
(10  N  20), and such scenarios of collecting a few binary attributes can lie within several
applications provided by real-word ML service providers.

(5) The properties of R. We demonstrate the properties of our proposed reconstruction
risk R, compared to PSNR and SSIM; based on our main results reported in Table 1. The
values of R are in conformity with the values of PSNR and SSIM: the higher R is, it indicates
the higher PSNR and SSIM are. However, the values of PSNR and SSIM depend on the
complexity of the data type, but the values of R demonstrate more homogeneity across data
types. For example, in some situations, PSNR is almost the same but SSIM is different. For
instance, with a similar PSNR of 19 dB for both CIFAR100 and CelebA, we observe different
SSIM of 0.7 for CIFAR100 and 0.8 for CelebA). By combining both PSNR and SSIM, one
can conclude that the model reveals more information on CelebA than CIFAR100. This can
be seen by the values R in which we have 1.23 for CelebA compared to 1.2 for CIFAR100. On
the other hand, there are situations in which SSIM is almost the same but PSNR is different.
For instance, SSIM of 0.81 for both FMNIST and CelebA corresponds to a PSNR of 21 dB
for FMNIST and 19 dB for CelebA. Similarly, by combining these two measures, we expect
the model to leak more information for FMNIST than CelebA. Again, this conclusion can be
made by observing R which is 1.28 for FMNIST and 1.23 for CelebA. Overall, R provides a
more consistent and unified measure of reconstruction risk, as it is based on a more general
notion of distance than other data-specific measures (see §2.1).
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(6) Qualitative comparison. Figure 3 (and similarly Appendix Figure 4) show examples
of data reconstruction. An interesting observation is that the reconstructed images are very
similar to the original samples. We emphasize that in this paper we used off-the-self DNNs,
and leave the design and optimization of dedicated DNN architectures to future studies.

4 Discussion

Limitations. Addressing all open questions when studying such a privacy risk is challenging.
Throughout our evaluations, we decided to fix some variables, such as fixing data type to image
data and the model architecture to WideResNet. We were motivated by the aim to allocate
space and resources for thorough analysis and evaluation of more important variables, such
as sample size, input and output complexity, hyper-parameters of the algorithms, potential
defense, etc. Overall, our theoretical analysis, as well as the independence of our algorithm
to input and model, suggests that similar results can be generalized to other data types and
model architectures.

Future Work. (1) We only considered a single inference, but there are scenarios where
multiple inferences are made on a user’s private data; such as ensemble prediction using
multiple models or Monte Carlo dropout. (2) Combining the outputs’ of multiple models on
the same data to improve the reconstruction quality is an open question. (3) We mainly focus
on understanding the attack, and our initial effort on the defense is to inspire the community,
to investigate more efficient and effective defenses. Our proposed defense mechanism needs
several rounds of training and defining a threshold for attack detection. Considering defenses
that potentially do not need training or can detect vicious models more accurately is also a
key topic to explore. (4) Our focus is on classification; however, the foundational principles
of our work apply to regression as well. Hence, one may consider exploring such potential
attacks for regression models. (5) Finally, our proposed reconstruction risk can be further
improved by comparing it with similar measures introduced for other attacks, such as the
’calibrated score’ in [36] on membership inference attacks.

5 Conclusion

A growing paradigm in edge computing, motivated by efficiency and privacy, is “bringing the
code to the data”. In this work, we challenge the privacy aspect of this paradigm by showing
the possibility of data reconstruction from the outputs’ of a target machine learning task. We
benchmark data reconstruction risk and offer a unified measure for assessing the risk of data
reconstruction. While detecting such a privacy attack is not trivial, we also take an initial step
by proposing a practical technique for examining ML classifiers. We believe that our paper
will serve as an inspiration for further explorations, in both attack and defense methods, to
enhance data privacy in edge computing.
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