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Abstract

Advancements in generative modeling are pushing the state-of-the-art in synthetic
medical image generation. These synthetic images can serve as an effective data aug-
mentation method to aid the development of more accurate machine learning models
for medical image analysis. While the fidelity of these synthetic images has progres-
sively increased, the diversity of these images is an understudied phenomenon. In this
work, we propose the SDICE index, which is based on the characterization of similarity
distributions induced by a contrastive encoder. Given a synthetic dataset and a reference
dataset of real images, the SDICE index measures the distance between the similarity
score distributions of original and synthetic images, where the similarity scores are esti-
mated using a pre-trained contrastive encoder. This distance is then normalized using an
exponential function to provide a consistent metric that can be easily compared across
domains. Experiments conducted on the MIMIC-chest X-ray and ImageNet datasets
demonstrate the effectiveness of SDICE index in assessing synthetic medical dataset di-
versity.

1 Introduction

The limited size of medical imaging datasets is often a major roadblock in the development
of accurate deep neural network (DNN) models for such domains. While datasets like Ima-
geNet [7], MS-COCO [13], and LAION-400M [19] have been instrumental in the advance-
ment of DNN models, the high costs and expertise required for medical image collection and
annotation inhibit the curation of such large-scale medical datasets. Patient privacy concerns
and strict regulations such as GDPR [1] and HIPAA [14] further impede the sharing of rou-
tine medical datasets within the research community. Latent Diffusion Models (LDMs) such
as Stable Diffusion [16] generate high-fidelity synthetic images conditioned on text prompts.
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Figure 1: F-ratio between the similarity score distribution of real and synthetic datasets
serves as a good indication of the diversity within the synthetic dataset.

Several implementations of Stable Diffusion have been proposed in the medical domain in-
cluding RoentGen [4] for Chest X-ray (CXR) generation, Medical Diffusion [12], and Brain
Imaging Generation [15] for MRI and CT image generation. While these works show that
high-fidelity synthetic images can be generated, the ability of these image generation tools
to produce synthetic datasets that encompass possible real-world variations is questionable.
Diversity of a synthetic dataset can be broadly defined as the spectrum of features, styles,
and semantic variations contained in the generated images. Ensuring diversity in synthetic
datasets is essential, as insufficient diversity can impair a model’s generalization to real data
[10]. Diversity of synthetic datasets is typically evaluated using the Multi-Scale Structural
Similarity Index (MS-SSIM) [21] score. A lower average MS-SSIM score is considered as
a proxy for good dataset diversity. While the MS-SSIM score allows for an objective diver-
sity assessment of synthetic datasets, it has inherent limitations. Firstly, it is computed at
the image level and then extrapolated to the dataset by estimating first and/or second-order
statistics. Secondly, it is typically not normalized, which implies that its absolute value is not
very meaningful. However, it is still useful for relative comparisons between two competing
datasets or methods. [4] shows that the MS-SSIM is a poor indicator of diversity in CXR
generation and yields inconclusive correlations. It must be emphasized that the MS-SSIM
score was originally formulated as an analytical way to assess the quality of digital pictures
by assessing structural similarity.

In this work, we propose a novel approach for diversity quantification of synthetic datasets.
Given a sufficiently-diverse reference dataset of real images and a synthetic dataset, it is
possible to analyze whether the variations in the synthetic dataset match or exceed those
observed in the reference dataset, as shown in Figure 1. Specifically, we characterize the
observed variations in a synthetic dataset by analyzing the similarity distributions between
images of the same class (intra-class) and images from different classes (inter-class). We
assume that the similarity scores are computed based on a contrastive encoder, which is pre-
trained to be invariant under different affine/photometric transformations of the same image.
We hypothesize that benchmarking of intra- and inter-class synthetic similarity distributions
against their counterparts based on a reference dataset is a good proxy for diversity. Based
on this hypothesis, we make the following contributions:
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* We propose a dataset-level diversity assessment index called SDICE, which charac-
terizes Similarity Distributions Induced by a Contrastive Encoder.

* While the concept of SDICE is generic, we also propose a specific instantiation of the
SDICE index using F-ratio as the distance between two distributions and applying an
exponential normalization to the resulting distance.

* We demonstrate the utility of the SDICE index by applying it to synthetic datasets
generated from two models: (i) RoentGen trained on MIMIC-CXR (Chest X-ray)
images and (ii) Stable Diffusion trained on natural images. Our analysis indicates that
the generated synthetic CXR dataset has low diversity, especially failing to capture
variations within the same class.

Related Work: Saad et al. [18] show high variance in results when assessing the intra-class
diversity of generated images in medical and non-biomedical domains using MS-SSIM and
cosine distance. Friedman et. al. [8] argue that existing metrics for measuring diversity are
often domain-specific and limited in flexibility and propose the Vendi score. They show that
even models that capture all the modes of a labeled dataset can be less diverse than the real
dataset. Alaa et al. [2] introduce a 3-d metric that characterizes the fidelity, diversity, and
generalization performance of any generative model. They quantify diversity in the feature
space, while our SDICE index operates in the similarity space. This distinction makes our
method more robust, as it captures diversity across all clusters, unlike 3-Recall, which is
sensitive to the value of § and may struggle with highly multimodal distributions.

2 Proposed SDICE Index

The key intuition underlying the proposed SDICE index is that a synthetic dataset can be
considered to have good diversity if the variations in this dataset closely follow or exceed the
variations observed in a reference dataset containing sufficiently-diverse real images. Figure
2 provides an overview of the architecture of our proposed SDICE index. However, two
main challenges need to be overcome to determine if two datasets (synthetic and real) have
similar variations. 1) The variations in a dataset can be caused due to many reasons such
as image noise and within and between class differences, and it is essential to capture these
variations individually. 2) A good metric is required to capture pair-wise similarities between
the images.

Problem Statement: Let, D° = {x!,y!}| be a synthetic image dataset with N* sam-
ples, where x € R¥*W*C ig an input image (H, W, and C represent the height, width, and
number of channels in the input image, respectively) and y € {1,2,--- ,M} is the class la-
bel. Similarly, let D" = {x;,y;}j)il be a real image dataset containing N” samples. Let

F : REXWXC _, Rdim pe a pre-trained feature extractor that outputs a fixed-length embed-
ding for a given image. Let S : R%"™ x R¥™ — R be a similarity metric that outputs the
similarity between two feature embeddings. Given a synthetic dataset D°, a reference real
dataset D', a feature extractor F, and a similarity metric S, the goal is to compute a diversity
index y € [0, 1] that indicates if the two datasets D* and D" have similar variations. A higher
value of y indicates better diversity.
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Figure 2: Overview of the proposed SDICE index. We input the real and synthetic dataset
to the contrastive pretrained encoder to obtain similarity score distributions. The F-ratio
between the two distributions after exponential normalization can be used to assess the di-
versity of the synthetic dataset.

2.1 Generic SDICE Index

The variations in a dataset can be broadly categorized into two types:

1. Intra-class Variations (intra): These are variations between input images belong-
ing to the same class, e.g., differences between CXR images of the same underlying
condition. A well-trained feature extractor will produce embeddings that have high
similarity for images of the same class.

2. Inter-class Variations (inter): These are variations between input images belonging
to different classes, e.g., differences between CXR images of patients having different
diseases. A good feature extractor will learn to amplify these variations and produce
embeddings that have lower similarity scores.

To characterize the above types of variations, we employ the following approach. Let
x; and x; be a pair of images randomly drawn from dataset D*, where * € {s,r}. Let
Sk, = S(F(x;),F(x;)) be the similarity between two input images drawn from D*. Let
Givira b the probability distribution of S, when [y; = y;] (i.e., distribution of similarity
scores between images of the same class) Similarly, let G}, be the probability distribu-
tion of S, when [y} # y;] (i.e., distribution of similarity scores between images of different
classes). Let Q : G x G — [0, 0] be a distance measure between two probability distributions.
Specifically, let Q(Gop||G) be the distance of a probability distribution Gy from another dis-
tribution G;. We can compute dinra = Q(G;y10l|Ginira) 04 dinter = Q(Gyor||Ghser)- Larger
values of djurq (dinser) indicate that the synthetic similarity distribution is highly dissimilar
to the real similarity distribution, indicating low intra-class (inter-class) diversity. On the
other hand, smaller values of d;uq Or dinser indicate good alignment between the score dis-
tributions, representing high diversity. Therefore, the diversity index 7y should be inversely
proportional to the above distance values. One limitation of the above distance values is their
unbounded and unnormalized nature, which makes it difficult to interpret these values across
domains. To address this issue, we introduce a normalization function A : [0,e0] — [0, 1]
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with parameter « to obtain the SDICE index as:
Yintra = Ha (dintra) (1)

Yinter = HO! (dinter) (2)

The tuple SDICE := (Yutra, Yinrer) can be used to assess the diversity of a synthetic dataset.
If a single diversity index is desired, ¥ can be defined as:

Y=\ Yiutra + Vinter 3)

Note that higher values of y indicate better diversity.

2.2 Practical Implementation of SDICE Index

Four critical design choices must be made to practically implement the proposed SDICE
index: (i) feature extractor JF, (ii) similarity function S, (iii) probability distance measure Q,
and (iv) normalization function H. Before making these design choices, one needs to under-
stand the worst-case scenario for the diversity of a synthetic dataset. A synthetic dataset can
be considered to have negligible diversity if all the generated images are either exact copies
of each other or minor geometric and/or photometric variations of one another. In this worst-
case scenario, the combination of feature extractor and similarity metric must result in a very
high similarity value for any pair of images drawn from such a low diversity dataset. This
can be achieved by training the feature extractor F in a self-supervised contrastive manner
[5], where different minor transformations (augmentations) of the same image are forced to
produce identical feature vectors. This explains our choice of a pre-trained contrastive en-
coder for F. Since cosine similarity is typically employed in such contrastive encoders, we
also choose cosine similarity as the default similarity function.

One common approach to estimate the distance between two probability distributions
is to fit parametric density functions based on the available samples and calculate standard
probability distance measures. However, for the sake of simplicity, we compute F-ratio
between the distributions. Given two distributions Gy and G;, whose mean (uy and g,
respectively) and standard deviation (0p and o7, respectively) values are known, the F-ratio
can be computed as:

(11 — po)?
ol+0o}

Q(G0||G1) = F-ratio(Go,G1) = @

Since true mean and standard deviation values are unavailable, we estimate them from the
available similarity scores. It is also possible to use other distance measures such as the Earth
Mover’s Distance (EMD) [17], which is defined as:

QGol6:) =EMD(Go.G1) = _inf [ u=vlav(uy) 5)

where I' is the set of all joint distributions v whose marginals are Gy and G;. Finally, the
normalization function H is selected as follows. Following the earlier discussion, in the
worst-case scenario, the intra-class similarity distributions of the synthetic dataset would be
close to that of the similarity distribution between images that are minor transformations of
each other. Let i denote a minor random transformation that can be applied to a real input
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image x;, to obtain a transformed image X/, = h(x). Let s =S8 (F(xL),F (x;,)) be the
similarity between a real input image and its transformed version. Let G/, ,,,, be the proba-
bility distribution of similarity score between a real image and its transformed counterpart.
Finally, let dmax = Q(GrullGirans)- When dinerq OF dinger 18 closer to dyqy, it indicates poor
diversity. Therefore, we can employ the following exponential normalization function.

Hal(d) = exp (ln(a) d ) ©)

dmax

The above normalization function ensures that when d = dy4y, Ho(d) = o0 and Hy(d) — 0
when d — 0. Here, « is usually set to a small value, say 1074,

We use the samples from the given datasets D° and D" to empirically estimate the required
distributions. For example, in the intra-class scenario, we select n samples from a class
and compute the similarities between all possible n(n— 1)/2 pairs to obtain G,,,. Since
there are M classes in the dataset, the number of possible similarity scores for the inter-
class distribution will be n? * (M? — M). Finally, to estimate G/, We obtain a total of nk
similarity values for each class, where k is the number of random transformations applied
per image.

3 Experimental Results

Datasets and Generators: We use the MIMIC-CXR dataset, comprising 377,110 CXRs
and associated reports, selecting representative samples from subsets pl1, p12, and p13.
The ‘impression’ sections of the reports were analyzed with the CheXpert labeler to gener-
ate 14 diagnostic labels. We generated synthetic CXRs using the RoentGen [4] with prompts
crafted from CheXpert labels. Additionally, we matched 14 ImageNet classes with MIMIC-
CXR classes for a broader evaluation, generated using UniDiffuser [3] (Figure 8). Our ex-
periments included three distinct prompt types for each dataset to investigate their impact on
synthetic image quality and relevance. For MIMIC-CXR, P, = ‘CLS’, P, = ‘An image of a
chest x-ray showing CLS’, and P3 = ‘A realistic image of a chest x-ray showing CLS’, where
CLS is the class name. For ImageNet, P| = ‘CLS’, P, = ‘An image of a CLS’, and P; = ‘A
realistic image of a CLS’.

Feature Extractor and Similarity Function: We employed a ResNet50 backbone pre-
trained on CXR using self-supervised contrastive learning for computing pairwise embed-
dings [6]. For ImageNet, a pre-trained ResNet50 was utilized to leverage its strong repre-
sentation capabilities. Since our aim was to obtain representative embeddings, not to train or
test the model, the potential bias concern is mitigated. The embeddings were used solely for
similarity evaluation. Classifiers trained on synthetic ImageNet samples showed a significant
drop in accuracy when tested on real data. Notably, there was a fourfold drop in accuracy
when classifiers trained on synthetic CXRs were tested on real CXRs. This highlights the
importance of evaluating the diversity of synthetic datasets. Our SDICE index correlates
with these performance declines, offering valuable insights into the diversity of synthetic
samples for downstream tasks.
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Table 1: SDICE index using F-ratio and EMD for intra (¥;,) and inter (Yju.r) cases, along
with the influence of sample size (a) and prompt type (b) on the SDICE index. Additional
results on FairFace dataset [11] are provided in the supplementary material.

Dataset Y SDICE index (y) Sample size Prompt type
F-ratio EMD n 2n 4n P P P
MIMIC [9] Yintra 0.11 0.01 026 036 047 | 063 036 037
Yinter 0.84 0.44 074 084 099 | 091 084 0.89
ImageNet [7] Yintra 0.47 0.26 037 047 056 | 047 083 0.89
Yinter 0.98 0.74 098 099 099 | 0.80 095 0098

3.1 Diversity evaluation

Firstly, we observe that G, . consistently hovers close to 1.0 (see Figure 3), which is ex-
pected because the feature extractor and similarity computation are designed to ignore differ-
ences between an image and its transformed version. However, intra-class variations depict a
greater range in D" than in D* for CXRs, whereas inter-class variations present comparable
extents across both distributions, as shown in Figure 4. To quantitatively assess these ob-
servations, we computed the SDICE index using both F-ratio and EMD for each case under
study. As detailed in Table 1, the ¥, for CXRs is significantly lower, indicating a lack
of intra-class diversity compared to those of ImageNet. An analysis using different sample
sizes and prompts is also presented in Table 1 and discussed in detail in section 3.3.

Further investigation of ¥, was done by measuring the diversity within individual
classes of both datasets as shown in Figure 5 and detailed in Table 2. We observe that
several classes in the MIMIC-CXR synthetic dataset do not have the same range of diver-
sity as its real counterpart. We observe poor diversity in classes with niche domain-specific
names (such as ‘Atelectasis’ and ‘Enlarged Cardiomegaly’) as opposed to more general ones
(‘Pneumonia’ and ‘Fracture’). We hypothesize that the generative model [4] possibly fails
to capture the true variations within the esoteric classes due to limited training. Inter-class
variation in the generated data is similar to that of the reference data for both datasets. To
confirm the observed trend in ¥, across datasets, we divided the dataset into ‘g’ subsets
where ‘g’ is the number of classes in the dataset. Each subset gradually included more
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Figure 5: Qualitative analysis of distribution differences between the real and synthetic
samples in terms of individual classes. (a) and (b) depict the class-wise distributions for the
MIMIC-CXR dataset, while (c) and (d) illustrate the same for the 14 classes of ImageNet.

classes, starting with only the first class in the initial subset and progressing to the last set
with all available classes. Our findings (Figure 6) reveal a gradual increase in Y., indicat-
ing growing diversity. However, this upward trend reaches a saturation point suggesting that
inter-class diversity does not increase beyond a certain threshold of class inclusion.

3.2 Comparison with SSIM and FID

A further analysis was conducted to highlight the variation obtained by the SDICE index as
compared to the SSIM and FID scores (Supp: Table 3). Our analysis shows mean FID scores
hover around 0.0082 and 0.0099 for intra and inter-class distributions, respectively. The FID
score shows poor resolution as compared to the SDICE index, as the latter benefits from
a domain-specific contrastive encoder. Similarly, SSIM values also fail to provide a clear
separation between intra and inter-class diversity with mean SSIM scores of 0.68 and 0.60,
respectively. The SDICE index effectively highlights the contrast in diversity across intra
and inter-class categories, providing clear insights that FID and SSIM metrics may overlook.
This highlights the benefits of SDICE index in domain-specific dataset analysis.

3.3 Ablation Studies
3.3.1 Impact of number of samples on %,

Table 1(a) outlines how %, values evolve as we increase sample sizes from n to 2n, and
further to 4n. This progression reveals that Y, or the measure of diversity within classes,
tends to rise with larger sample sets. Observed in both the MIMIC and ImageNet datasets,
this trend suggests that expanding the dataset by introducing a wider variety of examples
within each class enhances the overall diversity. The initial sample size was 350 for both
MIMIC-CXR and ImageNet datasets, meaning 25 images per class. We found that a bal-
anced sample size yielded better results in terms of diversity assessment compared to imbal-
anced samples.
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Table 2: %Yuq values where ‘Atelectasis’
in MIMIC-CXR exhibits the least diver-
sity, while ‘Fracture’ demonstrates the high-

est diversity. In ImageNet, ‘minibus’ class
has the least diversity, and ‘fireboat’ stands
out as the most diverse class.

MIMIC-CXR’s intra-class diversity with
increasing 7in, in contrast to ImageNet’s
consistent inter-class diversity.

3.3.2 Impact of different prompts on %,

Table 1(b) shows that the complexity of prompts affects the diversity of the generated images.
In the case of CXR images, less detailed prompts, such as Py, appear to encourage a wider
diversity, perhaps due to the generative model having broader interpretative freedom. For
ImageNet, descriptive prompts such as P; lead to more diverse outputs, which implies that
the detailed nature of these prompts provides useful guidance to the model, enabling it to
capture the extensive variability inherent across ImageNet’s classes. This suggests that the
level of detail in prompts should be carefully considered to match the desired diversity of the
dataset being synthesized.

3.4 Parameter Sensitivity Analysis

We investigate how variations in the parameter 7,,;, affect the SDICE index (y) in both the
MIMIC-CXR and ImageNet datasets. Figure 7 illustrates the sensitivity of the SDICE index
to changes in ¥y;,. The figure reveals a clear downward trend in intra-class scenarios for
both ImageNet and MIMIC-CXR, indicating lower intra-class diversity compared to inter-
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class diversity. Notably, MIMIC-CXR consistently exhibits significantly lower intra-class
diversity values compared to ImageNet across different ¥, values. In the inter-class sce-
nario, MIMIC-CXR shows a more pronounced downward trend compared to the stable and
consistently diverse inter-class diversity observed in ImageNet (around ¥ = 1.0) across var-
ious Y values. This emphasizes how the SDICE index is sensitive to parameter changes,
revealing distinct diversity characteristics within datasets.

4 Conclusion

This work introduced the SDICE index for evaluating the diversity of synthetic medical im-
age datasets. Leveraging the power of contrastive encoders, the SDICE index characterizes
the similarity distributions observed in the reference and synthetic datasets and provides a
normalized measure to assess and compare dataset variability. Our experiments on MIMIC-
CXR and ImageNet confirm its efficacy, revealing particularly low diversity in synthetic
CXRs, highlighting areas where generative models may need refinement. Moving forward,
we will focus on reducing the computational complexity of the similarity score computation
by exploring more efficient methods, such as approximate nearest neighbors. These improve-
ments aim to enhance the scalability and practicality of our approach, further solidifying the
SDICE index in the evaluation of synthetic medical image datasets.
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