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Abstract

Trash screens are used to prevent floating debris from damaging critical assets (e.g.
pipes, pumping stations) in rivers. However, debris accumulates at the trash screen loca-
tion and can contribute to floods. Here we develop a novel application of deep learning
that uses cameras to automatically monitor the presence and amount of trash on trash
screens. We manually annotated debris in 575 trash screen images from 54 cameras and
used this dataset to train and evaluate the performance of several semantic segmenta-
tion networks. This process reaches segmentation accuracy above 95% MIoU using the
SegVit network based on a Vision Transformer architecture. We show that this approach
can be used to accurately monitor the state of trash screens during flood events, detecting
build up of trash to guide preventative maintenance. This research is an important step
towards the automation of trash screen monitoring, an application of great importance in
environmental monitoring and better management of flooding.

1 Introduction

The presence of debris (trash) in rivers is a critical problem in river management. If left
unattended, debris can cause damage to river assets (pipes, pumping stations) and cause
floods [12]. Thus debris is typically stopped at strategic river locations by trash screens [2].

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.


Citation
Citation
{Speight, Cranston, White, and Kelly} 2021

Citation
Citation
{Benn, Hankin, Kitchen, Lamb, van Leeuwen, and Sayers} 2019


2 VANDAELE ET AL.: AUTOMATED TRASH SCREEN BLOCKAGE SEGMENTATION

Trash segmentation
network

Figure 1: Representation of the trash segmentation process. The trash segmentation takes
as input an image (in this case, a trash screen image with debris accumulating at the lower
screen) and outputs a mask of the debris (in red).

As shown in Figure 1, trash screens are assets made of vertical bars with spacing designed
to prevent the relevant debris from passing through. However, once debris starts gathering at
the trash screen, the blocked debris itself will start to block additional debris, which will thus
accumulate at the trash screen location until the trash screen eventually gets obstructed. This
prevents the water from flowing normally and can contribute to floods or nullify the purpose
of the trash screen by allowing the debris to flow above the screen itself. This is why it is
extremely important to clean the trash screens.

Currently, scheduling the cleaning of such screens is difficult as they may not be remotely
monitored. This leads to unnecessary manual inspections and labour costs, while the related
loss of time can become critical in emergency situations.

A new approach to monitor the state of these screens has been to use cameras to look at
the screens. Cameras are relatively cheap, and can transmit images of the screens through
cellular broadband connections. In the UK, the South West Environment Agency has in-
stalled around 350 cameras to monitor trash screens installed on rivers [5]. However, moni-
toring the cameras manually can still be complex with high numbers of trash screen cameras
to monitor.

This study focuses on the development of a novel application of deep learning to monitor
the state of these trash screens using camera images. As shown in Figure 1, by detecting
the location of the debris on the screen, it becomes possible to automatically and accurately
monitor the state of the trash screens. The approach is based on the training of a deep
semantic segmentation network on a dataset of trash screen camera images.

The key contributions of this study are:

1. A dataset of 575 trash screen camera images labelled with pixel-wise segmentation of
debris is made available online [1].

2. The creation and evaluation of two deep learning models able to segment (and quan-
tify) the amount of trash on the screens.

3. The development and validation of an automatic system leveraging the deep learn-
ing models to accurately monitor the state of the trash screens, reducing the time for
manual inspection.

2 Related Work

Attempts to predict trash screen blockage exist in the literature. Wallerstein et al. [17]
conducted an experiment during which they manually observed 140 trash screens around
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Belfast (Northern Ireland) between 2002 and 2008. They concluded that certain catchment
configurations were more prone to blockage, with rainfall and the time of year being the main
drivers. In a follow-up study, Wallerstein et al. [16] proposed monthly equations to predict
the probability of blockage, considering parameters such as channel slope and rainfall. The
accuracy of these equations was later improved using a Bayesian model [13]. However, the
authors noted that the lack of data prevented them from fully verifying their models and that
their dataset included only urban trash screen observations, biasing the experiments towards
urban areas. To the best of our knowledge, there is no evidence that these works have been
used in practice to aid trash screen maintenance planning.

The use of deep learning to detect and classify trash on camera images is being exten-
sively studied. For example, Jaikumar et al. [8] used a Mask R-CNN to detect water bottles
in camera images. Tharani et al. [14] and Nguyen et al. [11] used object detection networks
to detect floating trash on water surfaces. Majchrowska et al. [9] offer a comprehensive study
of the most common datasets used in this field. These works differ from our task in two main
aspects. Firstly, they consider anthropogenic waste (e.g. plastics, metals) and ignore other
types of trash that commonly block screens (e.g. tree branches). Secondly, these studies
focus on placing individual bounding boxes around the trash objects. In our case, such rect-
angular bounding boxes would provide an inaccurate quantification of the trash blocking a
screen, as it would be highly dependent on the field of view of the camera as well as the
position and orientation of the trash on the screen.

The detection of trash screen blockage using cameras is thus a new challenge. Igbai et
al. [6] compared the efficiency of image classification with several convolutional neural net-
works (CNNs) to separate blocked culvert images from clear ones. The authors noted that
the synthetic nature of most of their images could impact the results and prevent generalisa-
tion. In a subsequent study, Igbal et al. [7] attempted to estimate the percentage of hydraulic
blockage from culvert images. However, the authors were limited to images captured in a
hydrology lab in the same controlled environment as in their previous study.

More recently, Vandaele et al. [15] tested different approaches to classify blocked and
clean trash screen images coming from real trash screen camera data. While they obtained
very promising results, they noticed that the binary classification of such images was con-
fused by the subjective labelling of borderline cases where it was unclear whether the trash
was actually blocking the screen. They also collected, labelled and shared a dataset made of
80,452 images coming from 54 different trash screen cameras.

Following the analysis of the related work, we decided to tackle the trash screen moni-
toring problem with semantic segmentation networks that would detect the amount of debris
located in the image, as depicted in Figure 1. In the context of trash screen monitoring, a
pixel-wise segmentation of the debris will bring information that is less subjective than a bi-
nary classification assigning a blocked or clean label assigned to the whole image. Also, this
approach will provide information that is more accurate than an object detection approach
delineating rectangular bounding boxes around the debris.

3 Methodology

This section outlines the methodology used to build the trash semantic segmentation net-
works, the creation of a labelled dataset, and the choice of semantic segmentation models.
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| Clear Other Blocked | Total
Training cameras | 96 0 279 375
Test cameras 91 46 63 200
Table 1: Number of images manually annotated with pixel-wise trash labels. Images and
blocked/clear/other labels taken from Vandaele et al. [15].

3.1 Dataset

We used the images from the dataset created in Vandaele et al. [15]. This dataset is based
on 54 cameras and contains 80,452 daylight RGB images labelled blocked when debris was
blocking the screen, clear if there was no debris or the debris was not blocking the screen,
and other if the human annotators were not sure. To facilitate the classification task, images
were then cropped to the region of the trash screen. The authors supply both the original
full size images and the cropped locations. Among the cameras, 4 are used for testing, and
the remaining 50 for training and validation. Here we intended to compare our segmentation
approach with the classification approach presented by Vandaele et al. [15], so we have kept
the same cameras for training and testing.

As the pixel-wise manual labelling of images is a time-consuming task, we chose to re-
duce the number of training and test images used to train and test our segmentation networks.
However, note that some of the comparisons with Vandaele et al. [15] that are presented in
Section 4 rely only on the image labels and not the pixel-wise segmentation. In these cases,
the entire test set was used; these cases are identified in the results below.

We initially annotated 5 randomly selected images labelled as blocked for each of the
50 training cameras. This gave an initial training dataset of 5 x 50 = 250 training images.
As the regions processed by the networks are cropped from the original images, instead of
generating a single crop like Vandaele et al. [15], here we generated 10 crops per image
using small random variations with Vandaele et al’s crop sizes (from 90% to 110% of the
original crop height/width) and locations (x and y coordinates of the upper left corner moved
within a range of —10% to 10% of the full size image width/height). This created an initial
dataset of 250 x 10 = 2500 crops.

With this initial dataset, we trained the ResNet50-UperNet trash segmentation network
using the protocol described in Section 4.1. We then applied the trained network to a dataset
composed of 50 images per training camera (from Vandaele et al’s [15] crops) that were
randomly selected independently of their blocked/clear label. Any images on which the
trained network made obvious segmentation mistakes were then added to the segmentation
training dataset and manually annotated pixel-wise to identify trash. These images were then
added to the training set by using the data augmentation process described in the previous
paragraph (10 crops were generated for each new image).

For the 4 test cameras, we labelled 50 images per camera, independently of their classifi-
cation label, using the same crops as Vandaele et al.[15]. This gave 50 x 4 = 200 test images
and crops.

In total, the process above created a dataset of 375 training images (augmented to 3750
cropped images) and 200 test images (which were not augmented). More details are given
in Table 1. This dataset is openly accessible online [1].
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3.2 Segmentation networks

We tested two semantic segmentation networks: one based on a traditional convolutional
neural network, and one based on a more recent vision transformer (ViT) architecture.

For the convolutional neural network, we chose to adopt a ResNet50-UperNet (Uper-
Net50) architecture [20]. ResNet-50-UperNet is based on an encoder-decoder architecture.
The encoding is done through a ResNet-50 network. The decoder is UperNet [18], which is
based on a Feature Pyramid Network (FPN) and Pyramid Pooling Module (PPM) to integrate
multi-scale contextual information obtained at different layers of the encoder network. This
architecture obtains among the best results on the ADE20k semantic segmentation dataset
[20]. We used the CSAILVision implementation of this network [20].

For the vision transformer architecture, we used SegViT developed by Zhang et al. [19].
SegViT is also based on an encoder-decoder architecture. The encoder is a plain Vision
Transformer (ViT) model that splits the image into patches which are further transformed
into tokens (one-dimensional vectors) through multiple transformer layers (see Dosovistkiy
et al. [4] for more details). The decoder is based on the sequential application of the
Attention-To-Mask (ATM) module to each token produced by the encoder [19]. The ATM
module produces one mask per token using a self-attention mechanism, which is then com-
bined to produce the final mask. Zhang et al. were able to show that their network out-
performed the state-of-the-art networks on three well-known segmentation datasets (COCO-
stuff [3], ADE20k [20] and Pascal-Context [10]). We used the SegViT implementation code
proposed by the authors on GitHub [19].

4 Results and experiments

4.1 Segmentation results

The goal of this experiment was to train and evaluate the semantic segmentation networks
presented in Section 3.2 with the dataset that we created and described in Section 3.1.

Experimental setting. We used a training/validation and test protocol similar to Vandaele
et al. [15] who used the same camera dataset: we used the same 4 test cameras (Barnstaple,
Crinnis, Mevagissey and Siston) for testing, and the remaining 50 cameras for training and
validation. We used one randomly selected image per training camera for validation (50
images) and used the remaining images for training. We trained each network using the
training parameters recommended by [20] and [19] respectively, except for the learning rate
for which we tested values 10~3,10~* and 10~>. The networks were trained over 30,000
iterations (steps), with two images processed per step. Each 1000 steps, the network was
validated on the validation set. The network weights at which the validation accuracy was
higher were kept. Note that both implementations use data augmentation (random cropping
and flipping).

Evaluation Metric. The Mean Intersection over Union (MIoU) was chosen as the pri-
mary metric for evaluating the segmentation performance of our models. The IoU for each
class (debris, or no debris in our case) is calculated by dividing the intersection of the pre-
dicted and ground truth areas by their union. This approach provides a clear and balanced
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ResNet50-UperNet [20]  SegViT [19]
Barnstaple 74.2 71.5
Crinnis 80.8 84.6
Mevagissey 52.2 68.2
Siston 66.4 80.8
Average 68.4 77.8

Table 2: MIoU segmentation results for the two networks on four test camera locations.

measure of both false positives and false negatives, ensuring that the metric accounts for
over-segmentation and under-segmentation equally.

Pixels classified as debris are labelled as class 1 and pixels with no debris are labelled as
class 2. Then the IoU for each class i is defined as:

___ 1™
- TP+FP+FN,
where T P, is the number of true positives for class i, F P, is the number of false positives, and

F N; is the number of false negatives. The MIoU is then computed as the average of the IoUs
for all classes:

ToU; ey

12
MioU = = ¥ ToU; 2
0 2201 ©)

Results. The MIoU segmentation results are given in Table 2. On average, SegViT obtains
better MIoU scores than ResNet50-UperNet. However, while SegViT obtains better results
than ResNet50-UperNet at every location, the difference seems to be particularly impor-
tant at Mevagissey and Siston. Mevagissey is the hardest location for both networks, while
Crinnis is the easiest. We give some examples that we deem representative of the results
in Figure 2. At Barnstaple, both networks tend to have difficulties with the detection of
the smaller debris. At Crinnis, both networks segment the debris correctly. At Mevagissey,
ResNet50-UperNet tends to miss white plastic debris common to this screen while confusing
the trash screen bars for debris. At Siston, ResNet50-UperNet struggles with the detection
of particular debris (e.g., tyres or plastics).
In conclusion, our main observations are that:

* Both networks tend to generally correctly segment most debris at the 4 screen locations
* Both networks tend to struggle with the detection of the smaller debris

* The main difference between SegViT and ResNet50-UperNet is that SegViT tends to
work better on types of debris less represented in the training set, like plastics and
tyres.

4.2 Debris monitoring and comparison with Vandaele et al. [15]
4.2.1 Classification of trash screen camera images

The goal of this experiment is to compare the performance with the classification approaches
used in Vandaele et al. [15] to make the distinction between clean and blocked trash screens.
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Original crop ResNet50-UperNet SegViT

Barnstaple
29/01/2022, 08:59

Crinnis )
07/02/2022, 08:44

Mevagissey
07/02/2022, 14:55 B

Siston
06/02/2022, 13:05

I True positive | False positive [ False negative

Figure 2: Representative examples of the segmentation results obtained at the four test loca-
tions.

For this new experiment, we have applied our trash semantic segmentation networks with
their best performing network weights obtained in the first experiment (see Section 4.1) on
the entire set of test camera images produced by Vandaele et al. [15] and not only the 50 that
we labeled with segmentation annotations. Indeed, Vandaele et al. labeled these images with
class annotation clear, blocked or other and evaluated different methods to classify the clear
and blocked images. These methods all produce a blockage score that can be thresholded to
classify the image into one of these two classes.

With our segmentation method, we can define the blockage score as the percentage of
pixels of the image that is detected as containing trash, and compare our method with Van-
daele et al.’s method [15] in terms of classification accuracy. For this comparison, we used
the ROC AUC score used in Vandaele et al. [15]. In binary classification, A ROC curve plots
the true positive rate (TPR) against the false positive rate (FPR) at different classification (in
our case, blockage score) thresholds,

TP
_ TP el PP
TP+FN TP+ FN

and the ROC AUC score computes the area under that curve. An area of 1 means that no
matter the threshold, positive (blocked) and negative (clean) samples are perfectly separated.
An area of 0.5 means that the classification is random.

For our comparison, we only considered Vandaele et al’s best performing method, which
is a Siamese network that computes the blockage difference between 5 labelled reference
images of the test camera, and a new image of that camera.

The results are shown in Table 3. In average, our segmentation network based on Vision
Transformers, SegViT, performs better than Vandaele et al.’s best performing method. How-

TPR 3)


Citation
Citation
{Vandaele, Dance, and Ojha} 2024

Citation
Citation
{Vandaele, Dance, and Ojha} 2024

Citation
Citation
{Vandaele, Dance, and Ojha} 2024


8 VANDAELE ET AL.: AUTOMATED TRASH SCREEN BLOCKAGE SEGMENTATION

Vandaele et al. [15] ResNet50-UperNet SegViT
Barnstaple 95.6 99.5 99.8
Crinnis 98.1 98 96.7
Mevagissey 99.1 92.4 99.1
Siston 97.2 94.3 95.4
Average 97.5 96.1 97.7

Table 3: Comparison of the performance (ROC AUC scores) of our methods with Vandaele
et al.’s Siamese network for classifying clean and blocked trash screen images.

ever, it is outperformed at 2 out of the 4 locations. The ResNet50-UperNet network obtains
slightly lower performance than Vandaele et al., except at the Barnstaple location. We note
that our methods were not trained for the classification of blocked and clean images, and
were trained on much smaller datasets (375 images instead of 80,000). However, they are
competitive with the classification approaches proposed by Vandaele et al. [15].

4.3 Automated monitoring of a blockage event

With this experiment, we want to evaluate the potential utility of using the segmentation
blockage score to monitor the evolution over time of trash screen blockage on the screens,
and explore whether it could contribute to an efficient alarm system.

In Section 4.2.1, we define the segmentation blockage score as the percentage of a trash
screen image estimated as containing trash. As we do not have ground truth segmentation
data for the entire period, we consider whether this blockage score is able to capture the pro-
gressive increase of trash screen blockage over time before the screen gets fully blocked. We
also compare performance against the blockage scores provided by the image classification
methods proposed Vandaele et al. [15].

For each of the test cameras, we looked for a 7 to 10 day period during which we could
witness a blockage event on the camera images. We then analysed the corresponding evolu-
tion of the blockage scores from our segmentation methods and the blockage score produced
by the Siamese network of Vandaele et al. [15]. The results are provided in Figure 3.

At Barnstaple, the segmentation networks are able to capture the progressive evolution
of the blockage on the screen, while the Binary Classifier struggles (Barnstaple is the hard-
est location for the classifier). At Crinnis, the segmentation blockage scores (SegViT and
ResNet50-UperNet) are able to capture the progressive increase in blockage of the trash
screen, followed by its cleaning. This occurrence was confirmed by visual inspection of
images of the screen. However, the classification approach produces blockage scores which
do not make a distinction between the fully blocked screen and its progressive, partially
blocked, evolution. At Mevagissey, which is a screen placed on a tidal river, the segmenta-
tion networks correctly capture the progressive increase and decrease of trash related to part
of the debris being flushed away at low tide, which the binary classifier is not able to do. At
Siston, the evolution of the trash screen blockage again matches what we could visually see
happening at that location. The classification blockage score never goes down to 0 as it did
at the other locations. Overall, the results obtained by our segmentation networks are very
close and provide the same monitoring trends.

Looking at these results, we conclude that both segmentation networks are able to cor-
rectly monitor the temporal evolution of trash screen blockages by monitoring the percentage
of the screen that is covered by debris.
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Figure 3: Monitoring trash screen blockage over time using the blockage score. For SegViT
and ResNet50-UperNet, the blockage score corresponds to the percentage of the trash screen
segmented as debris. For Vandaele et al. [15], the blockage score is the likelihood that the
trash screen image is classified as blocked.
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5 Conclusion

Trash screens are important assets used to prevent debris from entering critical river loca-
tions where they could cause damage. However, debris gets stuck on the trash screen and
can contribute to floods, so it is important to monitor screens so they can be cleaned ef-
fectively. Here we investigate the potential of automatically monitoring trash screens with
cameras using deep semantic segmentation networks to provide a pixel-wise mask of the
debris location in the images. While cameras already provide useful information, manual
analysis is time-consuming and images need to be transformed into actionable information.

In the first part of this study, we created a dataset of trash screen camera images manually
labelled with a pixel-wise mask; this dataset is available online [1]. This dataset consists of
575 labelled images augmented to 3950 image crops, coming from 54 different cameras
operated by the South West Environment Agency in the UK. These images were originally
collated by Vandaele et al. [15].

In the second part of this study, we used this dataset to train two deep debris seman-
tic segmentation networks. The first one, ResNet50-UperNet, is based on a convolutional
neural network architecture. The second one, SegViT, is based on a Vision Transformer
architecture.

ResNet50-UperNet obtains 68.4 MioU segmentation accuracy on average, while SegViT
outperforms it with 77.8 MloU accuracy. Except for the thinnest debris, we observed that
the segmentation obtained with SegViT was of high quality. By using the percentage of the
image detected as debris as a blockage score, we compared our work with the classification
networks proposed in Vandaele et al. [15] and showed that SegViT was outperforming these
methods. We then showed that both segmentation networks could effectively monitor the
progressive evolution of trash screen blockages on our test cameras, suggesting a potential
application in a warning/alert system.

The promising results of this study demonstrate the potential of deep semantic segmen-
tation networks for trash screen blockage monitoring. Future work will focus on integrating
our algorithm into a fully operational platform that offers real-time monitoring. Key areas
of development include addressing challenges such as night-time monitoring, implementing
an automated alert system, and ensuring the platform can scale effectively for large deploy-
ments. By detecting and quantifying blockages, this approach offers a flexible, cost-effective
and accurate alternative to human labour for monitoring trash screen blockages in real-time,
with potential to help prevent the substantial economic and social impacts of flooding.
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