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Abstract
This paper describes a deep-SDM framework, MALPOLON. Written in Python and

built upon the PyTorch library, this framework aims to facilitate training and inferences
of deep species distribution models (deep-SDM) and sharing for users with only gen-
eral Python language skills (e.g., modeling ecologists) who are interested in testing deep
learning approaches to build new SDMs. More advanced users can also benefit from
the framework’s modularity to run more specific experiments by overriding existing
classes while taking advantage of press-button examples to train neural networks on mul-
tiple classification tasks using custom or provided raw and pre-processed datasets. The
framework is open-sourced on GitHub and PyPi along with extensive documentation
and examples of use in various scenarios. MALPOLON offers straightforward instal-
lation, YAML-based configuration, parallel computing, multi-GPU utilization, baseline
and foundational models for benchmarking, and extensive tutorials/documentation, aim-
ing to enhance accessibility and performance scalability for ecologists and researchers.

1 Introduction
Species distribution models (SDMs) are popular numerical tools [2, 38] used for predict-
ing the distribution of species over a geographic area and temporal frame, by trying to find
correlations between environmental data and observation data. These models can be used
to describe how environmental conditions or anthropogenic actions influence the occurrence
or abundance of species and allow for future predictions [18]. Historically, this work has
been carried out by ecologists, botanists, or environmental researchers with a strong statis-
tical background and expertise with mechanistic (process-based) or statistical algorithms.
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Figure 1: Graphical abstract. MALPOLON allows straightforward: (i) loading of various
predictors, such as environmental rasters (e.g., land cover, human footprint), remote sensing
data (e.g., Sentinel-2A and Landsat), and bioclimatic time-series, (ii) use of geospatial foun-
dational models (e.g., SatCLIP, GeoCLIP), (iii) model training with the press of a button.

Common methods used in species distribution modeling include BIOMOD [40], Maximum
Entropy (MAXENT) [32, 33, 34], Generalized Linear Models (GLM), Generalized additive
model (GAM) [29], Random forests [8], Boosted regression trees, Gradient Boosting, and
Support Vector Machines. However, recent research has highlighted the potential of using
deep learning methods such as CNNs to perform Presence Only (PO) or Presence Absence
(PA) species prediction with competitive performances [4, 7, 9, 10]. So-called deep-SDM
models offer an advantage in predicting suitability scores for many species using a unified
model rather than relying on multiple individual single-species models. They excel in cap-
turing relations among diverse environmental data [5, 10, 11]. Although promising, such
models are often developed and trained independently, lacking a shared foundation, which
complicates reproducibility and accessibility. Furthermore, within the environmental re-
search community focused on SDMs, the predominant tools and packages are rooted in the
CPU-oriented language R. Many established SDM frameworks and widely-used statistical
algorithms [1, 3, 15] have historically been developed within R, fostering community growth
and the evolution of new methodologies over time. However, this reliance on R presents
limitations in terms of computational capabilities and access to emerging methods like Deep
Neural Networks (DNNs), which are predominantly implemented in Python and C++.

Despite being limited in number, recent development efforts have yielded a few solu-
tions to establish and support deep learning SDM frameworks. For example, Pichler and
Hartig [37] introduced sjSDM, which leverages PyTorch within R, enabling GPU utiliza-
tion. However, integrating PyTorch code into an R package can decrease code and memory
efficiency while also increasing the complexity and cognitive load associated with coding.
Lu [27] proposed a Python implementation of Maxent through Deep Inverse Reinforcement
Learning [44], however despite enabling a direct utilization of GPU capabilities via Tensor-
flow the framework relies on reward maps and does not handle observation / environmental
predictor pairs as input data. Gillespie et al. [17] have developed a deep learning framework
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Figure 2: Macro structure of MALPOLON. The Examples consist of different use case
experiments with pre-written plug-and-play examples and include training, inference, etc.
The Engine contains everything important for datasets and models loading and usage. The
Toolbox provides a collection of useful scripts to perform data pre-processing.

to perform plant prediction using citizen science and remote sensing data from California,
enabling observation of species distribution shifts. However, this work is more focused on
the model they propose and less about the framework in itself. While it is well-documented
with comments, tutorials, and troubleshooting guidance, users need a solid understanding of
Python and PyTorch to adapt it for custom use cases, as the framework is not modular.

In light of that, we have developed MALPOLON, a new framework for deep species
distribution modeling (see Figure 1). It allows training various types of multi-modal SDMs
based on deep learning using geolocated observations combined with a variety of input vari-
ables such as environmental rasters (e.g., land cover, human footprint, etc.), remote sensing
images (e.g., Sentinel-2A [13] and Landsat [41]), and time series (e.g., Landsat, and biocli-
matic). MALPOLON is built on top of PyTorch Lightning and is distributed through PyPi
and available on GitHub, alongside installation guidelines, tutorials, and documentation.

2 The framework

MALPOLON is a new Python-based framework for deep species distribution modeling,
which is designed not only for ML researchers but also for people without extensive knowl-
edge of Python and PyTorch. The framework is built on top of PyTorch Lightning, which
makes it highly modular and customizable, as its classes can be re-defined to better control
the functions handling the datasets, data module, training loops, and optimizer. MALPOLON
is compatible with TorchGeo, a PyTorch domain library providing datasets, samplers, trans-
forms, and pre-trained models specific to geospatial data. Furthermore, it allows using vari-
ous types of neural networks ranging from simple MLP to more complex Transformer- and
Convolutional-based architectures . We also provide a variety of geospatial foundational
models such as GeoCLIP [43] and SatCLIP [25]. More importantly, MALPOLON offers
straightforward access to various standards predictors as well as new ones, including but not
limited to satellite data (e.g., Sentinel-2A and Landsat), climatic rasters (e.g., temperature
and precipitation), and environmental rasters (e.g., soil grids, land cover, and human foot-
print). A collection of standalone data processing scripts is also provided under the name of
toolbox. We visualize MALPOLON’s meta-class diagram in Figure 2.
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Figure 3: Main components of MALPOLON. The framework contains custom datasets and
models (in blue), which data and weights are automatically retrieved from remote servers.
The toolbox (in yellow), provides standalone data processing scripts. Examples (in orange)
are provided when cloning the GitHub project and interact with the engine to run models for
training or inference.

2.1 Tools and Methods

Experiments are framed around three entities: (i) dataset, (ii) data module, and (iii) model,
that are later fed into a custom PyTorch Lightning pipeline.

The datasets define how data and labels are queried and returned when iterating through
the dataset. The framework provides specialized dataset classes tailored for handling geospa-
tial rasters, image patches, or combinations of both. Torchgeo-based datasets for geospatial
rasters are particularly flexible with different Coordinate Reference Systems (CRS). They
allow observations to be matched with rasters even if they are in different CRSs, eliminating
the need for coordinate transformations or raster deformations.

The data module is responsible for creating PyTorch dataloaders for training, val-
idation, and test sets, while also managing data pre-processing and loading according to
the specified dataset. Once created, these PyTorch objects are then forwarded to a PyTorch
Lightning Trainer, which handles the pipeline.

The model holds the architecture to train, redefining the forward and step functions
to match the dataset’s tuple output for model computation. Additionally, it handles consistent
computation and performance metrics logging throughout the optimization process.

By default, all experiments print a summary of the architecture, set the checkpoint saving
strategy to validation loss decrease, and save the experiments’ metrics and loss in CSV and
Tensorboard files respectively. While training, a progress bar with the training status and
training time estimation is provided. Furthermore, the model’s loss and performance metrics
are logged regularly to local Tensorboard files, which allows visualizing the training by us-
ing the bash command tensorboard --logdir logs/. After training, the validation
metrics of the best checkpoint are displayed, and the last output files are logged in the output
directory and, if selected, "uploaded" to Tensorboard or Weights & Biases.

https://www.tensorflow.org/tensorboard?hl=fr
https://www.tensorflow.org/tensorboard
https://wandb.ai/
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2.2 Data Availability
Recent advances in species distribution modeling have shown that on top of environmen-
tal data, time-series and satellite imagery also contribute strongly to new model perfor-
mances [11, 30, 39]. However, the data is usually extremely disk space-demanding and
time-consuming to pre-process, especially when combining multiple modalities and remote
sensing data at the same time. Hence why, efforts have been made to synthesize and com-
press such data information in more conveniently compact data formats such as EcoDat-
aCube [28], OpenDataCune [6], and EuroDataCube which still can include gigabytes or
terabytes of data. In light of that, we build MALPOLON to provide straightforward access
to all standard and even more complex data (see Figure 3). So far, we allow loading the data
from Sentinel-2A, Landsat, CHELSA [24, 31], Worldclim [14, 19], Soilgrids [21], ASTER
Global Digital Elevation Model [42], MODIS Terra+Aqua (land cover) [16], DRYAD (hu-
man footprint) [12] and observations from GBIF and Pl@ntNet.

The time-series data (e.g., Landsat and CHELSA climatic variables) are also available
as lightweight tensor cubes where the information has been compressed down to geolocated
points extraction based on species observation files. The easy loading of these cubes with
PyTorch and their readiness make them a strong asset of MALPOLON’s provided multi-
modal datasets and baseline models.

2.3 Use Cases
While building MALPOLON, we have considered various scenarios and types of users. For
the three most common "scenarios", we have prepared a set of experiments and comprehen-
sive documentation. All three scenarios and how to work with them are further described
below:

"Custom train". The approach for custom dataset training is straightforward. Duplicate
an experiment’s main script, update its configuration file, and select a suitable data loader.
If existing data loaders are insufficient, one could simply update the classes. Next, users
choose a model by specifying the name and parameters in the config file (all TIMM models
are available), and finalize the model parameters using custom or default values. Metrics,
logs, and model weights are saved in a unique output folder.

"Inference". For a scenario with just a pre-trained model inference, we made available
all models available in TIMM or Torchvision. Besides, we provide selected foundational
models such us GeoCLIP [43]. The recommended way to perform inference with a trained
model on a test dataset is to use or duplicate an experiment’s main script and update the
dataset path and the model’s weight path. Similarly to the “Custom train” scenario, users
may import their modifications to data loaders and other classes before running the infer-
ence pipeline. Metrics, logs, and predictions are then outputted in a unique output folder.

"Benchmarks". For a plug-and-play benchmarking on existing datasets such as those pro-
vided within the annual GeoLifeCLEF competition [35] (organized on Kaggle in conjunction
with FGVC-CVPR and LifeCLEF workshops [22, 23]), we provide data loaders and training
examples to allow an easier start for anyone interested in deep species distribution modeling.
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2.4 Baseline Experiments and How to Use Them

To make the framework accessible to ecologists, each experiment contains a CLI script ready
to be run in the terminal with a single line command and a tutorial file detailing its purpose,
how to configure it, the expected data, and running instructions. Three baseline experiments
were provided for the "Custom train" and "Benchmark" scenarios for which users only need
to update the following sections in the YAML file if needed:

• run: parameters related to prediction and transfer learning

• data: data-related information, such as the path to a dataset or batch size

• task: type of experiment, e.g., binary, multiclass, or multilabel classification.

• trainer: parameters used for tweaking a training or inference session

• model: defines the provider, architecture, and hyperparameters listed in the given
provider’s model builder. Additionally, it allows to call model modifiers to adapt their
model structure. Namely, three modifiers are provided by MALPOLON to change a
model’s input and output shape.

• optimizer: defines the optimization algorithm, the loss and their hyperparameters

2.5 Assets

The MALPOLON GitHub repository contains the mentioned datasets, models, baseline
scripts and notebooks as well as instructions on how to install and use the framework for
different use cases. Additionally, each "use case" contains detailed documentation explain-
ing how to run and tune the experiment and giving insights about the data used by it. Addi-
tionally, there are handy data transformation and vizualization scripts being used to prepare
the datasets used in many examples. Besides, we provide standardized code documentation,
which is being updated every time new content is pushed to the main branch.

3 Baseline performance
To test the suitability and versatility of MALPOLON, we opt to train on the data and models
provided in the context of the recent GeoLifeCLEF competition [35] organized in conjunc-
tion with FGVC-CVPR and LifeCLEF workshops [22, 23]. We have trained a multimodal
ensemble model (MME) and single-modality models using the Sentinel-2A image patches,
Landsat time series, and CHELSA bioclimatic time series 1. The architecture consists of
two ResNet-18 [20] encoders for time series data and one Swin-v2 Transformer [26] that en-
codes Sentinel-2A image patches; feature vectors are then concatenated and forwarded into
a MLP. For training, we used the GLC24 dataset [35, 36] consisting of 1.4M+ observations
from 80k Presence Absence plots with 11k+ species scattered over Europe. The dataset is
highly imbalanced as labels are characterized by a long-tailed distribution. The data have
been spatially split into training (85%) and testing (15%) sets, using a spatial block holdout
technique excluding training set points from validation "zones" of size 10 arcminutes, which
aims at reducing spatial bias. See Figure 4 for the geospatial distribution of the data.

1All architectures were provided by GeoLifeCLEF organizers.
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Figure 4: Spatial split of training and validation data points.

Experimental Settings: To allow direct comparability, we use the same architectures as
used in the provided GLC24 baselines, i.e., ResNet-18 for Landsat and Bioclimatic data
and Swin-v2-b for Sentinel2 images. All ResNet and Swin models were fine-tuned from
pre-trained ImageNet-1k weights. The ResNet-18 first convolutional layer input sizes were
adapted to fit the expected size of the provided input variables, i.e., 3d cubes 2. The MME
model is a straightforward concatenation of the single-modality embeddings followed by
two linear layers (first with a dropout with 10% probability.).

All models were trained for 20 epochs with a batch size of 64 using AdamW optimizer3.
In order to predict multi-label species present in the plots, we used BCEWithLogitsLoss with
a sigmoid activation function. Additionally, in order to strengthen the rewarding process of
correctly predicted species, the loss positive weight parameter was set to 10.

Models are being evaluated by 2 main metrics adapted for imbalanced datasets: F1-
score (F1) and ROC-AUC (as defined per Scikit-learn). The F1-score is more appropriate
than a basic Accuracy as it puts more emphasis on False negatives and False positives. The
ROC-AUC tracks the balance between True positives and False positives. Since we are
most interested in avoiding False negatives, it makes sense to evaluate the model with such
metrics. Additionally, we provide Precision (P) and Recall (R) to give more insight on the
positive/negative rates. Finally, as each survey contains in average 20 species, we only com-
pute F1, P and R on the Top-25 returned species.

2Conv2D parameters, e.g., kernel size, stride, and padding, were also changed; for more details, refer to [35]
3AdamW was parametrized with a learning rate of 2.5e10−4 and associated with a CosineAnnealingLR scheduler

parametrized with a max temperature of 25
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Results: As expected, a model trained using MALPOLON performed similarly to the model
trained in the provided baseline notebook. Additionally, MALPOLON outputs the best
model’s weights, handles multi-process and multi-GPU usage seamlessly, and logs train-
ing progress to Tensorboard. Switching from training to prediction is as easy as changing
two values in the config file. Finally, the framework provides convenient plotting functions
to help visualize the model’s predictions. Regarding performances, since MALPOLON runs
Python scripts, it is more efficient than notebooks, and PyTorch Lightning optimizes the dis-
tributed computations across CPU cores and GPU units. The main bottleneck resides in the
datasets, which, when building custom ones, users should be mindful of making optimized.

Micro averaged Sample averaged Macro averaged
Model AuC P R F1 AuC P R F1 AuC P R F1
ResNet-18l 94.7 23.4 32.7 27.3 94.8 23.4 39.1 26.5 88.5 12.4 11.0 7.7
ResNet-18b 95.1 21.1 29.4 24.5 94.9 21.1 34.1 23.5 90.0 16.0 12.1 7.6
Swin-v2s 94.3 20.4 28.2 23.7 94.5 20.4 34.8 23.3 88.3 10.3 8.7 5.7
MME 96.7 26.2 36.5 30.5 96.3 26.2 43.4 29.6 93.2 18.9 14.5 9.4

Table 1: Baseline performance for selected custom architectures. The Multimodal En-
semble (MME) model provides better performances than standard CNN and transformers on
our metrics, i.e., Top-25 Precision (P), Top-25 Recall (R), Top-25 F1-score (F1), and Area
under the Curve (AuC) computed in samples, macro and micro averaged. CNNl : ResNet-18
trained on Landsat data; CNNb: ResNet-18 trained on CHELSA bioclimatic data; Swin-v2s:
Swin-v2 transformer trained on Sentinel-2A data.

3.1 Benchmarking foundational models with MALPOLON
Deep learning foundational models are trained on large amounts of broad data such that they
can be applied across a wide range of use cases. As such, they are very much prized and ben-
eficial to bootstrap topic-specific training as they allow reducing training times, which can
range from hours to weeks if trained from scratch, depending on the data used. In the do-
main of species distribution modeling, such models are scarce, but interesting options, such
as SatCLIP proposed by Klemmer et al. [25] and GeoCLIP proposed by Vivanco Cepeda
et al. [43], have emerged. Hereafter, we investigate the added value of these foundational
models within the MME model in place of the Swin-v2 transformer, as well as an individual
model to handle the Sentinel-2A modality.

Results: GeoCLIP outperforms the other two models in micro and sample-averaged metrics,
with higher precision and recall, but like Swin-v2, it also falls short in macro-averaged per-
formance, indicating limitations in its ability to generalize across all classes. On the other
hand, SatCLIP underperformed heavily. The variant MME†, which replaces Swin-v2 with
GeoCLIP, also demonstrates competitive performance, particularly excelling in precision
metrics. It achieves the highest micro-averaged precision of 30.1% and sample-averaged
precision of 29.9%, suggesting that integrating GeoCLIP enhances the model’s ability to ac-
curately identify positive instances. However, it shows slightly lower performance in macro-
averaged metrics compared to the standard MME, indicating some variance in performance
across different classes. For a more comprehensive evaluation, see Table 2.
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Micro averaged Sample averaged Macro averaged
Model AuC P R F1 AuC P R F1 AuC P R F1
Swin-v2s 94.3 20.4 28.2 23.7 94.5 20.4 34.8 23.3 88.3 10.3 8.7 5.7
SatCLIP 89.5 11.5 14.5 12.8 89.5 10.4 13.3 11.1 85.0 0.9 2.4 1.0
GeoCLIP 95.1 24.1 30.4 26.9 95.1 22.8 30.1 24.6 88.5 2.8 3.1 2.6
MME 96.7 26.2 36.5 30.5 96.3 26.2 43.4 29.6 93.2 18.9 14.5 9.4
MME† 95.8 30.1 37.9 33.5 96.0 29.9 40.6 32.2 88.5 3.6 3.9 3.4

Table 2: MME baseline performance integrating foundational models The MME model
integrating GeoCLIP provides yet better performance in terms of micro and sample average
evaluation, highlighting the relevance of foundational models paired with CNNs. The met-
rics used are the same as mentioned in Table 1. †MME with Swin-v2 replaced for GeoCLIP.

4 Conclusion

In this work, we introduced "MALPOLON", a new PyTorch-based framework that enables
ecologists to easily train deep-SDMs. The framework supports multi-GPU computation and
provides access to neural networks to train models on classification and regression tasks to
predict species distribution over geographical areas. The framework is modular and fol-
lows encapsulation principles which makes it adapted for expert users knowledgeable about
Python or PyTorch. However, it is also adapted for less experienced users coming from
R, thanks to its online documentation, tutorial files and plug-and-play examples provided
with the project’s repository. We showed that the framework can train baselines with com-
plex deep architectures on a real-world use case, GeoLifeCLEF 2024, with strong metrics
performance relative to other methods submitted on the Kaggle challenge page. Such archi-
tectures are then provided as part of the framework’s available models and are coupled with
additional examples for easy training. Furthermore, the data used in all examples is made
accessible for reproducibility and alleviates the need to manually gather and transform data
from different sources. The framework is open-sourced on GitHub and PyPi, which enables
it to use the wide Python community for future development.
Limitations: As of now, too few models were trained using MALPOLON to provide a deep
comparison analysis with the MME model. Likewise, the lack of similar open-sourced deep
learning framework available makes it difficult to compare MALPOLON’s features to those
of existing frameworks, which do not operate using the same language or model types.
Next Steps: Preliminary results have been conducted to predict EUNIS habitat types instead
of species. A convergence of efforts will be made to enable MALPOLON to support not
only deep-SDM but also deep Habitat Distribution Modeling (deep-HDM).
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