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Abstract

Crack segmentation is a critical task in civil engineering applications, particularly for
assessing pavement integrity and ensuring the durability of transportation infrastructure.
While deep learning models have advanced RGB-based segmentation, their performance
degrades under adverse conditions like low illumination and motion blur. Thermal imag-
ing offers complementary information by capturing emitted radiation, enabling better
differentiation of cracks in challenging environments. By integrating information from
both RGB and thermal images, RGB-T pavement crack segmentation has demonstrated
significant advantages in complex real-world environments such as adverse weather con-
ditions. However, research in this area remains relatively limited, and current RGB-T
crack segmentation methods do not fully and efficiently leverage the complementary re-
lationships between different modalities during multi-level information interaction. To
address this problem, we propose IRFusionFormer, a novel model for crack segmenta-
tion that effectively integrates RGB and thermal data. We introduce the Efficient RGB-T
Cross Fusion Module (EGTCF) to capture extensive multi-scale relationships and long-
range dependencies between modalities without incurring high computational costs. Ad-
ditionally, we develop the Interaction-Hybrid-Branch-Supervision (IHBS) framework,
which enhances modality interaction by distributing fused features across branches and
enabling joint supervision. To preserve the topological structure of cracks, we propose
a novel topology-based loss function that maintains connectivity and structural integrity
during training. Our method achieves state-of-the-art results, surpassing existing ap-
proaches with a Dice score of 90.01% and an Intersection over Union (IoU) of 81.83%.
These advancements address critical challenges in pavement crack segmentation by im-
proving robustness and accuracy under varying environmental conditions. For access to
the codes, data, and models pertinent to this study, please visit: Code.

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1 Introduction
Crack segmentation, which involves assigning binary labels—crack or background—to in-
dividual pixels in an image, has attracted growing attention in various civil engineering sce-
narios such as buildings[3], bridges[21], tunnels[22], and pavement[6] inspections. Among
these, pavement crack segmentation is particularly crucial for assessing road quality and
maintaining the longevity. Traditional image processing techniques like thresholding[10]
and edge detection[13] have been used to segment pavement cracks in RGB images by ex-
ploiting grayscale value differences. However, these methods often suffer from low accuracy
and lack robustness due to their reliance on handcrafted settings and sensitivity to varying
imaging conditions. The advent of deep learning, particularly convolutional neural networks
(CNNs), has revolutionized semantic segmentation tasks. Methods like FCN[14], U-Net[15],
UNet++[29], and DeepLab V3+[1] have achieved impressive results on large-scale RGB im-
age semantic segmentation task. Consequently, researchers have adapted these paradigms
for pavement crack segmentation. For instance, DeepCrack[30] integrates multi-scale con-
volutional features from hierarchical stages to capture fine-grained line structures, leading to
improved crack detection.

Despite these advancements, RGB-based pavement crack segmentation methods degrade
rapidly under challenging conditions such as rainy or hazy weather and low illumination[5].
During pavement inspections, cameras mounted on fast-moving vehicles like inspection
trucks or drones struggle to maintain stable footage, minimize motion blur, and ensure ad-
equate illumination simultaneously. Consequently, underexposed and blurred RGB images
yield unfavorable segmentation results compared to normal conditions, as shown in the Fig-
ure 1 (a). Additionally, semantic interferences resembling cracks—such as scattered binding
particles, tree shadows, water marks, and patch repairs—introduce additional complexities,
leading to false detections and reduced reliability[25]. In contrast, thermal images rely on
emitted radiation from objects and can capture stable images under complex conditions,
albeit at lower resolutions. This capability allows for better differentiation between crack
foregrounds and backgrounds in challenging environments[4, 8]. Therefore, RGB-Thermal
(RGB-T) crack segmentation has gained increased attention[9]. By utilizing both RGB and
thermal data and efficiently fusing their complementary information, the performance and
stability of crack segmentation can be enhanced across various real-world scenarios. Lever-
aging the rich semantic information from both modalities is essential to overcome existing
challenges[20]. Although some studies have employed both infrared and RGB images, a
unified benchmark for pavement crack segmentation across these modalities is still lacking.
To address this gap, we compiled existing crack segmentation approaches and hybrid meth-
ods integrating infrared and RGB data, constructing a novel and comprehensive benchmark
for asphalt pavement crack segmentation. Our review identified several critical limitations
in current methodologies.

One of the key challenges in RGB-T crack segmentation is the efficient fusion of cross-
modal features. Traditional convolution-based attention mechanisms—such as channel, spa-
tial, and hybrid attention—are limited by their local receptive fields, restricting their ability
to model global contextual relationships[2]. While self-attention mechanisms can capture
long-range dependencies, their high computational and memory costs make them imprac-
tical for large-scale inputs[16]. To address these issues, we introduce the Efficient RGB-T
Cross Fusion Module (EGTCF), which effectively captures extensive multi-scale relation-
ships and long-range feature interdependencies between RGB and thermal modalities with-
out incurring prohibitive computational overhead. Another challenge lies in designing an
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Figure 1: The illustration figure comprises (a) The illustration figure depicts the scenario of
RGB and thermal crack detection, (b) The RGB-T semantic segmentation framework and (c)
Evolution of the topological structure preservation in crack segmentation during the training
process.

effective framework for multi-modal feature learning and supervision. Existing RGB-T
segmentation frameworks can be divided into two main types(illustrated in Figure 1(b)):
the tailor-made under-fused strategy and the bi-directional middle-fusion strategy[26]. The
tailor-made approach integrates thermal features into RGB features within the encoder but
lacks sufficient inter-modal interaction. The bi-directional middle-fusion strategy promotes
interaction by allowing fused features to influence unimodal branches but struggles with
supervising modality-specific learning effectively. To overcome these limitations, we pro-
pose the Interaction-Hybrid-Branch-Supervision (IHBS) framework. This framework en-
hances modality interaction by distributing fused feature information across branches and
enabling joint supervision of RGB and thermal feature learning. Furthermore, an appropri-
ate loss function is also critical for enhancing deep learning performance in crack segmen-
tation models.[23]. Commonly used loss functions in crack segmentation, such as Cross
Entropy Loss and Dice Loss[7], focus on pixel-level prediction accuracy but often neglect
the topological structure of cracks[24], leading to discontinuities in the segmented outputs.
To remedy this, a topological-based loss function, illustrated in Figure 1(c), is introduced to
accurately capture and preserve the crack skeleton’s intrinsic topology.

In summary, the key contributions of our research are outlined as follows:

• We propose a novel method called IRFusionFormer for crack segmentation, achieving
state-of-the-art results on benchmark datasets. Specifically, our framework outper-
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forms existing approaches by attaining Dice and Intersection over Union (IoU) scores
of 90.01% and 81.83%, respectively. This demonstrates its effectiveness in accurately
identifying and delineating cracks, thereby enhancing both the efficiency and reliabil-
ity of pavement maintenance practices.

• We propose the deployment of the Efficient RGB-T Cross Fusion Module (EGTCF)
to capture multi-scale extensive relationships and ong-range feature interdependencies
between RGB and thermal modalities. Additionally, the Interaction-Hybrid-Branch-
Supervision (IHBS) framework facilitates the sharing of fused feature information
across multiple branches and supports simultaneous supervision of feature learning
in different modalities.

• We introduce a topology-based loss function aimed at preserving the connectivity and
topological structure of asphalt pavement cracks. This innovation significantly ad-
vances the accuracy and consistency of crack segmentation by systematically integrat-
ing topological considerations into the learning process.

These advancements significantly contribute to the field of pavement maintenance by
improving the accuracy and efficiency of crack detection technologies, which are vital for
prolonging pavement lifespan and ensuring road safety.

2 Methods

2.1 Overview
In modern image feature extraction, CNN and Transformer-based architectures serve as the
primary methods. The CNN architecture is effective in extracting local features, but due to its
limited receptive field and the pooling process, it may miss some global-scale correlations. In
contrast, the Transformer architecture uses a self-attention mechanism to capture long-range
dependencies and global context, enabling a comprehensive understanding of semantic en-
tities. The proposed IHBS framework requires separate feature extraction for infrared and
RGB images, followed by an interaction mechanism that enhances modality fusion and en-
ables joint supervision. Infrared images, sensitive to thermal characteristics, highlight areas
with temperature differences, while RGB images provide detailed visual information. To
achieve this, as shown in Figure 2, ResNet is used for infrared image feature extraction,
capturing local crack information, while the Segformer network, based on Transformer tech-
nology, is employed for RGB images, capturing both local and global features. After pro-
cessing through the 1st, 2nd, and 4th ResNet or Segformer decoders, the infrared and RGB
images of identical size are fused via the EGTCF.The fused features are then redistributed
back into their respective modality-specific branches, enhancing inter-modal interaction as
part of the IHBS framework, thereby promoting a more effective modality interaction. In the
training phase, the IHBS framework employs joint supervision of RGB and thermal feature
learning, while both the topological-based loss function and the infrared-based auxiliary loss
function guide the segmentation training.

2.2 Efficient RGB-T Cross Fusion Module
Incorporating both thermal and RGB information has been shown to enhance segmentation
performance[19]. Current techniques utilizing convolution or pooling layers have led to
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Figure 2: The IRFusionFormer framework comprises (a) the pipeline of the framework and
(b) fusion block using efficient cross attention mechanism

restricted receptive fields, limiting the exploration of relationships between RGB images and
thermal maps. Moreover, the self-attention mechanism is unsuitable for processing extensive
inputs like shallow RGB and infrared feature maps. Instead of employing a basic non-local
fusion strategy, we have devised the Enhanced Global Thermal and Color Feature (EGTCF)
module for integrating multimodal features, as illustrated in Figure 2.

For infrared feature maps denoted as 𝑋𝐼 ∈ R𝐶×𝐻×𝑊 and RGB features denoted as 𝑋𝑅 ∈
R𝐶×𝐻×𝑊 , we initially pass both features through separate convolutional layers to generate
query tensor, key tensor, and value tensor. These are denoted as 𝑄𝐼 ∈ R𝐶𝑘×𝐻×𝑊 , 𝐾𝐼 ∈
R𝐶𝑘×𝐻×𝑊 , 𝑉𝐼 ∈ R𝐶𝑣×𝐻×𝑊 for infrared features and 𝑄𝑅 ∈ R𝐶𝑘×𝐻×𝑊 , 𝐾𝑅 ∈ R𝐶𝑘×𝐻×𝑊 , 𝑉𝑅 ∈
R𝐶𝑣×𝐻×𝑊 for visible features, as shown in Equation 1. Here, 𝐶𝑘 and 𝐶𝑣 correspond to the
dimensions of the convolution matrix (𝑊𝑘 ,𝑊𝑞 ,𝑊𝑣).

𝑄𝐼 =𝑊
𝐼
𝑞 · 𝑋𝐼 , 𝐾𝐼 =𝑊

𝐼
𝑘 · 𝑋𝐼 , 𝑉𝐼 =𝑊

𝐼
𝑣 · 𝑋𝐼 ,

𝑄𝑅 =𝑊𝑅
𝑞 · 𝑋𝑅, 𝐾𝑅 =𝑊𝑅

𝑘 · 𝑋𝑅, 𝑉𝑅 =𝑊𝑅
𝑣 · 𝑋𝑅

(1)

Drawing inspiration from the work of [16], a cross-efficient fusion module has been
implemented to capture semantic relationships across multimodal features by leveraging
an efficient attention mechanism that addresses long-range dependencies while minimizing
memory and computational complexities. Initially, the query, key, and value tensors are par-
titioned into 𝑛 segments to streamline computational operations. For instance, in the case of

the RGB query tensor, segments are defined as 𝑄𝑖
𝑅
= 𝑄

[
𝐶𝑘

𝑛
·𝑖,
𝐶𝑘

𝑛
· (𝑖+1)

]
𝑅

∈ R
𝐶𝑘

𝑛
×𝐻×𝑊

. This
split approach is also applied to the query, key, and value tensors associated with the in-
frared and RGB features. Subsequently, the spatial dimensions of 𝑉 𝑖 and 𝐾 𝑖 are flattened to

𝑉 𝑖 ∈ R
𝐶𝑣

𝑛
×𝐻𝑊

and 𝐾 𝑖 ∈ R
𝐶𝑘

𝑛
×𝐻𝑊

. The cross attention matrix 𝐴𝑅 and 𝐴𝐼 are computed by
multiplying 𝑉 𝑖 with the normalized 𝐾 𝑖 from the complementary modality through the soft-
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max function: 𝐴𝑖
𝑅
= softmax(𝐾 𝑖

𝐼
)𝑇 ·𝑉 𝑖

𝐼
and 𝐴𝑖

𝐼
= softmax(𝐾 𝑖

𝑅
)𝑇 ·𝑉 𝑖

𝑅
. Next, we multiply

the attention matrix 𝐴 with the normalized query tensor 𝑄𝑅 within the same modality, con-
catenating all channels, applying a projection convolution layer, and adding the input feature
residuals to generate new fusion features from the efficient RGB-T cross-fusion module:

𝑋
′
𝐼 = conv(concat(softmax(𝑄𝑖

𝐼 ) · 𝐴𝑖
𝐼 )∥𝑖∈[0,𝑛−1]) + 𝑋𝐼 ,

𝑋
′
𝑅 = conv(concat(softmax(𝑄𝑖

𝑅) · 𝐴𝑖
𝑅)∥𝑖∈[0,𝑛−1]) + 𝑋𝑅

(2)

This efficient RGB-T cross-fusion module facilitates feature interactions between parallel
streams during each stage of the feature extraction process. It enables the learning of long-
range dependencies from the other modality by correcting its own modal features through
these interactions. Employing this methodology significantly reduces computational com-
plexity. For instance, while a non-local module applied to a 256*256 image would require
17GB of memory, our efficient attention approach demands only 67 MB of memory.

2.3 Topological-based Loss Function

In the segmentation of tubular objects such as pavement cracks, considering their topological
structure can significantly enhance the usability of the segmentation results[18]. Therefore,
our research proposes the integration of a topological-based loss function into the segmen-
tation process, aiming to preserve the structural integrity of cracks. In the context of asphalt
pavement crack detection, the actual mask is referred to as 𝑉𝐿 , while the model-generated
predicted mask is symbolized as 𝑉𝑃 . Maximum pooling is applied to refine images by
smoothing object boundaries and removing minor noise. The difference between the images
before and after this operation highlights the skeleton features, which are further refined
through multiple iterations. The skeleton derived from the actual ground truth mask is 𝑆𝐿 ,
while that from the model’s prediction is termed as 𝑆𝑃 . Topological precision is defined as
𝑇precision =

|𝑆𝑃∩𝑉𝐿 |
|𝑆𝑃 | , which is significantly impacted by False Positives (FP). And topological

sensitivity is defined as 𝑇sensitivity =
|𝑆𝐿∩𝑉𝑃 |

|𝑆𝐿 | , which is markedly affected by False Negatives
(FN). The loss function 𝐿Topology is calculated using the harmonic mean of topological pre-
cision and sensitivity:

𝐿Topology (𝑉𝐿 ,𝑉𝑃) = 2×
𝑇precision(𝑆𝑃 ,𝑉𝐿) ×𝑇sensitivity (𝑆𝐿 ,𝑉𝑃)
𝑇precision (𝑆𝑃 ,𝑉𝐿) +𝑇sensitivity (𝑆𝐿 ,𝑉𝑃)

However, 𝐿Topology is primarily focused on the overall continuity and connectivity, which
can result in challenges when attempting to accurately segment crack edges within images.
Consequently, in the proposed loss function, the topological-base loss function 𝐿Topology is
combined with Cross Entropy Loss 𝐿CE and Dice Loss 𝐿Dice using the weights 𝛼, 𝛽 and
𝛾, thus constructing a more robust framework for crack segmentation. This composite loss
function leverages the strengths of each component: 𝐿Topology for maintaining topological
integrity, 𝐿𝐶𝐸 for pixel-wise accuracy, and 𝐿Dice for optimizing over imbalanced data con-
ditions. Additionally, in the training phase of the proposed framework, features extracted
from infrared images are fused with RGB image features to produce a fusion segmentation
result, which is denoted as 𝑉 𝐼

𝑃
. Unlike the final output, this result is based one the feature of

the infrared images, incorporating their inherent physical constraint features. To further cap-
italize on these infrared-specific constraints and enhance crack segmentation, the proposed
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loss function includes an auxiliary loss function, denoted as 𝐿aux (𝑉𝐿 ,𝑉 𝐼
𝑃
). Ultimately, the

proposed loss function consists of the aforementioned loss functions:

𝐿 (𝑉𝐿 ,𝑉𝑃) = 𝛼𝐿Topology (𝑉𝐿 ,𝑉𝑃) + 𝛽𝐿CE (𝑉𝐿 ,𝑉𝑃) +𝛾𝐿Dice (𝑉𝐿 ,𝑉𝑃)
𝐿aux (𝑉𝐿 ,𝑉 𝐼

𝑃) = 𝛼𝐿Topology (𝑉𝐿 ,𝑉 𝐼
𝑃) + 𝛽𝐿CE (𝑉𝐿 ,𝑉 𝐼

𝑃) +𝛾𝐿Dice (𝑉𝐿 ,𝑉 𝐼
𝑃),

𝐿 (𝑉𝐿 ,𝑉𝑃 ,𝑉
𝐼
𝑃) = 𝐿 (𝑉𝐿 ,𝑉𝑃) + 𝛿𝐿aux (𝑉𝐿 ,𝑉 𝐼

𝑃)
(3)

where 𝛼, 𝛽, 𝛾 and 𝛿 represent the weights for 𝐿Topology, 𝐿CE, 𝐿Dice and 𝐿aux.

3 Experiments

3.1 Dataset
The dataset employed in this study is an open-source dataset[11] dedicated to crack detection
using Infrared Thermography (IRT), which is included in the RGB-T asphalt pavement crack
segmentation benchmark. It comprises four image types: RGB images, infrared images,
fused images (combined at a 50:50 ratio using IR-Fusion™ technology), and ground truth
images manually annotated using Photoshop. Each category consists of 448 images, each
with a resolution of 640x480 pixels. For training and evaluation purposes, the segmentation
model divides the entire dataset into two subsets: 358 images for the training set and 90
images for the test set.

3.2 Training Details
To enhance the diversity of the training data and improve the model’s robustness, spatial,
color, and numerical transformations were applied to the training set, such as random hor-
izontal or vertical flips in spatial, randomly altering brightness or contrast in color. For
images in the validation set, only resizing to 480×480 pixels and normalization processes
were applied. The proposed IRFusionFormer was implemented using the PyTorch frame-
work and optimized with AdamW, incorporating a weight decay of 1e-4. A batch size of 8
and 150 training epochs were designated for training. All experiments were performed on
an NVIDIA GeForce RTX 4090 to expedite model training.

3.3 Evaluation Metrics
To accurately and objectively evaluate the performance of various models, we employed six
widely used evaluation metrics in image segmentation: Dice, IoU (Intersection over Union),
Accuracy, Precision, Specificity, and Recall. Higher values for these metrics indicate supe-
rior segmentation performance. Simultaneously, these metrics are also used as the evaluation
criteria for the RGB-T asphalt pavement crack segmentation benchmark.

4 Results

4.1 Comparison with State-of-the-Art Methods
To validate the effectiveness of the proposed method, we compared it against eight main-
stream models on the dataset. Among these, MCNet[27] uses only infrared images as input,
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whereas U-net[15], UNet++[29], DeepLabV3[1], DeepCrack[30], and CrackFormer[12] use
solely RGB images. CRM_RGBT_Seg[17] and CMNeXt[28] employ both infrared and
RGB images as inputs. IRFusionFormer, along with eight comparative models, constitutes
the benchmarking suite of the proposed benchmark. The quantitative results are summarized
in Table 1 and demonstrate that our proposed IRFusionFormer outperforms other SOTA
methods on the dataset. Figure 3 displays the visual comparsion of 9 models on the test sets
of the datasets, with some results highlighting the skeleton of the cracks.

Table 1: Quantitative results on various datasets. Best and second-best results are bold and
underlined, respectively. For type, ’I’ stands for Infrared, ’R’ stands for RGB, and ’IR’
stands for Infrared+RGB.

Type Models(Venue) Dice IoU Accuracy Precision Specificity Recall
I MCNet[27] 0.6844 0.5202 0.9467 0.7482 0.9786 0.6306
R U-net[15] 0.7891 0.6517 0.9794 0.8161 0.9909 0.7639
R UNet++[29] 0.8048 0.6733 0.9801 0.7937 0.9887 0.8574
R DeepLabV3[1] 0.8338 0.7149 0.9828 0.8134 0.9896 0.8552
R DeepCrack[30] 0.7406 0.5880 0.9787 0.6592 0.9837 0.8450
R CrackFormer[12] 0.8489 0.7374 0.9847 0.8462 0.9918 0.8515
IR CRM_RGBTSeg[17] 0.8450 0.7370 0.9829 0.8651 0.9921 0.8293
IR CMNeXt[28] 0.8760 0.7794 0.9835 0.8885 0.9921 0.8639
IR IRFusionFormer(ours) 0.9001 0.8183 0.9899 0.9001 0.9947 0.9001

Figure 3: Comparison of crack segmentation results from nine models on test set of the
dataset. Images (e)-(h) illustrate the skeleton of the cracks.

Results in Table 1 indicate that the RGB-infrared integrated model outperforms the
model that uses only RGB images, both of which are superior to the model that uses only
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infrared images. As seen in Figure 3, MCNet’s segmentation results are smoother at the
edges compared to other networks, indicating a lack of sufficient information. The proposed
IRFusionFormer achieved the best results across all six evaluation metrics on the test dataset,
outperforming the second-best model, CMNeXt, in Dice, IoU, Accuracy, Precision, Speci-
ficity, and Recall by 2.41%, 3.89%, 0.64%, 1.16%, 0.26%, and 3.62%, respectively. More
importantly, infrared-integrated models were less affected by the presence of watermarks,
shadows, or other disturbances on the pavement, compared to RGB-only models. These find-
ings suggest that while infrared images alone are insufficient in isolation for accurate asphalt
pavement crack segmentation, their integration with RGB images can markedly enhance
prediction accuracy and reduce the impact of complex environmental factors. Additionally,
as illustrated in Figure 3, the proposed method provides a more complete crack skeleton,
attributed to the comprehensive crack information from infrared images and the specially
designed loss function that accounts for the topology of cracks and integrates auxiliary loss
from infrared feature fusion.

4.2 Ablation Study
Our IRFusionFormer mainly consists of two parts: the Efficient RGB-T Cross Fusion Mod-
ule and the Topological-based Loss Function. Therefore, we conduct ablation studies to
verify the effectiveness of each component, and then analyze the stages of fusion modules
and loss function weights. Each of the three fusion modules in the model was evaluated both
individually and in combination, with results detailed in Table 2. Additionally, the impact
of varying weights of the topological-based loss function and the incorporation of auxiliary
loss functions was examined, with findings presented in Table 3 and Table 4.

Table 2: Quantitative results on various fusion stages. Best and second-best results are bold
and underlined, respectively.

Fusion Dice IoU Accuracy Precision Specificity RecallStage 0 Stage 1 Stage 2
✓ 0.8706 0.7709 0.9869 0.8644 0.9927 0.8770

✓ 0.8717 0.7726 0.9870 0.8680 0.9929 0.8755
✓ 0.8737 0.7757 0.9872 0.8680 0.9929 0.8794

✓ ✓ 0.8819 0.7887 0.9881 0.8817 0.9937 0.8821
✓ ✓ 0.8838 0.7917 0.9883 0.8852 0.9939 0.8823

✓ ✓ 0.8841 0.7923 0.9884 0.8863 0.9940 0.8820
✓ ✓ ✓ 0.9001 0.8183 0.9899 0.9001 0.9947 0.9001

Analysis of Table 2 reveals that experimental outcomes improve as the number of Fusion
Blocks increases within the feature extraction network. Using Fusion Blocks across all three
stages yielded optimal results. Notably, the application of a Fusion Block at the third stage,
corresponding to the high-level feature stage, more effectively captures information from the
alternate modality than at the low-level stages.

From Table 3, it is evident that the use of the auxiliary loss function significantly im-
proves segmentation performance. However, when the weight of the auxiliary loss function
increases, the results of crack segmentation decline. Specifically, when the weight is 0.1, the
results are optimal. From Table 4, the topological-based loss function demonstrates an en-
hanced effect on crack segmentation. However, excessively high weights of the topological-
based loss function lead to decreased segmentation performance. Consequently, an appropri-
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Table 3: Quantitative results with varying auxiliary loss function weight. Best and second-
best results are bold and underlined, respectively.

Aux Loss Dice IoU Accuracy Precision Specificity Recall

0 0.8759 0.7792 0.9875 0.8752 0.9934 0.8766
0.1 0.9001 0.8183 0.9899 0.9001 0.9947 0.9001
0.2 0.8886 0.7996 0.9889 0.8949 0.9945 0.8824
0.3 0.8875 0.7978 0.9888 0.9005 0.9949 0.8748
0.4 0.8857 0.7948 0.9885 0.8898 0.9942 0.8816
0.5 0.8834 0.7912 0.9883 0.8836 0.9938 0.8833

Table 4: Quantitative results with varying and topological-based loss function weight. Best
and second-best results are bold and underlined, respectively.

𝐿topology Weight Dice IoU Accuracy Precision Specificity Recall

0 0.8792 0.7844 0.9881 0.8989 0.9949 0.8604
0.1 0.8842 0.7924 0.9885 0.8959 0.9946 0.8728
0.2 0.8886 0.7996 0.9889 0.8949 0.9945 0.8824
0.3 0.9001 0.8183 0.9899 0.9001 0.9947 0.9001
0.4 0.8861 0.7955 0.9884 0.8766 0.9933 0.8958
0.5 0.8815 0.7881 0.9880 0.8793 0.9936 0.8836
0.6 0.8729 0.7745 0.9871 0.8682 0.9929 0.8776

ately weighted topological-based loss function optimally enhances the model’s segmentation
performance. The ablation study shows, a weight of 0.3 yields the best performance. Over-
all, these results demonstrate that the proposed multi-scale fusion module and appropriately
weighted loss functions significantly contribute to the performance of the crack detection
model.

5 Conclusions

To integrate RGB and infrared image information for segmenting asphalt pavement cracks in
complex environments, we propose the RGB-T asphalt pavement crack segmentation bench-
mark. The benchmark includes a dataset of image pairs, a codebase comprising nine al-
gorithms, six evaluation metrics, as well as all related results. This benchmark provided a
new platform for various methods. IRFusionFormer, which was a new crack segmentation
method proposed in this research, achieved state-of-the-art (SOTA) results in the the estab-
lished benchmark. In the proposed method, the Efficient RGB-T Cross Fusion Module was
incorporated into the Interaction-Hybrid-Branch-Supervision (IHBS) framework, which was
designed to efficiently fuse features from RGB and infrared images across three key stages.
Additionally, a topological-based loss function was employed, specifically tailored to handle
the topological structures of cracks, thereby improving the accuracy and robustness of the
crack segmentation. Ablation study results demonstrated that these techniques significantly
improve the performance of the IRFusionFormer network in crack segmentation tasks.
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