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Abstract

This paper investigates advancements in image denoising through the development
of an improved Denoising Diffusion Probabilistic Model (DDPM), introducing the novel
FourierDiff architecture. Leveraging the U-Net network, we integrate the Fast Fourier
Convolution (FFC) module to achieve a seamless fusion of global and local information.
This fusion is pivotal in capturing fine-grained local details while also incorporating
broad global context, enabling the model to handle intricate structures and long-range
dependencies effectively. Furthermore, we enhance normalization with Half Instance
Normalization (HIN) to increase feature scale diversity and optimize computational ef-
ficiency. Experimental validation on the Smartphone Image Denoising Dataset (SIDD)
demonstrates FourierDiff’s superiority over the original U-Net, with significant improve-
ments in Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM).
Both visual and quantitative enhancements underscore FourierDiff’s effectiveness in de-
noising tasks. This research contributes to the diffusion models landscape by showcasing
FourierDiff’s potential for diverse image processing applications, advocating for the ef-
ficacy of improved DDPMs through innovative FFC structure and HIN technique.

1 Introduction
Since its inception in the 1950s, image processing has significantly evolved with computer
technology advancements, leading to automated processing and analysis. This progression
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has opened new avenues in the field, impacting various sectors like medicine, aerospace,
and social media, where image quality is crucial for tasks such as disease diagnosis, satellite
data analysis, and content creation [1, 2]. High-quality images are essential for accurate
information retrieval, enhancing downstream processing efficiency. Thus, noise removal in
images has become a critical challenge.

Recent advancement in deep learning has revolutionized image denoising, with models
learning image features and efficiently reducing noise, outperforming traditional methods.
Deep Learning integration promises to further enhance denoising techniques, improving im-
age quality for better downstream task performance [3]. Mainstream deep learning methods
like Deep Residual Network (DRN) and Generative Adversarial Network (GAN) have shown
significant noise reduction effectiveness. Additionally, Transformers and diffusion models
have emerged, with Transformers processing images through self-attention and diffusion
models accurately estimating and handling various noise types through a progressive noise
addition and removal process [4, 5, 6, 7].

Despite the diffusion model’s success, it faces issues like pattern collapse and challenges
with U-Net’s normalization techniques, particularly Batch Normalization (BN), which has
limitations in small sample properties and computational efficiency. These challenges high-
light the need for improved models that can effectively model image dependencies and over-
come normalization technique limitations [7].

This paper proposes significant enhancements in network architecture and normalization
within the diffusion model framework by incorporating Fast Fourier Convolution (FFC) to
effectively fuse global and local information. This fusion addresses key challenges in image
denoising by integrating fine-grained local details with broad global context, leading to su-
perior image recovery. The improved model is compared against conventional approaches,
demonstrating enhanced performance through the FFC module and Half Instance Normal-
ization (HIN), which together improve computational efficiency and model effectiveness,
particularly in scenarios with smaller batch sizes. Additionally, we introduce a novel Fouri-
erDiff feature extraction method that further enhances the recovery of noisy images.

The paper provides a structured exploration of advancements in image denoising using
improved Diffusion Models and the FFC technique. It covers an overview, related work,
research methodology, experimental results, and conclusions, contributing valuable insights
into the field of image denoising. By offering innovative solutions that address existing
challenges, this work underscores the importance of fusing global and local information for
achieving superior denoising outcomes.

2 Related Work
Image denoising, a challenging ill-posed problem with multiple solutions, is crucial in fields
like astronomy, remote sensing, and medical imaging. Techniques such as Convolutional
Neural Networks [8, 9] and Transformers [10, 11] have shown impressive results. The dif-
fusion model, a latent variable model trained via variational estimation, has been used for
high-quality image synthesis [7].

ADNet [12] excels in handling synthetic and real noisy images, while FFDNet [13] pro-
vides speed and flexibility. NBNet [14] uses image adaptive projection and a non-local atten-
tion module for superior performance. Residual learning and batch normalization have also
enhanced denoising [15]. Semantic segmentation networks combining residual learning and
U-Net have been effective [16]. R2U-Net models [17] integrate U-Net, Residual Networks,
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and Recurrent Convolutional Neural Networks.
Denoising diffusion probabilistic models have gained attention for their stable training

and high-quality image generation. Initiatives like DDPM-based solutions for atmospheric
turbulence [18] and unpaired image-to-image translation methods [19] have been proposed.
RePaint [20] uses a pre-trained unconditional DDPM for inpainting. FDnCNN [21] balances
denoising and detail preservation. Fourier Image Transformer (FIT) [22] operates in Fourier
space, enhancing resolution prediction.

Modifications to the Denoising Diffusion Probabilistic Model [23] have improved log-
likelihoods and sample quality. Facet-based diffusion models [24] enable size-independent
image recovery. Weather-guided diffusion models [25] generate clean images. Brownian
Bridge Diffusion Model (BBDM) [26] facilitates image-to-image translation. Anisotropic
diffusion filtering [27] improves noise removal and edge preservation. DDPM acceleration
strategies [28] aim to reduce inference time.

Recent DDPM-based algorithms [29, 30, 31] have excelled in image restoration, en-
hancing image clarity. SR3 model improvements focus on local feature learning. Our ap-
proach, FourierDiff, integrates Fast Fourier Convolution [32] to efficiently fuse global and
local information, enhancing denoising with a composite loss function, showing significant
improvements in both metrics and visual results.

3 Research Methodology

3.1 Fast Fourier Convolution
3.1.1 Fast Fourier Transform

The Fourier transform is a crucial method for converting signals from their original time
domain to a frequency domain, facilitating simpler signal processing. Depending on the
signal type, Fourier transforms are categorized into four main types, as depicted in Figure 1.

Figure 1: Fourier transform into four categories

The Discrete Fourier Transform (DFT) is the discrete version of the continuous Fourier
transform, which works with finite-length sequences in both time and frequency domains.
These sequences are conceptually considered as representing periodic signals. The DFT
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assumes signals are periodically extended for transformation. The Fast Fourier Transform
(FFT) is a more efficient way to compute the DFT, utilizing a divide-and-conquer strategy
to reduce computational complexity significantly. The DFT and its inverse are computed
efficiently through the FFT, which optimizes the algorithm by separating the DFT compu-
tation into smaller, manageable problems, tackled either recursively or iteratively. Notably,
the Cooley-Tukey algorithm is a widely used FFT variant [33].

The Cooley-Tukey algorithm simplifies the DFT operation by breaking it down into
smaller DFT operations on data of length N/2 and applying the process recursively until
the data length is reduced to 1. This approach, along with simple mathematical operations
like rotation factorization and complex multiplication, significantly lowers computational
complexity.

xn =
N−1

∑
k=0

Xkei 2π
N kn n = 0, . . . ,N −1 (1)

The FFT’s major advantage over a direct DFT computation lies in its reduced compu-
tational complexity, dropping from O(N2̂) to O(N log N), enabling much higher efficiency,
especially with extensive data sets. Additionally, the FFT can be optimized through parallel
processing and hardware acceleration. Its applications span signal processing, image pro-
cessing, and speech recognition, where it assists in frequency domain analysis and image
enhancement tasks.

3.1.2 Convolutional Structure

Fast Fourier Convolution is a new convolution module that not only has a non-local recep-
tive field but also fuses cross-scale information inside the convolution. The FFC consists of
three parts: a local branch (performs normal small-kernel convolution), a semi-global branch
(handles spectrally superimposed image patches) and a global branch (handles image-level
spectra). These three branches extract the information of the three scales and finally aggre-
gate the features of the three branches together. FFC can replace the standard convolution
and its Floating Point Operations Per Second (FLOPs) are similar to the standard convolution
[32].

Figure 2: Left: Architecture design of Fast Fourier Convolution. Right: Design of spectral
transform [34]
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As shown in Figure 2, H × W, C represent the spatial resolution and the number of
channels respectively. The FFC consists of two interconnected paths: a spatial (local) path
that performs ordinary convolution over a portion of the input feature channel, and a spec-
tral (global) path that operates in the spectral domain. Each path captures complementary
information with different receptive fields.

Y l = Y l→l +Y g→l = f l
(
X l
)
+ f g→l (X

g)

Y g = Y g→g +Y l→g = f g (X
g)+ f l→g

(
X l
) (2)

Fourier Unit (FU) Properties: 1) A two-dimensional FFT applied to a real signal yields
a conjugate symmetric matrix, from which, applying inverse FFT retrieves all real elements.
This implies we can store half of the transformation result and reconstruct the other half
using conjugate symmetry without information loss. 2) The spectral convolution theorem in
Fourier theory, highlighting that modifications in the spectral domain influence global spatial
domain features, is pivotal in signal and image processing.

Local Fourier Unit (LFU) focuses on semi-global information by dividing the input fea-
ture map into four patches for FU application. LFU entails higher computational demands
due to added channels.The Fast Fourier Convolution technique leverages Fourier spectral
theory for non-local sensory field implementation in deep models, facilitating cross-scale
feature fusion. FFC’s efficacy in capturing long-range dependencies and information fusion
across scales enhances performance on computer vision tasks, as evidenced by comprehen-
sive experiments.Utilizing FFC, this study transforms split features into the frequency do-
main to enrich information and receptive fields, resulting in improved image detail restora-
tion.

3.2 Half Instance Normalization Network
The Half Instance Normalization Network (HINet) is an image restoration model that lever-
ages Instance Normalization within a dual U-Net architecture for feature extraction and im-
age pixel restoration, incorporating down-sampling and up-sampling techniques. Within this
process, the Half Instance Normalization module is employed after each sampling operation,
enabling effective feature extraction by dividing features generated via 3×3 convolution into
two parts. One part undergoes Instance Normalization and is then merged back with the
other, allowing the HIN module to apply normalization to one half while retaining contex-
tual details in the other, as shown in Figure 3.

Furthermore, HINet integrates Cross-Stage Feature Fusion (CSFF) and Supervised At-
tention Module (SAM) to enhance the connection between its two sub-networks. CSFF
optimizes feature extraction by merging encoder down-sampling features with decoder fea-
tures, while the SAM module refines local features through a superpixel attention mask M,
generating attention-augmented features for subsequent processing stages [35].

Instance Normalization zeroes in on pixel-level details, emphasizing the feature distri-
bution within each instance (or image). This method is particularly effective in maintaining
image independence for tasks like image transformation and style transfer, preventing the
dilution of instance distinctiveness by the batch’s collective data.

Conversely, Group Normalization operates on a broader scale by organizing batch data
into groups for normalization, proving advantageous in large network operations and specific
computer vision applications such as detection, segmentation, and video analysis. Its efficacy
is notable in scenarios necessitating small batches, where it adeptly addresses the challenges
of imprecise statistical estimations due to limited sample sizes.
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Figure 3: HIN Block [36]

To summarize, Instance Normalization is preferable for tasks requiring preservation of
image independence, like image transformation and style transfer. In contrast, Group Nor-
malization excels in large-scale network contexts and complex computer vision challenges,
leading to its application in this experiment where intermediate features are divided and sub-
jected to Group Normalization.

3.3 FourierDiff

We propose a Fast Fourier Convolution module to improve the structure of UNet, which in
turn improves the performance of the diffusion model in the denoising task. The specific
structure of the Fast Fourier Convolution module is shown in Figure 4, where the input fea-
ture maps are divided equally according to the channel dimensions, and part of them are
group normalised, and then spliced with the other half of the feature maps according to the
channel dimensions. Then the feature maps are transformed to Fourier space using the fast
Fourier transform, and then the global information is extracted from the Fourier space fea-
ture maps using the convolution operator. In another branch, local features are extracted in
the image domain using the convolution operator, and finally the obtained global and local
information are spliced in the channel dimension. Chen et al. proposed HINet [35] and
found that Instance Normalization using half of the channel’s features could improve the
model’s performance in low-level vision tasks. In this experiment, using Group Normal-
ization performed better. Therefore, we use Group Normalization to normalize half of the
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channel features.

Figure 4: The structure of the proposed FourierDiff

4 Results

4.1 Experimental Data and Environment
We utilized the Smartphone Image Denoising Dataset (SIDD) to test the proposed fast
Fourier convolution module. SIDD, a large-scale dataset for smartphone image denoising,
contains real noisy images with high-quality ground truth, supporting research in image de-
noising and enhancement.

SIDD was established through data collection, error removal, image alignment, and gen-
eration of "noise-free" real images, totaling about 30,000 images. It aids in verifying noise
reduction algorithm reliability and testing common algorithms’ performance.

SIDD-trained convolutional neural network models show enhanced effectiveness. Smart-
phone images often have more noise than DSLR images due to smaller apertures and sensors.
SIDD offers a solution and a platform for training and testing denoising algorithms, prompt-
ing our use of it for diverse data and results.

4.2 Evaluation Index
Peak Signal-to-Noise Ratio (PSNR) is a measure of image quality. It is used to evaluate
the reconstruction quality or denoising effect of images or videos. The higher the PSNR, the
better the image quality.PSNR is a relatively subjective evaluation method because it is based
on the characteristics of the human visual system. However, in some application fields, such
as medical image processing and satellite image analysis, PSNR is still a commonly used
objective evaluation method.PSNR is calculated by comparing the mean square error (MSE)
between the original image and the denoised image. Specifically, the calculation formula of
PSNR is:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)−K(i, j)]2 (3)
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PSNR = 20 · log10(MAXI)−10 · log10(MSE) (4)

The Structural Similarity Index (SSIM) measures the structural similarity between two
images, widely used in image quality assessment, denoising, and enhancement. Unlike pixel-
value comparisons, SSIM assesses brightness, contrast, and structural information. SSIM
ranges from -1 to 1, with 1 indicating identical images. In image denoising, higher SSIM
values suggest better preservation of image structure and details. Unlike PSNR, which fo-
cuses less on structural details, SSIM may be more appropriate for evaluating image quality
in certain applications.

Learned Perceptual lmage Patch Similarity (LPlPS) is a balanced network (such as VGG,
AlexNet) used to extract image features, and then calculate the distance between these fea-
tures to evaluate the perceptual similarity between images. LPIPS is more in line with human
perception than traditional methods such as PSNR, SSIM. The lower the value of LPIPS, the
more similar the two images are, and vice versa, the greater the difference.

4.3 Experimental Results

Table 1 shows the results of Original DDPM, Improved DDPM, and Ablation (Remove FFT),
where the Improved DDPM experimental results show an increase of 4.5 in PSNR, an in-
crease of 0.19 in SSIM, and a decrease of 0.029 in LPIPS compared to Original DDPM,
which indicates an improvement in the the image quality of Original DDPM. Figure 5 show
that the improved method provides better edge recovery of green leaves compared to Origi-
nal DDPM. This enhancement is due to the introduction of FFC, which fuses image features
across scales and provides a global view in the frequency domain. In addition, the fast
Fourier convolution module and channel normalization reduce the model runtime. Figure 5
also shows better processing of images with lighter shadows, resulting in sharper recovery.
In addition to this the article sets up ablation experiments and the Improved DDPM exper-
iment results in an increase in PSNR of 1.5, an increase in SSIM of 0.004, and a decrease
in LPIPS of 0.011 over Ablation (Remove FFT).The removal of the Fast Fourier Transform
with no change in the structure of the model makes the quality recovery of the image as well
as the speed of the training of the model to be certain influence.

Table 1: Experimental results

Index Original DDPM (U-
Net)

Improved DDPM
(FourierDiff)

Ablation (Remove
FFT)

PSNR 38.1 42.6 41.1
SSIM 0.953 0.972 0.968
LPIPS 0.151 0.122 0.133
Average time 0.140 0.132 0.142
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Figure 5: SIDD visualization results, including clean map, noise map, original DDPM re-
sults, improved method results and ablation results

4.4 Ablation

In this ablation study, we investigated the impact of removing the FFT module on the per-
formance of the improved DDPM. The results of the ablation experiment, as shown in Table
1.

Upon the removal of FFT, the ablation model’s PSNR and SSIM decreased to 41.1 and
0.968, respectively, showing a decline compared to the improved model but still surpassing
the original DDPM. This result indicates that while the removal of FFT negatively impacts
the model’s performance, the other components of the improved model still contribute to its
performance enhancement.

Figures 5 illustrate the superior edge recovery of green leaves by the improved model,
an aspect that is somewhat diminished in the ablation model but still better than the original
DDPM. This further proves the significant role of FFT in merging image features across
scales and providing a global perspective in the frequency domain.

Moreover, the introduction of the FFT module and channel normalization has also re-
duced the model’s running time. As seen in Table 1, the improved DDPM exhibits a reduc-
tion in average running time compared to the original DDPM, and the running time slightly
increases after the removal of FFT. This indicates the role of FFT in enhancing computational
efficiency.
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5 Conclusions
In conclusion, this paper represents a significant advancement in image denoising by en-
hancing Denoising Diffusion Probabilistic Models through the development of the Fouri-
erDiff architecture. By refining the U-Net architecture and introducing the innovative Fast
Fourier Convolution module, our approach effectively fuses global and local information,
dramatically improving the model’s ability to capture and restore intricate image features.
This seamless integration of global context and local detail elevates the overall performance
of the model in image restoration tasks. The strategic incorporation of Half Instance Nor-
malization further enhances the model by increasing feature scale diversity, achieving an
optimal balance between computational efficiency and feature preservation. Experimental
validation on the Smartphone Image Denoising Dataset demonstrates the clear superiority
of FourierDiff over the original U-Net, with significant improvements in PSNR and SSIM.
These results highlight FourierDiff’s effectiveness in real-world scenarios, especially when
dealing with challenging noise patterns.

The success of this research not only deepens the understanding of diffusion models but
also establishes FourierDiff as a highly effective and efficient solution for image denoising.
This work has broad implications, offering potential applications across diverse domains that
require precise and reliable image processing techniques.
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