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Abstract

Interpretability is crucial in computational neuroscience, where understanding the
relationship between input stimuli and neural responses is essential. Traditional segmen-
tation models like UNet are often seen as "black boxes," providing accurate results but
lacking transparency in how they reach those results. This lack of interpretability poses
a significant challenge when linking visual stimuli with the corresponding brain activ-
ity, limiting our ability to draw meaningful conclusions about the neural mechanisms
underlying perception. The core issue is that conventional models do not incorporate
neural data, such as fMRI, which is vital for providing contextual information about how
the brain processes visual inputs. By integrating this data, the models can offer insights
into the cognitive processes involved, resulting in more accurate segmentation and in-
terpretability. To overcome this limitation, we propose the YNet architecture, which
integrates fMRI-derived features with natural scene images. This fusion enhances seg-
mentation accuracy and improves interpretability by revealing how neural activations
contribute to the segmentation process. YNet allows researchers better to understand the
link between visual stimuli and brain activity, offering a more transparent and insightful
approach to decoding neural mechanisms of perception.

1 Introduction
In recent years, the intersection of neuroscience and computer vision has witnessed profound
advancements, particularly in elucidating how visual stimuli are processed within the human
brain. A compelling area of inquiry involves integrating natural scene images with functional
magnetic resonance imaging (fMRI) data to uncover the neural mechanisms that underpin
visual perception [53]. By combining these modalities, researchers endeavor to discern how
specific features inherent in natural scenes evoke distinct patterns of brain activity, thereby
enriching our comprehension of cognitive processes related to visual processing. fMRI,
sensitive to changes in blood oxygenation and flow associated with neural activity, offers
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insights into the brain’s functional architecture by revealing activated regions in response to
varied stimuli [36]. This integration of natural scene images and fMRI data presents a potent
approach for investigating the intricate relationship between visual inputs and brain activ-
ity, potentially advancing neuroscientific understanding and applications in brain-computer
interfaces, medical imaging, and artificial intelligence [40].

The study of visual dynamics in the brain has been a foundational pursuit in neuroscience
since the seminal work of Hubel and Wiesel in the 1960s, which introduced the concept of
feature detectors in the visual cortex through experiments on cats [16, 17, 18, 30]. Since then,
researchers have sought to unravel the capabilities of the biological visual system. Recent
decades have seen the emergence of computational models, known as encoding models,
designed to predict neural responses based on stimulus inputs [22, 23, 24, 34]. Early models,
such as the Gabor Wavelet Pyramid [23, 33, 34, 35] and Semantic Categorical Labelling
[33, 35], relied on handcrafted feature sets tailored to specific regions of the visual cortex.
However, these models needed more generalizability across different visual areas; while
effective in the early stages of visual processing, they faltered in higher-order regions. The
advent of deep neural networks (DNNs), particularly convolutional neural networks (CNNs),
addressed this challenge by leveraging hierarchical representations [45] that align with the
hierarchical organization of the visual system [14, 15, 26, 27, 51, 52]. CNNs demonstrated
efficacy in predicting neural responses [3, 13, 14, 19, 22, 26, 37, 41], with early layers adept
at modeling early visual areas and deeper layers proficient in capturing responses from later
visual regions [2, 9, 14, 15, 25, 31, 47, 48, 49, 50, 52]. Despite their success, DNNs are
often criticized for their opacity, complicating efforts to interpret their internal workings.

Interpretability in the context of neuroscience diverges significantly from that in deep
learning [21]. While explainable artificial intelligence (XAI) algorithms like Guided Back-
propagation and GradCAMs [38, 42, 43, 54] aim to elucidate model predictions [28, 32,
39, 44, 46], neuroscience interpretability focuses on comprehending neuronal behavior in
response to stimuli. Recent efforts in neuro-interpretability [10, 11, 12, 20] have explored
gradient-based approaches such as voxelwise stimulus optimization (VSO) [6], which gen-
erates region-of-interest (ROI) heatmaps based on visual study areas. However, challenges
persist due to the low signal-to-noise ratio (SNR) inherent in fMRI data, which can lead to
inconclusive heat maps [6]. The Dreamcatcher algorithm employs language-based encoding
to generate textual interpretations from fMRI data but needs to capture the nuanced stimulus-
response relationships within the biological visual system [4]. Graph-based approaches have
also been proposed to map inter-region connectivity [5, 7, 8] but often neglect the stimulus’
direct influence on these relationships, highlighting the need for novel methodologies that
directly correlate stimulus features with neural activations.

This paper proposes the Y-Net model, designed to integrate natural scene images with
corresponding fMRI data to generate heatmaps reflecting neural activity in specific visual
components. The conceptual diagram of the Y-Net model is depicted in Figure 1. The train-
ing and evaluation of the Y-Net model are conducted using the Natural Scenes Dataset, a
comprehensive collection of natural scene images widely used in computer vision and neu-
roscience research. The Y-Net model is trained with pairs of stimulus images and their
corresponding fMRI scans as input, aiming to reconstruct the original stimulus image as out-
put. This unsupervised learning approach leverages the paired nature of the dataset to learn
the mapping between visual stimuli and neural responses. The performance of the proposed
model is benchmarked against several standard encoding models, such as GWP, AlexNet,
ResNet-50, and VOneNet, to assess the efficacy of the Y-Net model. Furthermore, layer-
wise neural prediction performance is analyzed to investigate the Y-Net model’s ability to
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Figure 1: General Architecture of Proposed Y-Net Model. The original stimulus (image)
is passed as the base of the segmentation map, where as the fMRI is passed as the neuro-
informed segmatation estimator.

generalize features across its architecture. This analysis evaluates how effectively each com-
ponent—encoder, latent space representation, and decoder—contributes to neural prediction
accuracy. The results demonstrate that the Y-Net model achieves prediction performance
comparable to the highest-performing benchmark models. Moreover, the layer-wise analysis
reveals nuanced insights into feature generalization across the Y-Net architecture. Visualiza-
tions and heatmaps generated by the Y-Net model further underscore its interpretability and
explanatory power.

2 Proposed Methodology
The YNet architecture is an advanced neural network designed to fuse natural scene images
with fMRI data to decode and interpret the neural mechanisms underlying visual perception.
This model extends the traditional UNet architecture by incorporating additional features
derived from fMRI data, which enrich the representation and enhance segmentation perfor-
mance. Below is a detailed description of the YNet architecture, along with its mathematical
foundations.

The YNet model is composed of three primary components: an encoder, a decoder, and a
feature integration module that incorporates fMRI data. The encoder is similar to the one in
autoencoder, comprising several convolutional layers followed by max-pooling, along with
skip residual connections to the reconstruction layers. This module extracts hierarchical
features from the input image. Let x be the input image, and the encoder outputs a feature
map f (x) after a series of convolutional operations.

f (x) = Encoder(x) (1)

The key difference in YNet is the integration of fMRI data. The fMRI data z, representing
brain activation patterns corresponding to the visual stimulus, is processed through a separate
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network (typically a series of fully connected layers or a convolutional neural network) to
produce a feature map f (z).

f (z) = fMRI_Network(z) (2)

The fMRI feature map f (z) is then fused with the image feature map f (x) using element-
wise addition, concatenation, or a more sophisticated fusion method. If we denote the fusion
operation by ⊕, the fused feature map F is given by:

F = f (x)⊕ f (z) (3)

The fused feature map F is then passed through the decoder, which mirrors the encoder but
with upsampling layers instead of pooling layers. The decoder generates the final segmenta-
tion map ŷ.

ŷ = Decoder(F) (4)

The YNet architecture can be formalized using the following mathematical components.
The basic building blocks of YNet are convolutional layers, which apply a set of filters to
the input to produce feature maps. For an input I and a filter w, the convolution operation is
defined as:

(I ∗w)(i, j) = ∑
m

∑
n

I(i−m, j−n)w(m,n) (5)

This operation is performed repeatedly at each layer, producing increasingly abstract rep-
resentations of the input image. After each convolution, an activation function (typically
ReLU) is applied to introduce non-linearity:

f (I) = ReLU(I ∗w+b) (6)

where b is the bias term. The encoder utilizes pooling operations (typically max-pooling) to
downsample the feature maps, reducing their spatial dimensions and emphasizing the most
important features.

P(I)(i, j) = max
m,n

I(2i+m,2 j+n) (7)

In the decoder, upsampling layers (e.g., transposed convolution) are used to increase the
spatial dimensions of the feature maps, gradually reconstructing the spatial information.

U(I)(i, j) = ∑
m

∑
n

I(i/m, j/n)∗w(m,n) (8)

The training of YNet is guided by a loss function that measures the discrepancy between
the predicted segmentation ŷ and the ground truth segmentation y. A common choice is the
cross-entropy loss for pixel-wise classification:

L(y, ŷ) =−∑
i

yi log(ŷi) (9)

Alternatively, for multi-class segmentation tasks, a generalized Dice loss or a combination
of Dice and cross-entropy loss can be used.

LDice(y, ŷ) = 1− 2∑i yiŷi

∑i yi +∑i ŷi
(10)
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3 Training Details
The Y-Net model is trained in an unsupervised manner, leveraging the inherent structure
and relationships within the data rather than relying on explicit labels. The training process
follows these detailed steps:

3.1 Dataset Description
The Natural Scenes Dataset (NSD) [1] includes fMRI recordings from 8 participants,
who viewed 9,000–10,000 unique color natural scenes across 30–40 scan sessions, total-
ing 22,000–30,000 trials. Data were collected using a 7-tesla MRI scanner with a spatial
resolution of 1.8 mm and a repetition time (TR) of 1.6 seconds. Stimuli, sourced from the
Microsoft COCO database [29] and presented at 8.4° x 8.4°, were displayed for 3 sec-
onds with 1-second intervals. A common set of 1,000 images was shown to all participants,
while the rest were unique to each. Images were shown while participants fixated centrally
and performed a recognition task. The data underwent temporal and spatial interpolation
for preprocessing, and single-trial beta weights were computed using a general linear model
(GLM) to analyze neural responses. Surface reconstructions were generated for detailed
cortical characterization using Brain surface plots from Nilearn.

3.2 Data Preparation
The training dataset comprises pairs of natural scene images and corresponding fMRI scans.
The fMRI data is subjected to preprocessing, including motion correction, normalization,
and spatial smoothing, to enhance signal quality and minimize noise. Both the natural scene
images and fMRI scans are then normalized to a common scale to facilitate effective in-
tegration. The training-testing split was considered to be 80:20. Data for 8 subjects were
considered for the training and validation of the model. The generated results are calculated
on the testing split averaged over 8 subjects.

3.3 Optimization
Model parameters are optimized using the Adam optimizer with an initial learning rate of
0.001. Gradient computation is performed through backpropagation, and parameter updates
are carried out iteratively to minimize the composite loss function. Adam’s adaptive learning
rate helps in managing convergence, especially in the unsupervised setting where the model
learns directly from the data without manual annotations.

4 Experiments and Results

4.1 Comparison of Y-Net Model with other standard Encoding Models
The table 1 compares the average Pearson’s Correlation values, which quantify the correla-
tion between expected and actual neural responses, for different models in the brain’s left
and right hemispheres. With a Pearson’s r − value of 0.35, GWP has a weak connection
in the left hemisphere. With a value of 0.43, AlexNet performs better than this; ResNet50
advances it with 0.51. With a Pearson’s r− score of 0.58, VOneNet distinguishes itself with
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Mean Pearson’s (r)
Model Left Hemisphere Right Hemisphere
GWP 0.35±0.04 0.31±0.06
AlexNet 0.43±0.03 0.41±0.03
ResNet50 0.51±0.02 0.48±0.03
VOneNet 0.58±0.01 0.55±0.01
Proposed Y-Net 0.57±0.01 0.52±0.01

Table 1: This table shows a comparison of standard encoding models, namely GWP,
AlexNet, ResNet50 and VOneNet agaisnt the proposed Y-net model.

significant predictive power. With a value of 0.57, the proposed Y-Net model shows almost
identical accuracy and is closely behind VOneNet. The variation between VOneNet and Y-
Net is not statistically significant, according to a one-tail t − test. With a Pearson’s r− score
of 0.31, GWP performs poorly in the right hemisphere. With 0.41, AlexNet performs better;
ResNet50 keeps improving with 0.48. Once again, leading with the highest rating of 0.55 is
VOneNet; Y-Net follows closely at 0.52, barely behind VOneNet.

As confirmed by a t-test (p < 0.01), the suggested Y-Net model routinely beats GWP
in both hemispheres, with notable variations of 0.22 in the left and 0.21 in the right. With
increases of 0.14 in the left hemisphere and 0.11 in the right, Y-Net performs noticeably
better than AlexNet. With variations of 0.06 in the left hemisphere and 0.04 in the right,
Y-Net likewise beats ResNet50, showcasing its excellent performance. With just minor vari-
ations of 0.01 in the left hemisphere and 0.03 in the right, Y-Net comes close behind even
if VOneNet boasts the best Pearson’s r− values. This little difference shows that Y-Net is
matched in prediction accuracy and is quite competitive.

4.2 Efficacy of the representation space of Y-Net for different visual
ROIs

Figure 2: Comparison of extracted features from Y-Net against different visual areas. V1,
V2, V3 represent the early visual areas, where as the rest represent the late visual areas.

Figure 2 compares the performance of different components (Latent, Decoder, and En-
coder) across various regions of interest (ROIs) using mean Pearson’s R values. These values
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indicate the correlation between predicted and actual fMRI responses, measuring how well
each component captures the underlying brain activity.

The encoder in the proposed model acts as a practical feature extractor, as evidenced by
its consistently high correlation values across multiple ROIs. This inference suggests that
the encoder is adept at capturing essential information from the input data, which is crucial
for accurately predicting brain activity. The strong performance of the encoder highlights
its ability to distill relevant features from the data, making it a valuable component of the
overall model.

4.3 Comparison of proposed Y-Net model with standard U-Net model
in terms of segmentation

Figures 3 are outputs from the proposed YNet models and pre-trained UNet. Visually com-
paring these images reveals a noticeable difference in the quality and accuracy of the segmen-
tation. The second image, produced by the UNet model, exhibits a segmentation map that
could be more varied and precise. The boundaries between different regions are blurred, and
the segmentation lacks clarity, suggesting that the model struggles to delineate the various
components within the scene accurately.

In contrast, the first image generated by the YNet model is markedly more refined. The
segmentation map is cleaner, with well-defined boundaries that closely follow the structure
of the original image. The regions in this output are distinct, indicating that the YNet model
has effectively captured the intricate features of the image. This significant improvement in
segmentation quality can be attributed to integrating fMRI-based features within the YNet
model, which enhances its ability to interpret and segment complex visual scenes.

Evaluating these models using the Intersection over Union (IoU) metric further highlights
the superiority of the YNet approach. The IoU measures the overlap between the predicted
segmentation and the ground truth, providing a quantitative assessment of segmentation ac-
curacy. The UNet model, with its noisier output, achieves a lower IoU (0.34) score due to
the poor alignment between the predicted and actual regions. On the other hand, the YNet
model, with its more precise and accurate segmentation, achieves a higher IoU (0.77) score,
reflecting its ability to match the expected segmentation closely.

4.4 Abalation Study of the Y-Net Model
In the proposed YNet model, the fMRI images are fed into a subsidiary input layer, which
generates features and adds up to the latent space, as in visible in figure 4. This feature ex-
traction mechanism allows the model to generate a much better feature vector for the latent
space. By enhancing the quality of the feature vector that is passed to the latent space, the
model ensures that the decoder receives more precise and informative inputs. As a result,
the decoder in the proposed YNet model can outperform the standard UNet segmentation
output. The improved feature vector in the latent space enables the decoder to reconstruct
the fMRI data more accurately. This results demonstrates that the synergy between the en-
coder’s feature extraction and the subsequent linear regression leads to a more robust model,
ultimately enhancing the decoder’s performance in generating superior outputs compared to
traditional methods.

Including fMRI features in the YNet model is crucial for improving segmentation per-
formance. fMRI data provides additional neural activation information corresponding to
different visual stimuli, allowing the model better to understand the underlying structure and
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Figure 3: Comparison of segmentation maps (Y-Net , on the left, vs U-Net , on the right). It
can be observed that the generated results from Y-Net has a better representation in compar-
ison to pre-trained U-Net

context of the image. This enriched information helps the YNet model make more informed
decisions during segmentation, leading to more accurate and reliable outputs.

4.5 Interpretability of the generated fusion map

As observed from the previous results, the neuro-informed segmentation map captures the
object in the context relevant to the fMRI data. The objects under a higher level of cognition
can be identified using a mechanism called binning. Binning is a technique that reduces noise
and enhances segmentation by grouping the pixel values into a specified number of bins. The
majorly relevant segmented areas within the image can be identified by binning the pixel
values corresponding to the fMRI data’s voxel firing. The histogram displayed represents
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Figure 4: Abalation study of the components of Y-Net. Without the fMRI input, the Y-
Net behaves exactly as the U-Net model with cluttered segmentation map. Without the base
image, the produced map is just a random noise. On the contrary combining the two produces
a reasonably good segmentation for input images.

the distribution of pixel values in a segmented output image. This type of analysis helps
identify the pixel ranges corresponding to the image’s different segments. Each segment
has a specific range of pixel values, and these ranges are represented by the peaks in the
histogram, achieving the concept of binning for identifying the interpretable segmentation
map. A detailed result can be observed in figure 5.

Figure 5: Interpretability map of the stimulus using Y-Net model and binning. The binned
segmentation map generates a clear interpretation of the objects more relevant to the cogni-
tive processes captured by the fMRI.

5 Conclusion

The YNet architecture effectively enhances image segmentation by integrating fMRI-derived
features, allowing it to decode visual stimuli more accurately. By combining traditional
convolutional layers with neural data, YNet captures both the visual and cognitive aspects
of the input, leading to superior segmentation performance. The mathematical foundations
of YNet provide a robust framework for its operation, ensuring precise and reliable results.
This approach outperforms traditional models like UNet, making YNet a powerful tool for
decoding and interpreting complex visual scenes.
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