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Abstract

Low-light image enhancement poses significant challenges in machine vision due to
poor illumination conditions of the scenes. The present study introduces a novel deep-
learning approach specifically designed for enhancing low-light images. The proposed
technique exploits a deep neural network architecture integrating channel & multi-scale
spatial attention, self-attention, and dilated convolutions. These components are adept at
capturing contextual information across channels, scales, and features thereby enabling
effective enhancement while minimizing noise and artifacts. For generating the pixel
values of the enhanced image, function approximation technique is used that aids in
mapping the given input image into an enhanced image by adjusting the dynamic range
of low-light images. In doing this, customized loss functions have been utilized to guide
training and optimize the model’s performance, addressing key aspects such as color
constancy, exposure fidelity, illumination smoothness, and spatial consistency between
neighboring pixels. Empirical assessments on benchmark datasets show that the pro-
posed approach outperforms existing approaches, both in quantitative metrics such as
PSNR, SSIM, and MAE, as well as in qualitative visual outcomes. GlowNet achieved a
PSNR of 18.29 dB, SSIM of 0.62, and MAE of 92.51 on the benchmark LOL dataset.

1 Introduction
Enhancing images captured in low-light conditions is a significant challenge in computer
vision and image processing [12], with implications for various fields like surveillance, pho-
tography, and autonomous driving. Low-light images typically exhibit reduced visibility,
increased noise, and loss of detail, making further analysis more difficult. To overcome
these issues, we introduce GlowNet, a novel self-guided method featuring an advanced
neural network architecture. GlowNet integrates channel attention, spatial attention, self-
attention mechanisms, and dilated convolutions for precise polynomial estimation. This de-
sign captures contextual information across channels and scales, prioritizing key features for
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enhancement while minimizing outliers. GlowNet also employs curve estimation to modu-
late the dynamic range of images effectively. GlowNet’s self-supervised approach, utilizing
fewer parameters compared to SOTA approaches like MIRNet-v2 [17], reduces overfitting
and avoids the need for paired supervision. As shown in Figure 1, GlowNet achieves impres-
sive image enhancement with restored fine-grained details utilizing only 0.24 million param-
eters compared to MIRNet-v2’s 5.85 million, demonstrating its efficiency as a lightweight
network by employing a compact architecture that leverages advanced feature extraction
techniques and efficient feature fusion modules to deliver competitive performance with sig-
nificantly fewer computational resources. By leveraging deep neural network [9] and at-
tention mechanisms [4], GlowNet enhances low-light images while preserving details and
minimizing artifacts.

This paper is organized in the following manner: Section 2 reviews related research in
this field; Section 3 details GlowNet’s design; Section 4 covers datasets, experimental set-
tings, and results; Section 5 presents the conclusions and outlines future research directions.

(a) (b) (c)

Figure 1: Visual comparison: (a) A low-light image as input, (b) Enhanced using the pro-
posed GlowNet, (c) Enhanced using the SOTA MIRNet-v2 [17].

2 Related Research
In recent years, low-light image enhancement has advanced significantly with deep learning
techniques. MIRNet-v2 [17] concentrates on high-resolution features while leveraging con-
textual details from low-resolution images. SRIE [2] by Fu et al. estimates reflectance and
illumination simultaneously, while LIME [5] refines a coarse illumination map using struc-
tural priors. Li et al. [7] introduced a Retinex model which estimates illumination using an
optimization problem without logarithmic transformation. CNN-based models, like LLNet
[10] and Retinex-Net [15], rely on paired data, which can be costly and impractical. Wang
et al. [14] use intermediate illumination and paired data but face similar challenges. Unsu-
pervised GAN-based methods, such as EnlightenGAN [6], avoid the need for paired data
by using global-local discriminators and self-regularized losses. Zero-DCE [3] employs a
lightweight network to estimate image-specific curves without reference images, while KinD
Net [18] decomposes images into illumination and reflectance for flexible adjustments. The
STAR model [16] uses local derivatives for regularization, RUAS [8] applies neural ar-
chitecture search based on the Retinex rule, and SCI [11] presents a cascaded illumination
learning process. The Generative Diffusion Prior (GDP) [1] uses a pre-trained diffusion
model for unsupervised restoration with a new conditional guidance protocol.

As mentioned, the proposed framework encapsulates attention methods, self-guidance
and estimates intricate pixel transformation through minimizing loss functions. The method
integrates various attention mechanisms at strategic positions to selectively focus on informa-
tive features, dynamically adjusting their importance and enhancing feature representations.
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Figure 2: Block diagram of the proposed architecture: (a) GlowNet - core network for low-
light enhancement with multi-scale and attention mechanisms; (b) Multi-Scale Feature Block
(MFB) - captures fine details with multi-scale convolutions; (c) Self-Attention Block - cap-
tures global context for natural enhancement.

3 Methodology

In this work, the illumination enhancement task is formulated as a pixel-to-pixel mapping
problem, where the objective is to transform a low-light image X ∈ RH×W×3 into an en-
hanced image X ′ ∈ RH×W×3, with H and W representing the height and width of the image,
and 3 represents the total color channels. The transformation is modeled by a polynomial
function P(X) of degree n:

X ′ = P(X) = a0 +a1X +a2X2 + · · ·+anXn, (1)

where a0,a1, . . . ,an ∈ R are the polynomial coefficients, and R represents the set of real
numbers. These coefficients govern the nonlinear transformation. The optimal coefficients
are learned by minimizing a composite loss function L(X ,X ′), which is optimized using
gradient descent.
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3.1 Multi-Scale Feature Block (MFB)
The Multi-Scale Feature Block (MFB) (Figure 2) captures multi-scale contextual informa-
tion using convolutions of varying sizes combined with channel and spatial attention mech-
anisms. This is given below in detail.

Channel-Wise Attention

The channel-wise attention mechanism emphasizes informative features across channels. It
computes global max pooling ( fGMP(c)) and global average pooling ( fGAP(c)) descriptors:

fGMP(c) = max
i, j

F(i, j,c), fGAP(c) =
1

H ×W

H

∑
i=1

W

∑
j=1

F(i, j,c), (2)

where F(i, j,c) represents the pixel value at location (i, j) in channel c. These descriptors
are concatenated and processed by two successive fully connected layers (FC1 and FC2) to
produce channel attention weights, wc:

wc = σ(FC2(ReLU(FC1([fGMP ∥ fGAP])))), (3)

where σ(·) is the sigmoid activation. The refined feature map F ′ is produced by scaling
the original feature map F :

F ′
(i, j,c) = F(i, j,c) ·wc. (4)

Multi-Scale Spatial Attention

To capture spatial relationships, convolutions with kernel sizes 3× 3, 5× 5, and 7× 7 are
applied to F , producing feature maps F3,F5, and F7. These are concatenated and passed
through a 1×1 convolution operation to generate a spatial attention map, ws:

ws = σ(Conv1×1([F3 ∥ F5 ∥ F7])), (5)

where ws ∈ RH×W×1. The final output F ′′ is:

F ′′
(i, j,c) = F ′

(i, j,c) ·ws(i, j). (6)

This combination of multi-scale convolutions and attention mechanisms captures both
fine details and broader context, improving low-light image enhancement by focusing on
significant regions and preserving important structures.

3.2 GlowNet: The Attention-Based Self-Guided Deep Neural Network
As mentioned earlier, GlowNet employs advanced deep learning mechanisms like channel
and spatial attention, self-attention, and dilated convolutions to enhance low-light im-
ages. Its architecture, illustrated in Figure 2, captures both local and global image features.
The input layer is designed for RGB images, followed by a sequence of convolutional layers
Ci (where i = 1,2, . . . ,7) for hierarchical feature extraction.

To capture multi-scale features, Multi-scale Feature Blocks (MFBs) (Figure 2(b)) are
placed after layers C1,C2,C4, and C5 (Figure 2(a)). After C3, three dilated convolutional
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layers Di (with dilation rates of 2, 3, and 4) are utilized to broaden the receptive field without
adding extra parameters, thereby efficiently capturing multi-scale context.

Feature maps from the dilated convolutions are concatenated to integrate multi-scale
information. Concatenation layers (red blocks in Figure 2(a)) merge features from earlier
and later layers, enhancing representational power. For instance, concatenating feature maps
from C2 with C6 and C1 with C7 promotes smooth gradient flow and fuses features across
different abstraction levels.

The self-attention mechanism (black block in Figure 2(c)) is applied to the concate-
nated feature maps to capture global context by computing attention scores. It does this by
creating query (Q), key (K), and value (V ) matrices:

Q =WqZ, K =WkZ, V =WvZ, (7)

where Wq, Wk, and Wv are learned weights, and Z is the input feature map obtained from
the last concatenation layer of the GlowNet. The attention scores are then calculated as:

Attention(Q,K,V ) = softmax
(

QT K√
dk

)
V, (8)

where dk is the dimension of the key vectors. The output feature maps are processed
through a final convolutional layer with a hyperbolic tangent (tanh) activation to produce
the enhanced image while preserving key features.

The effectiveness of these components is demonstrated by quantitative results in Table
1, showing superior performance in low-light enhancement tasks.

3.3 Loss Functions
In this work, image enhancement is viewed as an optimization problem with several key loss
functions: color difference, exposure fidelity, illumination smoothness, and spatial consis-
tency between neighboring pixels. Each guides the model to produce high-quality enhanced
images and are described below in details.

Weighted Color Difference Loss

Maintaining consistent color balance across RGB channels is crucial for avoiding artifacts
in low-light image enhancement. The color difference loss ensures natural color tones by
balancing the mean values of each RGB channel in the enhanced image X ′:

X̄ ′
RGB =

1
H ×W

H

∑
i=1

W

∑
j=1

X ′
(i, j), (9)

where X̄ ′
RGB = [X̄ ′R, X̄ ′

G, X̄ ′B]. To balance colors, we minimize the squared differences
between mean channel values:

dRG = (X̄ ′R − X̄ ′
G)

2, (10)

dRB = (X̄ ′R − X̄ ′B)
2, (11)

dGB = (X̄ ′
G − X̄ ′B)

2. (12)
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α adjusts the importance of these differences and effectively modulates the weight of
each color difference di j thereby impacting the sensitivity of the loss to color imbalances in
the enhanced image. This adjustment is mathematically represented by:

weighted_di j = α ·di j, for (i, j) ∈ {(R,G),(R,B),(G,B)}. (13)

The color difference loss, Lcolor, is now computed as:

Lcolor =

√
weighted_d2

RG +weighted_d2
RB +weighted_d2

GB. (14)

This loss function ensures that the color balance remains consistent and natural across
various lighting conditions, thereby reducing the risk of introducing unnatural color shifts
and preserving the visual authenticity of the enhanced image.

Deviation Penalizing Exposure Loss

The spatial attention-based exposure loss refines exposure levels to achieve the desired
brightness while preserving essential details. It dynamically weighs the loss function using
spatial attention, which focuses on key regions. Given an input image X ∈ RH×W×3, the
global mean intensity (X̄) across all color channels is computed as:

X̄ =
1

H ×W ∑
c∈{R,G,B}

H

∑
i=1

W

∑
j=1

X(i, j,c), (15)

To assess regional brightness, we apply average pooling with a non-overlapping window
of size k×k. For a given pooled region indexed by (p,q), where p and q refer to the position
of the pooling window in the pooling grid, the average intensity is:

X̄region(p,q) =
1
k2

(p+1)k−1

∑
i=pk

(q+1)k−1

∑
j=qk

X(i, j,c), (16)

where (i, j) are the coordinates within the pooling window, and pk and qk denote the
top-left corner of the pooling window.

The spatial attention weights wattention ∈ RH×W are computed to highlight significant
regions. These weights are derived from global average pooling over all color channels:

wattention(i, j) =
∑c X(i, j,c)

∑i, j,c X(i, j,c)
, (17)

The weighted mean for each region is then calculated as:

X̄weighted(p,q) = X̄region(p,q) ·wattention(p,q). (18)

The exposure loss, Lexposure, is defined as the squared difference between the weighted
mean and a target mean µ , where µ is set to 0.65 in the present experiment:

Lexposure =
1
N ∑

p,q

(
X̄weighted(p,q)−µ

)2
, (19)

where N is the number of k× k pooled regions.
This loss function effectively balances both global and local exposure adjustments, em-

phasizing crucial regions to ensure natural and visually appealing results.
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Illumination Smoothness Loss

The Illumination Smoothness Loss, Lillumination, promotes smooth transitions in illumina-
tion by penalizing abrupt changes in pixel values between neighboring pixels. This loss
function combines the total variations in both vertical and horizontal directions to reduce
artifacts and improve image quality. The loss is formulated as:

Lillumination =
1

(H −1) ·W

H−1

∑
i=1

W

∑
j=1

(
X(i+1, j)−X(i, j)

)2
+

1
H · (W −1)

H

∑
i=1

W−1

∑
j=1

(
X(i, j+1)−X(i, j)

)2

(20)
This formulation ensures that both vertical and horizontal transitions are penalized ap-

propriately, promoting smooth illumination changes and reducing abrupt intensity variations.

Spatial Consistency Loss

The Spatial Consistency Loss, Lspatial, ensures local structural consistency between the
original and enhanced images. It is calculated by:

Morig =
1
C

C

∑
c=1

Ytrue,c, Menh =
1
C

C

∑
c=1

Ypred,c. (21)

where Morig and Menh are the mean channel values for the original and enhanced images,
respectively and C is the number of channels. The loss compares gradients of these means
in eight directions (left, right, up, down, and four diagonals):

Lspatial = ∑
d

(
Gorig,d −Genh,d

)2
. (22)

where Gorig,d and Genh,d represent gradients in the d-th direction for the original and
enhanced images, respectively. Specifically, this loss measures deviations in local gradients,
reflecting the consistency of features e.g., edges, textures. Minimizing these deviations helps
maintain spatial coherence and reduces artifacts, leading to a more natural enhancement.

Total Loss

The Total Loss denoted as, Ltotal, is given by:

Ltotal = λillumination ·Lillumination +λspatial ·Lspatial +λcolor ·Lcolor +λexposure ·Lexposure, (23)

with weights λillumination = 200, λspatial = 1, λcolor = 5, and λexposure = 10, ensuring balanced
contributions for optimal enhancement.

4 Results
We evaluated GlowNet qualitatively and quantitatively on two datasets: LOL [15] having
500 low-light images, and Dark Face [13] with 6000 low-light facial images. Images were
resized to 256x256 patches, trained with a batch size of 16 using the Adam optimizer and a
specified learning rate of 1e-4 for 300 epochs, and halved every 100 epochs. Training was
performed on an NVIDIA® V100 Tensor Core GPU, processing each batch in 407 ms.
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Figure 3: Visual Analysis on LOL [15] dataset: (a) Combined effect of PSNR and SSIM
on different methods. Performance comparison of GlowNet against SOTA methods on (b)
SSIM, (c) PSNR, and (d) MAE metrics.

4.1 Quantitative and Qualitative Analysis
To assess the effectiveness, GlowNet was compared with eleven SOTA methods using PSNR,
SSIM, and MAE metrics (Figure 3). GlowNet achieved the highest PSNR of 18.29 dB, a
competitive SSIM of 0.62, and the lowest MAE of 92.51 on the LOL [15] dataset, outper-
forming all other methods across these metrics in Table 1. In an indoor scene image (Figure
4), GlowNet improves the visibility of darker areas while maintaining the original color
of the input image. In contrast, some existing methods over-smooth the details. Figure 4
demonstrates that while Zero-DCE [3] retains good detail, methods like SRIE [2], LIME [5],
Wang et al. [14], and EnlightenGAN [6] fail to recover clear facial features and introduce
artifacts. In contrast, GlowNet effectively preserves shadow details and maintains natural
exposure.

Figure 5 also showcases the qualitative results achieved by GlowNet against other SOTA
methods on the LoL [15] dataset. Figure 6 showcases GlowNet’s proficiency in improving
real world extreme low-light images clicked by us in natural dark conditions presented in the
upper row of Figure 6. Glownet was able to enhance the object colors under extreme dark
conditions for all three images. The lower row of Figure 6 presents complex facial detection
task where GlowNet was able to enhance faces with proper fidelity as depicted in Figure 6
on the Dark Face [13] dataset, effectively revealing previously unseen faces and enhancing
overall image clarity.

4.2 Ablation Study
To evaluate GlowNet’s key components, an ablation study was performed by removing the
Multi-Scale Feature Block (MFB) and Self-Attention (SA), independently and together. As
shown in Table 2 and Figure 7, both MFB and SA significantly enhance image illumination,
with their combination achieving the best overall performance. Additionally, kernel size (ks)
and feature maps (fm) were varied. Optimal results were achieved with ks = 3 and fm = 32.
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Method PSNR ↑ SSIM ↑ MAE ↓ Conference/Journal
SRIE [2] 14.41 0.54 127.08 CVPR, 2016
LIME [5] 16.17 0.57 108.12 IEEE TIP, 2016

Li et al. [7] 15.19 0.54 114.21 IEEE TIP, 2018
Retinex-Net [15] 15.99 0.53 104.81 BMVC, 2018
Wang et al. [14] 13.52 0.49 142.01 CVPR, 2019

EnlightenGAN [6] 16.21 0.59 102.78 IEEE TIP, 2021
Zero-DCE [3] 16.57 0.59 98.78 CVPR, 2020

STAR [16] 12.91 0.52 – IEEE TIP, 2020
RUAS [8] 15.47 0.49 – CVPR, 2021
SCI [11] 14.78 0.52 – CVPR, 2022
GDP [1] 13.93 0.63 – CVPR, 2023

Proposed GlowNet 18.29 0.62 92.51 —

Table 1: Performance analysis and comparison of GlowNet against other SOTA methods in
terms of PSNR, SSIM, and MAE on LOL [15] dataset.

Figure 4: Qualitative comparison of low-light enhancement results on facial images and
room interiors. The comparison highlights the effectiveness of the enhancement techniques
in preserving fine details, textures, and overall image quality across different types of scenes.

Figure 5: Visual comparison of our method with SOTA techniques on the LOL dataset [15].
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Figure 6: Qualitative Analysis: Applying GlowNet on extreme low-light images (Upper row)
and Dark Face [13] dataset for facial recognition in dark (Lower row).

Figure 7: Images with varying epochs and loss functions: From left to right: (1) Input image,
(2) After 1 epoch of training, (3) After 10 epochs, (4) After 100 epochs, (5) Without weighted
color difference loss, (6) Optimized image after 300 epochs with the total loss.

Components PSNR ↑ SSIM ↑ MAE ↓
Proposed – (MFB+SA) (ks=3, fm=32) 17.64 0.56 96.32
Proposed – MFB (ks=3, fm=32) 17.84 0.58 93.23
Proposed – SA (ks=3, fm=32) 18.00 0.57 94.55
Proposed with (ks=3, fm=64) 18.00 0.61 92.45
Proposed with (ks=3, fm=128) 18.00 0.60 92.42
Proposed with (ks=5, fm=24) 17.97 0.60 92.38
Proposed with (ks=5, fm=48) 17.99 0.60 92.58
Proposed with (optimal) (ks=3, fm=32) 18.29 0.62 92.51

Table 2: Results of ablation study showing the impact of different components and config-
urations on model’s performance. Kernel size (ks) and feature maps (fm) are specified for
each configuration. PSNR, SSIM, and MAE metrics are reported.

5 Conclusions and Future Directions
GlowNet, a lightweight attention-guided deep network for low-light image restoration, em-
ploys channel, spatial, and self-attention mechanisms along with dilated convolutions for
effective contextual information capture. Guided by four loss functions: color constancy,
exposure, illumination smoothness, and spatial consistency—it enhances image quality sig-
nificantly. Extensive experiments, including an ablation study, demonstrate its superiority.
With only 0.24 million parameters, it operates without paired or unpaired supervision, en-
suring broad applicability in diverse real-world scenarios such as low-light photography,
surveillance video enhancement, and medical imaging. However, the present implemen-
tation does exhibit some minor artifacts for extremely dark images, suggesting areas for
potential enhancement. Future research could focus on refining the attention mechanisms to
better capture intricate details and the addition of structure priors for improved realism.
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