
L.ALJUAID, D.BHOWMIK: FUSION++ 1

FUSION++: A Method to Detect Generative
AI Manipulated Images
Lamyaa Aljuaid
L.Z.M.Aljuaid2@newcastle.ac.uk

Deepayan Bhowmik
deepayan.bhowmik@newcastle.ac.uk

Department of Computing
Newcastle University
Newcastle, UK

Abstract

Modern-day image manipulation techniques, particularly AI-powered ones, are a
significant concern today as they can easily fool the human eyes, leading to the mis-
use, forgery, and propagation of disinformation by creating deceptive visual content.
There is a need to accurately detect manipulation and localization of the manipulated
region to identify where manipulation happened in the image. This paper introduces
NCL_IMD.v2, a new dataset for AI-manipulated images and a manipulation detection
technique, FUSION++, which constitutes progress on state-of-the-art detection algo-
rithms such as MMFUSION. Unique in its kind, the proposed new dataset provides
an orderly manipulation technique that uses generative AI and prompts engineering to
produce real-like outcomes. The detection algorithm, FUSION++, used an additional
HOG-based feature extractor alongside other feature extractors used in MMFUSION
and also incorporated a shifted window-based attention mechanism. The results of these
integrations showed major performance improvements. FUSION++ consistently pro-
duced higher detection and localization performance on both existing datasets, such as
AutoSlice and CocoGlide, and the newly introduced dataset, providing a robust solution
for AI-manipulated visual content.

1 Introduction
Image manipulation is an emerging topic of interest, especially due to the emergence of gen-
erative AI that can produce real-like images in an automated fashion. Due to the availability
of sophisticated visual tools and research breakthroughs in Artificial Intelligence (AI), it is
difficult or impossible to identify manipulated images with the naked eye, and even software
cannot detect real manipulated images. Manipulated images can be of several types: (1) part
of the image modified by adding, removing, or altering the objects, and (2) generating com-
pletely new, real-like images. Manipulated images are misused in politics, document forgery,
and fake opinion creation. As per human psychology, manipulated visual content can easily
fool humans [21]. There is a severe need to develop methods to detect such manipulated
images before it harms an individual, group, or organization.

The techniques used to manipulate images can be divided into two types: (i) manual and
(ii) AI-based techniques. Manual techniques refer to manipulating authentic images using
conventional methods such as Copy-Move, and Splicing. In Copy-Move [8], modifications

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Schetinger, Oliveira, da~Silva, and Carvalho} 2017

Citation
Citation
{Fu, Zhang, and Wang} 2023



2 L.ALJUAID, D.BHOWMIK: FUSION++

are performed within the same image. It involves copying an object or portion from the
image and pasting it into another location within the same image typically used to hide
information. In Splicing techniques [30], a manipulated image is a composite created by
combining two or more images.AI-based techniques are another specific manipulation type
that mainly focuses on altering an image using artificial intelligence approaches, particularly
Generative Adversarial Networks (GANs) [3], and Diffusion Models (DMs) [20]. However,
there is a handful of useful datasets currently available that are created using generative AI-
based image manipulation.

In addressing such a gap, this work introduces NCL_IMD.v21 a new dataset that uses
generative AI and prompt engineering-based image manipulation in an automated way. Our
finding suggests existing state-of-the-art detection algorithms perform poorly on the new
dataset, and therefore, we also propose a new detection technique by progressing state-of-
the-art with an aim to primarily detect AI-manipulated images. The contributions of the
paper are the following:

• Development of a well-organized AI-based image manipulation dataset and
• Introduction of a new detection algorithm for generative AI-manipulated images, and

it has significantly outperformed state-of-the-art techniques on the new dataset.

2 Related Work

2.1 Datasets

Datasets play a crucial role in evaluating the generalizability and robustness of image ma-
nipulation detection methods; the current datasets can be summarized into two categories:
manual manipulation and generative AI. Figure 1 illustrates the organization of available
datasets. Most of the existing datasets belong to the first category, in which images are ma-
nipulated manually using Copy-Move and Splicing. The most popular copy-move datasets
are COVERAGE [27], CoMoFoD [24], MICC F220/F2000 [1], FAU/Manip[6], GRIP [7]
,and the common splicing datasets are Columbia [10], Carvalho [4], Wild Web [29],VIPP
Real [2] and MISD [12].

In contrast, there is a limited number of datasets within the generative AI category, where
the digital images are manipulated using advanced artificial intelligence generators such as
generative adversarial networks and diffusion models. In [11], the AutoSplice dataset com-
posed of 2273 original images and 3621 manipulated images, was generated using DALL-
E2, where the editing process is guided by text prompts. Also, in the CocoGlide dataset
[9], the 512 original images were manipulated by a Glide diffusion-based model. Both Au-
toSplice and CocoGlide focused on applying one manipulation type by one generator, which
is replacing the masked regions based on the provided textual prompts. Thus, these datasets
have limitations in terms of diversity, which may affect the generalizability of detection mod-
els trained on them. Based on the abovementioned literature, there is a lack of datasets that
consist of diverse and AI-based manipulated images. This work proposed NCL_IMD.v2 a
new manipulated image dataset containing comprehensive and sophisticated AI-based image
manipulation.

1The NCL_IMD.v2 dataset is available at: https://dbhowmik.github.io/MediaTrust/dataset/
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Figure 1: Classification of the currently available datasets into two distinct categories: Man-
ual Manipulation and Generative AI.

2.2 Manipulation Detection

The current state-of-the-art models are designed to perform two tasks: detection to deter-
mine whether the input image is genuine or manipulated and localization to identify the
manipulated regions within the image. Table 1 provides a summary of the state-of-the-art
detection methods. To detect and localize image manipulations, Kwon et al. [14], proposed
CAT-Net a convolutional neural network-based model that integrates RGB and DCT streams
to analyze visual and compression artifacts. The PSCC-Net proposed in [17], consists of
two paths Top-Down and Bottom-Up. In the first path, HRNetV2p-W18 was used to extract
the local and global features, while the second path produced the detection score and lo-
calization map. MVSS-Net in [5], contains two branches: the Edge-Supervised branch and
the Noise-Sensitive branch. These branches extract features from RGB images and Noise,
then the Dual Attention mechanism was used to fuse the features from the two branches.
The TruFor method proposed in [9], a SegFormer transformer-based architecture used to
extract features from RGB image and Noiseprint++, then the Cross-Modal Feature Rectifi-
cation module was used to combine these features and enhance the detection of anomalies.
In MMFUSION [25], they extend the TruFor architecture by incorporating NoisePrint++,
SRM, and Bayar convolution forensic filters and exploring different fusion techniques.

The review of the literature discussed above emphasizes the increasing importance and
complexity of image manipulation technology in today’s world. The research encompasses
a range of topics, including the development of innovative detection algorithms and the uti-

Table 1: Summary of state-of-the-art image manipulation detection & localization methods.
Method Year Architecture Dataset source

Features Fusion Detection and localization Created Used
CAT-Net [14] 2021 RGB and DCT Early Segmentation Network. ✓

PSCC-Net [17] 2021 Local and Global. Early HRNetV2.
Progressive mechanism and
Spatio Channel
Correlation(SCCM).

✓

MVSS-Net [5] 2021 RGB and Noise. Late Global Max Pooling. Pixel-
Wise Segmentation Map.

✓

TruFor [9] 2022
RGB and
Noisprint++ Early

Anomaly localization map,
Confidence map.
Integrity Score.

✓

MMFUSION [25] 2023
RGB, Noisprint++,
SRM, and Bayar
convolution.

Early & Late
Anomaly localization map,
Confidence map.
Detection score.

✓
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Figure 2: Illustration of the pipeline for NCL_IMD.v2 generation. (a): Object detection
& mask generation, (b): Visual content analysis & prompt generation, and (c): Applying
manipulation techniques to the image.

lization of methods involving various CNN, GANs, etc. Together, these studies demonstrate
progress in countering the impacts of manipulated images. Ultimately, it represents an ad-
vancement in protecting media integrity and fostering public trust.

3 Methodology

3.1 Dataset Generation
Existing datasets for AI-manipulated image detection, such as AutoSplice [11], CocoGlide
[9] and GRE [22] are limited in terms of diversity and availability. To address these issues,
we developed a comprehensive dataset to advance the development of AI-manipulated im-
age detection systems. NCL_IMD.v2 covers several manipulation types including removal,
creation, replacement, and combination of manipulations using various AI generators. An
automated methodology was used to generate NCL_IMD.v2 dataset. Figure 2 illustrates an
overview of the process of creating the new dataset.

The source of the original images in our dataset is a subset with a size of 25K images
from the COCO dataset [16]. To generate a high-quality mask with precise boundaries, we
first detected the object using YOLOv10 [26], and then used the Segment Anything Model
[13] to generate the mask. In some modification scenarios, providing a description of both
the image and masked object plays a significant role in guiding the manipulation process,
ensuring consistency and visual coherence, and the realism of the manipulated image. To
generate the descriptions, we used BLIP [15], and ChatGPT [18] for prompt generation. In
our dataset, we leverage a mix of generators, such LaMa [23], DALL-E [19], PowerPaint
[31], and Paint by Example [28]. Figure 3 illustrates sample images from NCL_IMD.v2
dataset. Currently, the dataset consists of 12K original and manipulated images along with
its ground truth and prompts. 12K images are selected randomly from the original set of 25K
images to ensure a diverse and unbiased selection.

3.2 Detection Method
AI-manipulated image detection is an exciting area, particularly in today’s age and from a
future perspective. It has a wide application area. The problem with the current methods
for manipulated image detection is that they are computationally exhaustive and incapable
of handling AI-based image manipulations. One state-of-the-art method used in detecting
manipulated images and localizing image manipulations is MMFUSION [25], achieved by
fusing multiple forensic modalities. It has two significant steps: (1) feature extraction and
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Figure 3: Sample from NCL_IMD.v2 dataset. (a): Single and (b): Multiple manipulations.

Figure 4: Overall architecture of the proposed FUSION++ manipulation detection technique.

(2) fusion. Firstly, it uses NoisePrint++, SRM, and Bayar Convolution filters for feature
extraction, which can handle diverse manipulations. Secondly, early or late fusion techniques
are used to learn the pattern from the extracted features for detection and localization.

This paper proposes an image manipulation detection and localization method known
as FUSION++2, which incorporates a Histogram of Oriented Gradients (HOG) for under-
standing minute manipulations by improving the quality of extracted features. HOG features
integrated with FUSION++ increase its ability to capture the contextual relevance within
manipulated images to detect subtle manipulations. HOG helps detect edges and gradients,
making them ideal for manipulated image detection. It also complements NoisePrint++
which extracts artifacts related to camera and editing history, SRM which reveals noise and
inconsistencies, and Bayar Convolution which extracts noise related to manipulation traces
by detailing the spatial distribution of gradients. Further, FUSION++ uses a shifted window-
based attention mechanism. On the other hand, the shifted window-based attention mech-
anism addresses two major drawbacks of MMFUSION’s self-attention mechanism, which
are (1) computational efficiency and (2) critical local context sensitivity. Further, Figure 4

2Code is available at: https://github.com/Lamyaa2050/FUSIONpp

https://github.com/Lamyaa2050/FUSIONpp
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depicts the high-level block diagram of the FUSION++. The high-level mathematical for-
mulation of FUSION++ is given below:
Feature Extraction: These are the features used by MMFUSION [25]. The input image I
is processed through Conv Blocks to generate different feature representations:

FRGB,FNP,FSRM,FBC = Extract(I), (1)

where features from RGB channels, NoisePrint++, Spatial Rich Model, and Bayar Convolu-
tion are denoted by FRGB, FNP, FSRM, and FBC.
Early Fusion: In FUSION++, an early fusion approach has been selected. This selection is
purely based on the image manipulation problem. Early fusion helps in understanding the
interactions between the various forensic modalities, which is essential when finding clues
for manipulations. Using Early fusion, diverse features are combined at the initial stage,
which helps FUSION++ learn complex relationships.
For Early Fusion, the extracted features are fused through a:

Fcombined = [FRGB,FNP,FSRM,FBC], (2)

for processing and integration, the Fcombined is fed to another Conv Block and CMX encoder.
Detection and Localization: The detector uses the fused feature map to identify manipula-
tions and locate them in the image:

S,M = Detector(Fcombined), (3)

where detection score, and localization map are denoted by S, and M.
Incorporating HOG Features: HOG add more context to above computed features which
are used in MMFUSION. As depicted in Figure 5, visualizing HOG vectors reveals distinct
patterns that differentiate authentic and AI-manipulated images. It is noticed that in manip-
ulated regions, the intensity of HOG vectors tends to be significantly lower compared to the
genuine parts of the image. Also, the directionality of HOG vectors in manipulated regions
is more uniform and aligned, with vectors pointing predominantly in the same direction,
which is vice versa in the case of authentic regions displaying HOG vectors with a wider
range of directions, reflecting the natural variability in texture and structure. Thus, adding
HOG in FUSION++ produces better detection and localization of manipulated areas within
images. There are two major issues if standard HOG is used which are: (1) HOG image is
a single-channel, making it incompatible with the model, and (2) its representation can lack
continuity across the image. To handle this, in FUSION++, HOG feature extractors are used
with different tile sizes (5x5, 7x7, and 9x9):

FHOG-5x5,FHOG-7x7,FHOG-9x9 = HOG3x3(I),HOG6x6(I),HOG9x9(I), (4)

the decision to use overlapping tiles of 5x5, 7x7, and 9x9 in the FUSION++ method was
made to produce a rich and more detailed representation when extracting HOG features. A
tile size 5x5 helps capture finer details, and a size 9x9 helps capture broader spatial structures
and reduce noise. Lastly, a tile size of 7x7 helps to explore a middle ground between these
two extremes.
Fusion with Attention: The SW-MHSA blocks help to focus on critical features where
manipulations are most likely to happen. These developments in FUSION++ ensure more
accurate predictions. In FUSION++, the above features and attention mechanisms are used
which can be represented as:

Ffinal = [FRGB,FNP,FSRM,FBC,FHOG +A], (5)
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Figure 5: HOG images and their negatives for Original and AI-manipulated Images

where the HOG features and attention map are denoted by FHOG, and A. The output from
SW-MHSA blocks is fed to the Cross-Modal Feature Rectification Module (FRM) to refine
interactions between features. Then the Feature Fusion Module (FFM) fuses these features
into a unified representation.
Final Detection and Localization: In this step, the improved features are used for the final
detection and localization in FUSION++:

Sfinal,Mfinal = Detector(Ffinal), (6)

where the detection score and manipulation localization map are denoted by Sfinal and Mfinal.

4 Results and Discussions

4.1 Experimental Setup
The system used for executing the experiments has a 22-Core GPU Nvidia RTX A4500
and uses the PyTorch framework. In all experimental scenarios, we’ve used a 70-30% split
(8,400 & 3,600 of a total of 12,000) for training and testing from NCL_IMD.v2 dataset that
contains original and manipulated images along with its ground truth.

4.2 Comparison
In this section we provide a comparison between FUSION++, and several state-of-the-art
models [5, 14, 25] on NCL_IMD.v2, AutoSplice, and CocoGlide datasets. the key metrics
used for evaluating the detection performance are balanced accuracy (bACC) and area under
the curve (AUC). For evaluating the localization performance, we divided the dataset into
4 subsets according to the manipulation percentage in the ground truth (0-25%), (25-50%),
(50-75%), and (75-100%). This approach allows us to evaluate the model’s performance on
different levels of manipulation.

Table 2: Comparison of detection performance using bACC and AUC metrics

Model AutoSplice CocoGlide NCL_IMD.v2

bACC AUC bACC AUC bACC AUC

MVSS 0.635 0.709 0.648 0.726 0.645 0.687
CAT-Net 0.367 0.467 0.418 0.479 0.462 0.527

MMFUSION 0.669 0.821 0.703 0.910 0.681 0.710
FUSION++ [Our] 0.680 0.849 0.752 0.885 0.937 0.953
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Table 3: Comparison of localization performance using Mean IoU and Pixel-level F1 metrics

Subset 1 with manipulation percentages from 0 to 25%

Model AutoSplice CocoGlide NCL_IMD.v2

Mean
IoU

Pixel-
level F1

Mean
IoU

Pixel-
level F1

Mean
IoU

Pixel-
level F1

MVSS 0.136 0.169 0.104 0.235 0.378 0.415
CAT-Net 0.523 0.351 0.462 0.197 0.538 0.503

MMFUSION 0.644 0.874 0.307 0.423 0.714 0.897
FUSION++ [OUR] 0.671 0.890 0.432 0.504 0.806 0.914

Subset 2 with manipulation percentages from 25 to 50%

MVSS 0.468 0.315 0.365 0.409 0.693 0.684
CAT-Net 0.462 0.618 0.390 0.548 0.630 0.581

MMFUSION 0.701 0.744 0.363 0.651 0.748 0.847
FUSION++ [OUR] 0.730 0.760 0.374 0.692 0.769 0.850

Subset 3 with manipulation percentages from 50 to 75%

MVSS 0.652 0.352 0.604 0.389 0.685 0.508
CAT-Net 0.497 0.718 0.379 0.733 0.522 0.574

MMFUSION 0.674 0.736 0.428 0.807 0.715 0.736
FUSION++ [OUR] 0.692 0.738 0.582 0.831 0.803 0.798

Subset 4 with manipulation percentages from 75 to 100%

MVSS 0.819 0.380 0.813 0.332 0.627 0.601
CAT-Net 0.426 0.816 0.423 0.842 0.536 0.760

MMFUSION 0.388 0.850 0.317 0.902 0.693 0.891
FUSION++ [OUR] 0.563 0.871 0.482 0.881 0.749 0.939

As depicted in Table 2, for the AutoSplice dataset, FUSION++ produces a bACC of
0.680 and an AUC of 0.849. Whereas MMFUSION produces a bACC of 0.669 and an
AUC of 0.821. FUSION++ outperforms MMFUSION by little in both bACC and AUC.
For CocoGlide, FUSION++ is better than MMFUSION in bACC. However, AUC is slightly
lower for the CocoGlide dataset. The AUC for MFUSION and FUSION++ are 0.910 and
0.885. For NCL_IMD.v2 dataset, FUSION++ outperformed another model by far, which
produces a remarkable bACC and AUC0 of 0.937 and 0.953. The overall performance of
FUSION++ was consistent with all three datasets for the given performance metrics.

As depicted in Table 3 which contains localization performance (Mean IoU and Pixel-
level F1) statistics, FUSION++ outperforms MMFUSION. For the subset (0-25%) manipula-
tion, FUSION++ achieves a better Mean IoU of 0.806 and Pixel-level F1 of 0.914 compared
to MMFUSION’s 0.714 and 0.897, respectively. For the (25-50%) manipulation subset,
FUSION++ performed consistently and produced a better Mean IoU of 0.769 and Pixel-
level F1 of 0.850, slightly higher than MMFUSION’s 0.748 and 0.847. The trend is con-
sistent throughout with (50-75%) manipulation subset, where FUSION++ performs better
than MMFUSION, producing a Mean IoU of 0.803 and Pixel-level F1 of 0.798, compared to
MMFUSION’s 0.715 and 0.736. For (75-100%) manipulation subset, FUSION++ produces
a Mean IoU of 0.749 and an impressive Pixel-level F1 of 0.939, performing again better
than MMFUSION, which scores 0.693 and 0.891 in these performance metrics. In Figure 6
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Figure 6: Comparison of qualitative results with current state-of-the-art methods

Table 4: Performance comparison across different configurations using Pixel-level F1 metric
Configuration AutoSplice CocoGlide NCL_IMD.v2 AVG Findings

MMFUSION 0.6644 0.5636 0.8935 0.7071 Reference
Point

MMFUSION + HOG 0.6810 0.5743 0.9052 0.7201 Performance
Improved

FUSION++ 0.6817 0.6011 0.9242 0.7356 Performance
Improved

the qualitative results a clear improvement over state-of-the-art methods. The integration of
HOG features and shifted window-based attention mechanism in FUSION++ help to better
understand regular and irregular patterns in the images. In all tables, we marked the best
results in bold and underlined the second-best results.

4.3 Ablation Study

As depicted in Table 4, the addition of HOG features enhances overall feature quality in
FUSION++, which is a noticeable improvement. However, FUSION++ further introduction
of shifted window-based attention mechanism improves performance. The proof of this
addition and updates to MMFUSION are significant to the success of FUSION++.

5 Conclusions

This paper introduced two crucial components in detecting image manipulation in the age of
generative AI: a) a much-needed AI-manipulated dataset and b) a new detection algorithm.
The new dataset was created in an orderly fashion with the use of available generative AI
tools and is expected to support the wider research community. The proposed FUSION++ is
an advanced model for the detection and localizing of AI-manipulated images. FUSION++
combines the power of HOG features and shifted window-based attention mechanisms. This
integration improved performance compared to the state-of-the-art MMFUSION method in
terms of detection and localization. The performance of FUSION++ is consistent on multiple
datasets and significantly outperforms the state-of-the-art on the new dataset.
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