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Abstract

Preterm birth can lead to neurological disorders such as behavioral abnormalities,
cognitive impairments, and delayed language development, highlighting the need for
early diagnosis and intervention. Currently, the detection of these disorders relies on the
qualitative assessment of General Movements (GMs) by clinicians, which is subjective
and prone to variability. To address this, we propose a Deep Learning (DL) pipeline that
leverages the High-Resolution Network coupled with a Disentangled Keypoint Regres-
sion (HRNet+DEKR) model for 2D pose estimation, aiming to enhance the accuracy and
objectivity of GM assessments. Our approach uses a disentangled keypoint regression
mechanism to detect 14 keypoints, focusing on pose estimation of limb as a preliminary
step toward the evaluation of the potential neurological disorder. Trained and validated
on depth images from the expanded BabyPose dataset, our model achieved an Average
Precision (AP) of 0.975, average recall (AR) of 0.985, and introduced the novel Limb
Overlap Score (LOS) as an evaluation metric, achieving an LOS of 0.992. Addition-
ally, the HRNet+DEKR model demonstrated encouraging performance in multi-person
scenarios, with promising qualitative results. These advancements pave the way for real-
time clinical use, enabling more efficient and objective monitoring of infant neurodevel-
opment.

© 2012. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1 Introduction

The World Health Organisation (WHO) recently released a report that states that every year,
almost 1 in 10 infants are born prematurely—that is, before 37 weeks of gestation1. Preterm
birth affects the neurodevelopment of an infant, which can cause issues such as behavioral
abnormalities, cognitive impairments, and delayed language development [13]. Early inter-
ventions are crucial for reducing the risk of physical disabilities and supporting the overall
well-being of infants [3].

In the current clinical practice, the assessment of General Movements (GMs), i.e., in-
fants’ spontaneous movements, is used as an indicator for the early detection of neuro-
behavioural disorders [1]. GMs assessment involves trained clinicians visually inspecting
infants in the Neonatal Intensive Care Unit (NICU). This approach may be, however, quali-
tative, discontinuous, and susceptible to variation among clinicians [9].

Several computer-assisted systems have been suggested in the literature as a solution to
mitigate these issues, as reported by a comprehensive review on the topic [11]. The review
concludes that using RGB-D cameras to support the assessment of infants’ movement is an
effective solution, as the cameras do not interfere with the infant’s spontaneous movements
or the clinical activities of healthcare providers. Additionally, pose estimation from these
videos is frequently used as a preliminary step in the movement assessment process.

Although human pose estimation has been widely studied [14], progress in infant pose
estimation has been slower due to several unique challenges. These include the limited
availability of datasets to train algorithms, privacy concerns involving patients, healthcare
staff, and caregivers, as well as the short time windows available to record infant movements,
since infants spend much of their time sleeping or receiving care and treatments.

In response to these challenges, different approaches have been investigated. In [5] RGB
cameras and Deep Learning (DL) algorithms were employed to monitor GMs in the NICU,
using a two-step framework with a custom-built Convolutional Neural Network (CNN)-
based pose estimation model and a subsequent movement analysis model to classify normal
from cramped-synchronised GMs. This offers a promising sensor-free approach for early
cerebral palsy risk assessment, although further validation with larger datasets is required,
as 620 frames were used for training and 140 for testing to assess pose estimation. In [10],
a semi-supervised learning framework, SiamParseNet (SPN), is introduced. SPN integrates
both body parsing and pose estimation using a siamese network architecture. It addresses
issues such as occlusions and limited labelled data, thus enhancing the assessment of move-
ment from RGB videos. While both approaches [5, 10] show potential for non-invasive
infant assessments, they may also raise privacy concerns in clinical settings due to the sensi-
tive information captured. In [4], the authors implemented a transformer-based approach to
estimate infant’s pose using the Simultaneously collected multimodal Mannequin Lying pose
dataset. Their method yielded promising results by addressing the challenge of keypoint oc-
clusions. However, the dataset consisted of video recordings of covered mannequins, which
were used to simulate infants wrapped in blankets.

Recently, sustainable and efficient DL models have been developed to further improve
infant pose estimation while addressing privacy concerns by using depth data. For example,
in [8], the TwinEDA model leverages depth images from the BabyPose dataset [6].

Recent advancements in pose estimation for infants have demonstrated the effectiveness
of High-Resolution Network (HRNet)-based models. Building on the framework introduced

1https://www.who.int/news-room/fact-sheets/detail/preterm-birth
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Figure 1: Pipeline for preterm infants’ pose estimation from depth images. In the training
phase, cameras placed over the infants’ cribs (from [6, 7]) capture depth images, which are
then split into training and validation sets. The High-Resolution Network + Disentangled
Keypoint Regression (HRNet+DEKR) model is trained on these images to estimate the in-
fant’s pose. In the testing phase, footage from four different cameras is combined to create a
4-frame grid (2x2). The trained HRNet+DEKR model is applied to this grid to estimate the
infants’ pose.

in [12], which used HRNet, HigherHRNet, and DarkPose trained on over 88,000 images,
our work proposes a multi-pose estimation approach using depth images from [6]. This
system enables simultaneous monitoring of multiple infants in the NICU with a single model,
enhancing computational efficiency. Following [12], for our purposes we leverage HRNet’s
integrated with a Disentangled Keypoint Regression (HRNet+DEKR) [2]. We show our
pipeline in Figure 1.

2 Materials and methods
In our pipeline’s training phase, we train and validate the HRNet+DEKR architecture to
regress an infant pose from a single depth frame. As shown in Figure 2 (left), HRNet
maintains high resolution throughout data flow while introducing parallel, lower-resolution
levels that interact and exchange information. Unlike most CNNs, HRNet processes lower-
resolution feature maps at the same depth. Each stage of HRNet has a high-resolution sub-
networks and increasingly more subnetworks that handle incrementally lower resolutions.
Information exchange across subnetworks is handled by exchange units using upsampling or
downsampling to maintain feature coherency across resolutions. Downsampling is achieved
via strided 3×3 convolutions, whereas upsampling employs nearest-neighbor sampling fol-
lowed by a 1×1 convolution to align channel counts.

A key feature of the HRNet+DEKR architecture is its disentangled keypoint regression
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Figure 2: (Left) High-Resolution Network (HRNet) backbone structure: multi-branch and
fusion features. The feature maps are processed at different resolutions—from green (high
resolution) to red (low resolution)—with blue lines for convolutions, red for downsampling,
and green for upsampling. HRNet combines all this multi-scale information for precise
image representation. (Right) Disentangled keypoint regression (DEKR). The input to the
DEKR module is the feature maps from the last layer of the HRNet backbone. The feature
maps are combined at different resolutions to form the first block on the left. Each of these
branches learns the representation of a keypoint by applying two adaptive convolutions to a
portion of the feature maps generated by the backbone and regressing the 2D offset of that
keypoint using a 1x1 convolution. In the figure, this process is shown for three keypoints,
with the feature maps divided into three partitions, each assigned to a separate branch. For
our purposes the feature maps are divided into 14 partitions, resulting in 14 branches, each
responsible for regressing one of the 14 keypoints.

mechanism, depicted in Figure 2 (right). The HRNet backbone processes the input image
to produce high-resolution feature maps. These maps are fused and aligned across different
scales to form a unified representation, which serves as the input for the DEKR module.
This module uses a multi-branch structure to regress precise keypoint positions, where each
branch is dedicated to a specific keypoint such as shoulders or elbows.

Within each branch, adaptive convolutions focus on the keypoint region to refine fea-
ture processing. Subsequent 1x1 convolutions generate an offset vector predicting the 2D
displacement from the center to the keypoint location. The DEKR module first uses these
vectors to estimate keypoint coordinates. Then, Non-Maximum Suppression (NMS) is ap-
plied in two stages to enhance accuracy: an initial NMS on the center heatmap removes
non-maximum points, and a second NMS on the regressed poses eliminates overlapping
keypoints, ensuring only the most accurate predictions are retained. The final step combines
these vectors with the central positions to determine the coordinates of the keypoints.

During the simulation phase of the monitoring scenario in a NICU, the HRNet+DEKR
model processes input from footage from four cameras into a 4-frame grid (2x2). This
method replicates a comprehensive support system for monitoring the movements of preterm
infants in the NICU and leverages the inherently multi-pose capabilities of the architecture,
which, as stated by the original authors [2], can identify up to 30 individuals simultaneously.
By using a single HRNet+DEKR model to analyze this grid, instead of deploying four sep-
arate models, we harness substantial computational and operational efficiencies. In fact, a
single model approach markedly reduces the demand for computational resources such as
memory and processing power, streamlines system management, and reduces the complex-
ity of operations. This strategy improves response times, facilitating timely interventions
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Figure 3: The upper part of the figure displays the original frames from the expanded Baby-
Pose dataset [6]. The lower part of the figure presents the frames after a 180-degree rotation
to align with the pre-training on the CrowdPose dataset. The sample image on the left does
not show any keypoint occlusion, unlike the image on the right, in which the occlusions are
indicated by an "x".

critical in neonatal care. Furthermore, opting to implement this multi-frame integration only
during the testing phase allows the system to be flexible, not limiting the number of frames
in the grid or the streams from the outset, thereby maintaining scalability.

3 Experimental protocol

3.1 Dataset

As introduced in Sec. 1, in this work, we used the expanded BabyPose dataset [6]. This is a
collection of depth videos displaying preterm infants in the NICU of the G. Salesi Hospital
(Ancona, Italy). For our purposes, we used 18,000 depth frames from 18 preterm infants,
extracted from 180-second recordings. The videos were recorded using an Astra Mini S-
Orbbec with a frame rate of 30 frames per second and a resolution of 640 × 480.

The original annotation of the BabyPose dataset included the keypoints related to the
limbs (i.e., wrists, elbows, shoulders, ankles, knees, hip). However, for this work, the dataset
was re-labeled to include 14 keypoints, to align with the keypoint structure used in the pre-
trained model from the CrowdPose dataset (more details on pre-training will be provided in
Sec. 3.2). In particular, two keypoints were added (i.e., head and sternum). The annotation
procedure was carried out under the supervision of our clinical partners using a custom-built
online tool, Label studio2.

The dataset was divided into training, validation, and test sets. Data from two patients,
totaling 2,000 frames, were randomly selected for the test set to ensure that these images
were never exposed to the network during training or validation. The remaining data from

2Label Studio: Open Source Data Labeling - hrefhttps://labelstud.io/
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16 patients were used for training and validation, with 12,000 frames allocated for training
and 4,000 frames reserved for validation.

Figure 3 (lower part) presents two samples from the dataset and the human-annotated
keypoints. As illustrated in the both frames, various objects (such as towels, drug infusion
systems, etc.) may be present within the frames and hide parts of the infant’s body from
camera. Occlusions are shown in the bottom right frame as "x" superimposed to the missing
keypoint. For such cases, the annotations take advantage of the visibility parameter in Label
Studio, which allows for the notation of an occluded keypoint (in this case right elbow and
wrist).

3.2 Training settings
For our study, we used the HRNet+DEKR model. We initialized the HRNet backbone
weights with those derived from pre-trained on ImageNet; then the HRNet+DEKR model
was pre-trained on the CrowdPose dataset and fine-tuned using the expanded BabyPose
dataset. Notably, since HRNet+DEKR was originally trained on upright, real-world images,
we rotated the images and annotations from the expanded BabyPose dataset by 180° (Figure
3). This adjustment aligned them with the model’s expected input orientation, allowing us to
effectively leverage the pre-training.

To train our model, we used the following loss function (l), as described in [2]:

l = lh +λ lp (1)

The loss function combines two components: offset loss (lp) and heatmap estimation loss
(lh).

The offset loss (lp) is designed to refine the precise location of keypoints by measuring
the difference between the predicted offsets and the actual offsets (ground truth) of keypoints.

where:
lp is the offset loss:

lp = ∑
i∈C

1
Zi

smoothL1(oi −o∗i ) (2)

with Zi =
√

E2
i +W 2

i being the person instance size - Ei and Wi are the height and the
width of the instance box- C the set of predicted poses matching ground truth annotations,
and oi and o∗i the estimated and ground truth offset vectors, respectively.
The heatmap estimation loss (lh) represents the weighted distance between the heat values
predicted by the network and the ground truth heat values.

lh is the heatmap estimation loss:

lh = ∥Mh ⊙ (H−H∗)∥2
2 +∥Mc ⊙ (C−C∗)∥2

2 (3)

with H being the predicted keypoint heatmaps, and C the predicted center heatmap. C∗

and H∗ are the ground truth keypoint and center heatmaps, respectively. The masks Mh and
Mc are applied to the keypoint and center heatmaps to focus the loss calculation on relevant
areas, enhancing the model’s ability to capture the spatial locations of keypoints.

The training process used a learning rate of 0.001 across 100 epochs. Early stopping was
implemented to prevent overfitting; training was halted if the validation loss did not improve
for 10 consecutive epochs. A batch size of 8 was used, which was the maximum number of
images the GPU could handle simultaneously.
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To fully leverage the capabilities of the pre-trained model, the depth images were con-
verted into a three-channel format. These images underwent preprocessing to align their
distribution with that of the images used during the model’s pre-training phase. Specifically,
the colour channels of each image were normalized by subtracting the mean and dividing by
the standard deviation. Online data augmentation techniques were applied during the train-
ing phase, including rotations of ±30°, scaling between 0.75 and 1.5, and translations up to
±40 pixels. In the 2x2 grid test, once the grid was created, the resulting image underwent
resizing and pre-processing, following the same procedure as that used for the single-frame
input. It is worth noting that the grid’s dimension depends on the system’s design to balance
computational load and the level of detail required for effective monitoring.

3.3 Performance metrics
To evaluate the performance of the pose estimation model, the standard MS-COCO Average
Precision (AP) and Average Recall (AR) based on Object Keypoint Similarity (OKS)3 were
used, along with AP.5, AR.5 (AP and AR with OKS threshold of 0.5) and AP.75, AR.75 (AP
and AR with OKS threshold of 0.75). To further evaluate the model performance, a newly
introduced metric was also used, the Limb Overlap Score (LOS).

The LOS is calculated through a multi-step process that begins by grouping keypoints
into four distinct groups: the right arm (i.e., right wrist, elbow, shoulder), left arm (i.e., left
wrist, elbow, shoulder), right leg (i.e., right ankle, knee, hip), and left leg (i.e., left ankle,
knee, hip). After grouping, the Euclidean distance between the predicted keypoints and their
ground truth counterparts is computed for each group, specifically excluding keypoints that
are annotated as non-visible (i.e., due to external occlusions, like in Figure 3). The average
distance for each group of limbs is then determined. Finally, the LOS is calculated on the
basis of these average distances, providing a quantitative measure of the model’s ability to
predict the limbs’ position.

with:

LOS = 1− ∑
3
i=1

√
[(xpi − xgi)2 +(ypi − ygi)2]δ (vi > 0)

∑i δ (vi > 0)
√

A2 +B2
(4)

where (xpi ,ypi) and (xgi ,ygi) denote the predicted and ground truth coordinates of the i-th
keypoint of a limb, vi is the visibility flag, and A and B represent the width and height of the
image, respectively. This score normalizes limb detection accuracy by the image diagonal,
ensuring that it is independent of image size and adaptable to different image dimensions
and aspect ratios.

In contrast to the OKS approach, which assesses keypoint identification on a global scale,
LOS assesses the model’s accuracy in regressing each limb’s position individually (i.e., right
arm, left arm, right leg, left leg), excluding non-visible keypoints from its computation. This
ensures that the metric reflects only the visible and measurable aspects of the limb’s position,
providing a more accurate and clinically relevant assessment of the model’s performance.

4 Results and discussion
Table 1 presents the model’s performance using OKS-based metrics. AP scores across dif-
ferent Intersection over Union (IoU) thresholds—0.5 (AP.5), 0.75 (AP.75), and an average

3COCO Keypoint Evaluation

https://cocodataset.org/
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Figure 4: Qualitative results from the High-Resolution Network + Disentangled Keipoint
Regression (HRNet+DEKR) on the 2x2 grid

Table 1: Performance of the High-Resolution Network + Disentangled Keypoint Resolution
(HRNet+DEKR) in terms of Object Keypoint Similarity (OKS)-based metrics.

AP AP.5 AP.75 AR AR.5 AR.75
0.975 0.989 0.987 0.985 0.998 0.992

across all thresholds (AP)—are exceptionally high, indicating that the model accurately de-
tects keypoints in most cases. In particular, the AP score of 0.975 suggests that the model
achieves near-perfect detection in various poses and scenarios. The model performs slightly
better at a lower IoU threshold (AP.5 = 0.989), which is typical because the criteria for a
correct prediction are less stringent. Similar trends can be seen on the AR.

Table 2 evaluates the HRNet+DEKR model using the LOS for each limb individually
and on average. Consistency in performance across all limbs—left arm (0.993), right arm
(0.991), left leg (0.992), and right leg (0.992)—highlights the model’s ability to equally
capture the dynamics of both upper and lower limbs with high precision. The overall average
LOS of 0.992 further attests to the uniformity in the accuracy of the model in different body
parts.

The high scores in both the OKS-based metrics and LOS suggest that HRNet+DEKR
is well-suited for precise pose estimation required in NICUs. The ability to maintain high
accuracy across various limbs and under different evaluation metrics (AP, AR, and LOS)
suggests that the model can be used reliably in practical applications, where precise detection
of movement of the limbs may potentially contribute to monitoring and diagnostic processes.

These results also open avenues for further research into the application of pose esti-
mation technologies in healthcare, especially in contexts where non-invasive monitoring is
essential. Future studies could explore the integration of such models with real-time monitor-
ing systems in NICUs, potentially offering a non-contact method to assess the development
of preterm infants.

Building upon the results obtained from single-subject data, the HRNet+DEKR model
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Table 2: Performance of the High-Resolution Network + Disentangled Keypoint Regression
(HRNet+DEKR) in terms of Limb Overlap Score (LOS).

Left Arm Right Arm Left Leg Right Leg Average
0.993 0.991 0.992 0.992 0.992

was applied to multi-pose estimation. To facilitate this, a dataset was created by arranging
multiple patient sequences in a 2x2 grid configuration (as illustrated in Figure 4). As visible
from the qualitative results, the proposed HRNet+DEKR is able to accurately estimate the
location of the keypoints of interest in each of the 4 patients. This multi-person approach
may significantly boost the efficiency of the inference process, meeting a critical need within
the ward to lower computational demands and streamline operations. By processing videos
simultaneously on a single hardware system, the grid approach reduces the resources needed,
thereby facilitating more efficient monitoring and analysis in scenarios involving multiple
subjects.

5 Conclusion

This work proposes a DL pipeline based on the HRNet+DEKR model for 2D pose esti-
mation to support the assessment of GMs of preterm infants in the NICU. Its capability to
perform multi-pose estimation across a grid of four frames enhances applicability in clinical
workflows, where efficiency is crucial. Indeed, by employing a single DL model to monitor
multiple infants simultaneously, our approach may both reduce processing time and com-
putational load and – ad a consequence – address the financial constraints hospitals face in
installing DL-based monitoring systems.

Future work will quantitatively evaluate the grid approach’s performance and assess
whether it degrades as grid size increases. This involves systematically varying the dimen-
sions of the grid and measuring the impact on processing speed, accuracy of pose estimation,
and use of computational resources. Further, we plan to incorporate machine learning to dy-
namically optimize grid configurations based on scene complexity and system capabilities.

We are also working to expand the dataset to enhance the performance of the model
by encompassing a more extensive range of real-world scenarios, thereby reducing possible
biases. Another future step will deal with the integration of a classification approach for
GMs.
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