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Abstract

Telerehabilitation is a promising approach for delivering remote therapy, particularly
for patients with neurological disorders who need continuous monitoring and feedback.
Single-camera markerless motion capture offers a convenient solution for motion as-
sessment, especially suited to home environments, unlike multi-camera or marker-based
systems. However, most studies focus on movements within the frontal plane, neglecting
the accuracy of these systems for complex, multi-directional movements involving the
sagittal plane. This study aims to characterise motion using a single RGB-D camera by
comparing two different depth estimation methods: one based on 3D pose estimation
from RGB video and the other using the camera’s built-in depth sensor. Both methods
are compared to a marker-based system, recognised as the gold standard. The findings
indicate that while single-camera methods are accurate for frontal plane movements, they
show significant differences with respect to the gold-standard in the sagittal plane due to
depth estimation and joint occlusion issues. Nonetheless, the study highlights the poten-
tial of video-based markerless systems in telerehabilitation.

1 Introduction
Telerehabilitation is a method of providing rehabilitation services through telecommunica-
tion networks and internet, allowing people to access therapy from the comfort of their own
homes or remote locations [18, 19, 39]. Telerehabilitation has demonstrated its effectiveness
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and benefits, particularly in the treatment of various neurological disorders, such as stroke,
Parkinson’s disease, multiple sclerosis, and cerebral palsy [25, 29, 37]. By enabling more
frequent and accessible therapy sessions, telerehabilitation can improve patient outcomes, re-
duce the load on healthcare facilities and improve patient compliance with rehabilitation pro-
tocols. This approach includes a range of motor and cognitive exercises, some of which are
more popular and commonly used. Motor exercises are designed to target muscle strength,
endurance, balance, and aerobic capacity. Examples include knee flexion, trunk flexion and
extension, sit-to-stand, step-ups, and walking [31]. While telerehabilitation shares similari-
ties with traditional home training by enabling patients to exercise outside clinical settings, it
differs significantly in its structured, interactive and technology-supported approach. While
home training typically relies on patients autonomously following instructions contained in
cards or videos, telerehabilitation aims to improve rehabilitation outcomes by providing real-
time feedback [22]. This highlights a key challenge for telerehabilitation: ensuring accurate
and reliable evaluation and feedback on users’ movements and performance to motivate and
guide them during therapy sessions [44, 45]. To address this challenge, markerless motion
capture technology emerges as a promising solution, allowing the tracking and the analysis
of human movement without the need for body markers, which are both time-consuming
(for the setup) and user-dependent [6, 14, 33]. In particular, in recent years, techniques
based on video analysis have been proposed for extracting quantitative parameters regarding
movement (e.g., joint angles, velocities, and trajectories [11, 13, 23, 24]). These systems
use pose estimation algorithms based on deep learning and computer vision (i.e., [7, 10, 43])
to detect points of interest on the human body. They have the advantage of being cheaper
and less cumbersome than marker-based systems. However, from a clinical perspective,
their accuracy has not been thoroughly explored and depends on various factors, including
the quality and resolution of the images or videos captured, camera positioning, lighting
conditions, occlusions of certain body parts, and the reliability of the pose estimation algo-
rithms used to extract the position of the points of interest [6, 40]. In addition, such models
are often constrained to two-dimensional (2D) motion analysis [32] or the use of multi-
ple cameras [33] for the geometric reconstruction of three-dimensional (3D) information
through stereo-vision techniques. Although the latter approach is essential for biomechan-
ical analysis, single-camera-based motion analysis systems are emerging as alternatives to
be explored. In this context, devices such as depth cameras (RGB-D) and recent develop-
ment of 3D pose estimation algorithms on single images as input [7, 10, 17, 43] have the
potential to further simplify motor task estimation by eliminating the need for two or more
cameras. However, the accuracy and precision of such systems are still unclear, raising ques-
tions about their actual applicability in rehabilitation contexts. Although these systems have
the ambition of making motion analysis possible in situations where it would otherwise be
difficult or impossible through the use of markers (as, for example, in the case of home reha-
bilitation [21, 36, 38]), many studies using depth sensors (i.e., Kinect or Leap Motion) have
reported limited accuracy due to camera occlusion and difficulties in recognising movement
characteristics [5, 9, 12, 20, 27, 35, 36, 41]. In addition, studies using a single camera
often report exercises on the acquisition plane only, and depth information is generally not
explored [8, 16, 26, 42]. Given the above-mentioned considerations, research on the ac-
curacy of motion characterisation through video analysis tools, and tracking out-of-plane
movements with respect to camera orientation or influenced by occlusion appears necessary.
Given the current state of the art, this study aims to quantify motion using a single RGB-D
camera by employing two approaches of depth estimation: (i) using the depth data from
the sensor itself, and (ii) employing a monocular 3D pose estimation algorithm on the RGB
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video. The objective is to evaluate how these approaches affect the estimation of quantitative
angle measures compared to those extracted with a gold-standard stereophotogrammetric
system. This study has the potential to highlight the advantages and limitations of current
video-based motion capture technologies in the clinical setting. In doing so, it sets the basis
for bridging the gap between emerging technologies and clinical needs, with the ultimate
goal of improving the accuracy and reliability of telerehabilitation interventions.

2 Materials and Methods

2.1 Participants
Ten unimpaired volunteers (age: 26.5 mean ± 2.5 standard deviation (SD) years, two males)
participated in this study. The inclusion criterion for this study was the absence of any history
of neurological or orthopaedic disorders. This study conforms to the ethical principles for
medical research involving human subjects of the Declaration of Helsinki (revision 2013)
and was approved by the local ethical committee (Comitato etico per la ricerca di Ateneo
CERA - Università degli Studi di Genova, protocol n. 2023/93, 14/12/2023). All partici-
pants signed an informed consent for the analysis and publication of their data for research
purposes.

2.2 Experimental Setup
The experiment was conducted at the motion analysis laboratory of the University of Genoa.
The set-up included a stereophotogrammetric system (Vicon, [2]) consisting of eight in-
frared cameras recording at 100Hz calibrated to measure body movements (Figure 1a). We
recorded 32 passive reflective spherical markers with a diameter of 19 mm placed in pre-
cise anatomical positions defined according to the DAVIS protocol [15] (partially shown in
Figure 1b). A single RGB-D camera (Intel RealSense D435, [1]) recording at 30Hz was
included in the setup. This camera has an integrated depth sensor with stereo cameras and
an infrared projector for high-resolution 3D depth data, along with an RGB camera. For
markerless motion tracking, we recorded both RGB video and depth information. This was
positioned in front of the participants (i.e., who were facing the camera, Figure 1a) as we
were interested in a possible scenario applicable to telerehabilitation. To overcome poten-
tial inaccuracies in depth measurements caused by clothing, all participants were required to
wear tight-fitting attire during the experiments.

2.3 Protocol
The participants performed a series of exercises in random order, involving all planes of
movement, at distances of two and three meters from the camera (Figure 1a). The exercises
are represented in Figure 2 and could be categorized as follows:

Trunk Exercises Participants were instructed to perform trunk flexion (F) in the sagittal
plane and lateral tilting (LT) in the frontal plane (Figure 2b). These movements were exe-
cuted both in a standing position and while seated.
Range of Motion (RoM) Exercises Participants were instructed to perform shoulder and
hip movements with both the upper and lower limbs. These included abduction (A) in the
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(a) (b)
Figure 1: Setup. (a) The stereophotogrammetric system with eight infrared cameras and the
RGB-D camera. (b) Markers and keypoints used for angle computation: C (C7 or midpoint
between shoulders), S (shoulder), E (elbow), W (wrist), H (hip), K (knee), A (ankle). Left:
Marker-based system; Right: Markerless system.

frontal plane, flexion (F), and extension (E) in the sagittal plane, as well as flexion-abduction
(FA) and extension-abduction (EA) in both planes (Figure 2c). For shoulder movements,
in particular, participants performed flexion, abduction, and flexion-abduction at three dif-
ferent amplitudes, aiming to create movement angles of 45, 90, and 180 degrees. For hip
movements, participants were not required to achieve high amplitude, focusing instead on
comfortable and controlled motion within a safe range.
Body-weight Exercises Participants were instructed to perform elbow flexions, squats, and
skips (Figure 2a).

For all exercises, participants were required to return to the initial position after each move-
ment. Each movement was repeated 10 times. Each exercise that required limb movements
was performed with both the right and left limbs.

2.4 Data Analysis
For the gold standard marker-based approach (Marker), we recorded the (x, y, z) coordinates
of the passive markers positioned on the body. The Vicon Nexus software [4], typically
automates marker sorting and tracking using a human body model. However, manual in-
tervention is often required when markers are occluded or affected by reflections, making
the process time-consuming. This highlights a significant drawback of marker-based mo-
tion capture systems. At the end of this process, we obtained 10 matrices (Pmarker j with
j = 1, ...,10 indicating the index for each participant), with shape 32 × 3 × M j (32 markers;
3 for (x, y, z) markers’ coordinates; M j for the number of samples for the acquisition of the
j− th participant).
For markerless approaches, we used MediaPipe Pose [7]. MediaPipe Pose uses a deep
learning pipeline for real-time human pose estimation from RGB video. The framework is
based on a convolutional neural network (CNN) architecture consisting of two main stages.
The network is trained on large-scale human pose datasets, such as COCO and MPII [28],
which include a wide range of human poses in various environments. In the first stage,
the BlazePose detector identifies the region of interest (ROI) corresponding to the human
body within the frame. In the second stage, the pose tracker predicts the 33 2D keypoints
of the human body from the detected ROI. Additionally, the framework can estimate the
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3D coordinates of these keypoints through a regression model, using a coordinate system
where the origin is defined as the midpoint between the hips. We used this pose estimation
algorithm to estimate the (x,y) coordinates of the keypoints of interest. For the z-coordinates,
we employed two approaches: Markerless1 used the depth information extracted from the
sensor integrated into the RealSense, and Markerless2 used the z estimated by MediaPipe. In
particular, for Markerless1, we applied MediaPipe Pose to the RGB video to obtain the pixel
position of the keypoints of interest. Then, we converted the pixel into (x,y,z) coordinates
in the reference system centred in the camera using the depth sensor’s point cloud of the
Real Sense. The final outputs were 10 matrices Pmarkerless1 j of shape 33 × 3 x N j (N j for
the number of frames composing the video of the j− th participant). For Markerless2, we
applied MediaPipe Pose 3D to the RGB video that estimates the (x,y,z) coordinates of the
keypoints of interest. We obtained 10 matrices Pmarkerless2 j of the same shape as matrices
Pmarkerless1 j .
Once obtained the coordinates from all the systems, they were filtered using a fourth-order
Butterworth low-pass filter with a cutoff frequency of 12 Hz [34]. Then, we calculated
different angles of movement using the following formula:

θ(A,B) = cos−1
(

A ·B
|A| |B|

)
where A and B represented the body vectors considered for each exercise.
Specifically:

Trunk Exercises We calculated the trunk angle in 3D space as the angle between the trunk
vector (trunk) and the initial trunk vector (trunk0), which was measured at the start of the
recording when the participant was in a comfortable position. The trunk vector was de-
fined as connecting the midpoint of the shoulders’ landmarks to the midpoint of the hips’
landmarks. So we obtained θ(trunk, trunk0).
Range of Motion Exercises We computed the shoulder and hip angles in 3D space as the
angle between the arm or the leg body segments at each time point and their initial posi-
tion. Specifically, we compared the vectors connecting the shoulder and the wrist, or the
hip and the knee landmarks (arm, leg, respectively) during the task with their corresponding
vectors at the start of the acquisition (arm0, leg0, respectively). We obtained θ(arm,arm0) and
θ(leg, leg0).
Body-weight Exercises We computed the elbow angle for the elbow flexion exercise con-
sidering the arm and forearm body segments. For the skip and squat exercises, we calculated
the knee angle as the angle between the leg and the shank. We obtained θ(arm, f orearm) and
θ(leg,shank).

After obtaining the angles for each system, we extracted the peak values representing the
maximum angular displacement for each movement. Then, we computed the mean absolute
errors (MAEs) by comparing the maximum angular displacement obtained from the Marker
approach and both Markerless approaches. Specifically, (MAE# represents the error between
Marker and Markerless#, # referring to 1 and 2). Finally, the obtained values were averaged
for repeated movements.

2.5 Statistical Analysis
We aimed to evaluate if the performance of the markerless approaches was comparable to a
marker-based method for assessing movement in different directions. Additionally, we ex-
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amined potential differences by considering two distances from the camera and movements
performed with the left and right limbs (when applicable). We conducted a repeated mea-
sures ANOVA (rANOVA) on angle values, considering four factors: approaches (Marker,
Markerless), body side (if any), movement direction, and distance from the camera. The
statistics were performed with the open statistical software Jamovi (jamovi.org [3]). The
normality of the data was verified using the Shapiro-Wilk test. Sphericity was verified with
the Mauchly test and corrected with the Greenhouse–Geisser method. The statistical sig-
nificance was set at the error rate α = 0.05. A Bonferroni-Holm correction for multiple
comparisons was applied to the post-hoc rANOVA analysis performed following the signifi-
cant factors.

3 Results

We conducted a quantitative analysis to evaluate the similarity between angle measurements
obtained using a Marker-based technique and two Markerless approaches. For each exercise,
we reported the movement angles in different directions obtained from each approach and
the mean absolute error (MAE) of the Markerless approaches relative to the Marker-based
one, which was used as ground truth. We reported the mean and standard deviation of these
results across all participants (Figure 2).

Trunk Exercises

We observed that all the systems performed similarly regardless of whether the exercises
were performed while standing or seated (Figure 2b). As expected, the computed angle val-
ues showed no significant differences with respect to the distance from the camera (p=0.112
standing, p= 0.104 sitting). Therefore, we reported the averaged values across both dis-
tances. In contrast, a significant difference was found for the interaction factor between the
different approaches and movement directions (approaches*direction of movement,
F(1.66,14.76) = 14.833 and p<0.001 for standing exercises; F(1.70, 13.6)= 14.27 and p<0.001
for seated exercises), indicating that the performance of the systems varied depending on the
direction of movement. Specifically, for movements performed in the frontal plane (i.e., par-
allel to the acquisition plane, LT in Figure 2b, 2nd and 4th raws), where depth information is
less critical, both Markerless approaches were comparable to the gold standard. There were
no significant differences observed for either standing or seated exercises in both directions
(so, we reported the averaged values). Interestingly, when standing, the Markerless2 ap-
proach tended to overestimate compared to Markerless1 approach (Figure 2b, LT 2nd raw)
but this discrepancy was not observed when measurements were taken while seated (Fig-
ure 2, LT 4th raw). Despite these variations, the errors between the gold standard and each
Markerless approaches were minimal and comparable across both exercises. Conversely,
for flexion exercises performed purely in the sagittal plane (Figure 2b, F), both Marker-
less systems showed a significant difference compared to the gold standard (t(9)=10.620
and p<0.001 for Markerless1 and t(9)= 7.194 and p<0.001 for Markerless2 for standing
exercises, t(9)=8.499 and p<0.001 for Markerless1 and t(9)= 9.366 and p<0.001 for Mark-
erless2 for seated exercises), with error values increased but still within 10 degrees. Never-
theless, the two Markerless systems remained comparable to each other.
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(a) (b)

(c)

Figure 2: Angles and MAE (a) Range of Motion Exercises. (b) Trunk exercises: standing
flexion (F) and lateral tilt (F) in the first two rows, seated flexion and lateral tilt in the third
and fourth rows (c) Range of Motion Exercises: upper limb exercises on the left, lower limb
exercises on the right; flexion (F), extension (E), abduction (A), and flexion-abduction (FA),
extension-abduction (EA); for shoulder exercises, the vertical grey lines distinguish the error
for different movement amplitudes.
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Range of Motion Exercises

Also in this case, neither the body side (left and right limb) nor the distance from the camera
(2 and 3 meters) affected the quantification of performance (body side factors: p= 0.233 for
hip movements, p= 0.121 for shoulder movements; distance factor: p= 0.326 for hip move-
ments, p= 0.145 for shoulder movements). Therefore, we averaged data across both dis-
tances and limbs. A significant difference was found among the measurement approaches de-
pending on the movement direction (approaches*direction, F(1.77,15.84)= 4.52 and p=0.034
for hip movements, F(7.2,64.8)= 7.19 and p<0.001 for shoulder movements). Figure 2c
shows the mean angle values for each direction of movement for both Marker and Marker-
less approaches. For the movements performed purely in the frontal plane (i.e., parallel to
the acquisition plane, A in Figure 2c), the angles computed using the three approaches were
not significantly different. The MAE was similar for both markerless approaches, regard-
less of the body district or movement amplitude. Conversely, in the movements where the
depth information is crucial (i.e. with a sagittal component: F, E, FA, and EA, Figure 2c),
the Markerless approaches underestimated the angle especially in hip movements. Specif-
ically, for the lower limb (Figure 2c on the left) the difference between the gold standard
and Markerless2 was significant in the combined planes (p= 0.032 for FA, p= 0.021 for FE),
resulting in a significantly higher error compared to Markerless1 (Markerless1 vs Marker-
less2, p= 0.004 for FA, p= 0.015 for FE). For movements performed purely in the sagittal
plane (i.e., perpendicular to the camera acquisition plane: flexion (F) and extension (E)) both
markerless approaches showed highly significant but comparable differences with respect to
the gold standard (p< 0.001 for Markerless2, p= 0.05 and p= 0.006 for Markerless1 respec-
tively in F and E directions). On the other hand, for the upper limb (Figure 2c on the right),
the three systems reported comparable values for combined planes (FA and EA). However,
similar to the observations with the hip, for upper limb movements performed purely in the
sagittal plane (F and E) but limited to movement amplitudes less than 50 degrees, the Mark-
erless systems significantly but comparably underestimated the angle values compared to the
gold standard (p= 0.009 and p= 0.014 for Markerless1, p= 0.006 and p= 0.021 for Marker-
less2 respectively in F and E direction). In contrast, when observing shoulder movements
with larger amplitudes, the performance of both camera-based systems aligned more closely
with the gold standard with no significant differences.

Body-Weight Exercises

Also in this case, the angles did not show significant differences between the body side
(p=0.302 for elbow, p=0.262 for skip, and p=0.298 for squat) and the distance from the
camera (p=0.199 for elbow, p=0.447 for skip, and p=0.312 for squat). Therefore, we av-
eraged the data across both distances and limbs for each exercise type. Interestingly, the
results of the body-weight exercises contrasted with the previous observations (Figure 2a).
Specifically, for elbow flexion performed purely in the sagittal plane, Markerless1, which
relied on depth information provided by the RealSense camera, significantly miscalculated
the elbow angle (p<0.001) due to shoulder joint occlusion, with an error of approximately
40 degrees compared to the gold standard (Figure 2a, 1st raw). Conversely, the Markerless2
overestimated the elbow flexion angle (p<0.001) with an error of about 25 degrees (Figure
2a, 1st raw). A similar pattern was observed in the skip exercise (Figure 2a, 2nd raw), per-
formed mainly in the sagittal plane. Here, Markerless1, miscalculated the knee angle with
a significant error exceeding 50 degrees compared to the gold standard (t(9)=5.25 p<0.001)
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(Figure 2a, 2nd raw). In contrast, Markerless2 did not differ significantly from the gold stan-
dard and reported a minimal error (Figure 2a, 2nd raw). Finally, in the squat exercise that
involved both sagittal and frontal planes, both camera-based systems were comparable to the
gold standard, providing a good estimation of the knee angle (Figure 2a, 3rd raw).

4 Discussion and Conclusions
This paper discussed two single-camera, markerless approaches for motion analysis. The
objective was to evaluate their performance for potential use in a telerehabilitation context.
The single-camera approach offers several advantages: it requires less expertise, avoids op-
erator biases, and prevents distortion from improper marker placement on the subject’s skin.
It also maintains natural movement without cumbersome markers or sensors. Additionally,
it is more cost-effective, easier to set up, and user-friendly outside laboratory environments,
requiring only one RGB-D camera [6, 33]. Despite these advantages, the camera-based ap-
proaches showed results that differed from the gold standard. For exercises performed purely
in the frontal plane, where depth information is not required, both camera-based approaches
showed comparable results to the gold standard, with non-significant errors consistent with
the literature ( [16, 26, 32]). On the other side, for exercises involving depth information
due to sagittal or combined-plane movements, the two systems reported significant errors
compared to the gold standard. In particular, although for large movements, such as those
involving the shoulder, both camera-based systems achieved results comparable to the gold
standard, for movements performed in the sagittal plane, such as trunk, hip, and shoulder
flexion with a limited range of motion, both markerless approaches reported significant er-
rors compared to the gold standard. This indicates a difficulty in accurately capturing small
movements in this plane due to poor depth estimation. This issue can be attributed to two
main factors: the low resolution of the depth sensor [20, 41] and incorrect estimation by
MediaPipe Pose. Specifically, with the Real-Sense based method, inaccuracies in pixel po-
sitioning by MediaPipe Pose can lead to incorrect projection within the point clouds of the
camera. For the MediaPipe Pose-based depth estimation, inaccuracies are hypothesized to
derive from its method of estimating 3D coordinates centred on the subject’s hips [7]. In-
deed, this can lead to underestimation and significant errors, particularly in movements in-
volving compensatory hip motion like trunk and hip flexion. In the first case, participants
move their hips backwards to perform the exercise, while in the second, they maintain bal-
ance by moving and rotating the hips. The MediaPipe Pose-based depth estimation method
adjusts its reference system based on hip movement, resulting in incorrect quantification of
trunk or leg displacement. This results in significant errors compared to the gold standard,
especially for hip and trunk exercises in the sagittal plane. It also differs significantly from
the Real-Sense method, particularly during hip movements involving combined planes. The
major limitations of camera-based systems emerged in body-weight exercises that involve
the evaluation of relative angles and potential occlusions. In both the skip and elbow flexion
exercises, occlusion led to significant errors with the RealSense-based method. These exer-
cises, performed primarily in the sagittal plane, involved the wrist and knee joints occluding
the shoulder and hip joints, respectively. As a result, the coordinates of these joints coin-
cided in the depth map, causing the body vectors describing movement to be misinterpreted
as overlapping. This leads to a significant underestimation of joint positions compared to
the gold standard. In contrast, the MediaPipe Pose-based depth estimation method signif-
icantly overestimated the elbow flexion angle compared to the gold standard, reporting an
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angle value of approximately 90 degrees. This highlights the algorithm’s difficulty in rec-
ognizing the subtle retraction of the wrist towards the body after its initial range of motion.
Indeed, during the elbow flexion exercise, the wrist initially moves away from the body to
allow the elbow to reach an angle of approximately 90 degrees, then moves back towards
the body to complete the motion. MediaPipe Pose-based depth estimation method had dif-
ficulty detecting this wrist retraction, leading to significant errors in measuring the elbow
angle. Conversely, during the skip exercise, this issue did not occur because the movement
is limited to an angle of about 90 degrees, and the knee joint does not move closer to the
hips.

5 Limitations and Future Works

This study highlighted the strengths and limitations of two single-camera methods for mo-
tion assessment. Specifically, the accuracy of depth estimation using the camera’s built-in
depth sensor was compared with that of a pre-trained deep learning framework applied to
RGB images, as well as with a marker-based system, which served as the gold standard for
motion analysis. As a preliminary study, the goal was to explore simple, accessible solutions
without the need for training or customizing neural networks. The focus was on developing a
practical, straightforward system using existing technologies, such as pose estimation algo-
rithms and RGB-D camera, without relying on complex training processes that would require
larger, more diverse datasets. However, several limitations were identified. One of the main
limitations of this type of study is the impact of environmental variability on the accuracy of
depth estimation. Indeed, changes in lighting, background objects, or room layout can neg-
atively affect both depth sensors and pose estimation algorithms, leading to a reduction in
motion capture accuracy. However, since all our experiments were conducted in a controlled
environment with consistent lighting conditions, we did not consider lighting variations as
a factor that could affect the accuracy of the two methods. Future work will explore model
fine-tuning techniques and the combination of the presented methods to overcome these lim-
itations. Future research will also compare the current methods with more advanced pose es-
timation and SMPL algorithms [30], which are known for improved performance and better
handling of pose plausibility. Such comparisons could offer valuable insights and potentially
enhance the accuracy and robustness of the system. Despite these challenges, the markerless
pipeline has shown promise as an alternative for evaluating kinematic parameters across var-
ious exercises and planes of motion, with the potential to be effective even in less controlled
environments outside traditional lab settings. In both clinical and home rehabilitation con-
texts, this approach could serve as a valuable tool for quantitative movement assessment and
comprehensive exercise monitoring. The system could be adapted to automatically count
repetitions, assess movement quality, and provide real-time feedback, which is particularly
beneficial for individuals with neurological disorders. For these patients, continuous motor
activity and precise monitoring, especially at home, are crucial for effective rehabilitation.
By facilitating remote supervision, this approach could allow patients to regularly engage in
rehabilitation exercises with confidence, knowing their movements are accurately assessed,
even in the absence of a therapist. Overall, the integration of a markerless system into tel-
erehabilitation could revolutionize rehabilitation practices, offering a user-friendly solution
that improves patient outcomes through continuous monitoring and feedback.
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