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Abstract

Estimating ground reaction forces from monocular video has essential applications
in healthcare, such as rehabilitation, injury prevention, patient monitoring, and physical
therapy. However, it is a challenging problem due to the complexity of human motion,
the limited availability of training data, and the difficulty of estimating contact and forces
from only 2D monocular video. This paper presents a novel approach for estimating
ground reaction forces (GRFs) from monocular video by combining deep learning-based
3D human mesh recovery with physics-based optimizations. Existing techniques for
measuring GRFs rely on specialized sensors or multiple camera setups, limiting their
applicability outside of lab settings. In contrast, our proposed approach requires only
a single video camera, making it suitable for deployment in sports, clinical and home
environments. A deep neural network is trained to recover 3D human mesh parameters
from each frame, which are further refined using physics-based optimization (HybrIK-
XL). GRFs are then estimated from the 3D foot velocities and contact modeling. The
approach is evaluated on the GroundLink dataset, demonstrating improved accuracy over
prior methods. 1

1 Introduction
Measuring and analyzing human motion and contact forces offers valuable insights for a
wide range of healthcare applications, including rehabilitation, injury prevention, patient
monitoring, and physical therapy. The ability to precisely measure forces exerted on the
body is a vital component of this process, particularly Ground Reaction Forces (GRF), the
force exerted by the ground on a body in contact with it. Although current approach rely on
force plates or wearable pressure sensors, these approaches are typically expensive, restrict
the range and fluidity of motions that can be captured, and are invasive to the patient[1].

Recent advances in Physics-based optimization have allowed the estimated forces and
body kinematics of the data to be constrained to only physically plausible movements, of-
fering new opportunities for non-invasive assessment[24][27][26]. Additionally, recovering
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the 3D body mesh from 2D video frames taken with a single (monocular) or multiple cam-
eras provides a promising alternative for capturing human movement data. Parametric body
models like SMPL[15] and SMPL-X[18] represent the 3D shape parameter and pose of the
human body. However, recovering the 3D body shape, pose, and contact forces from 2D
projected images is extremely challenging due to depth ambiguity, occlusions, variations in
body shape and clothing, and the complexity of human motion.

This paper tackles the challenge of estimating GRFs from monocular RGB video for the
purpose of the enhancement of healthcare by leveraging recent advances in 3D human mesh
recovery and physics-based optimization with inverse kinematics approaches. We introduce
a novel framework leveraging SOTA models to perform video-based GRF estimation using
only monocular video.

Our approach first fits a parametric 3D body model (SMPL-X) to each frame of a monoc-
ular video using a novel deep neural network combination (HybrIK-XL). An initial estimate
of the body’s pose and shape is refined through a physics-based optimization methodology,
ensuring realistic interactions with the ground plane. Finally, the GRFs are calculated from
the optimized foot motions and evaluated using the GroundLink[7] dataset. We focus on
monocular video of a single human subject performing dynamic motions.

Our method combines current state-of-the-art methods on 3D mesh recovery and esti-
mating GRFs with improvements in performance, requiring less computational resources
compared to existing methods. To demonstrate the estimated GRF, we use Unity[6] with
character animations modified to use the generated keypoints for each frame of a single
video. Evaluation of our model takes the accuracy of our calculated GRF on the captured
motions from the GroundLink dataset.

2 Related Work
Estimating human motion and contact forces from videos has been a longstanding challenge
within computer vision and graphics. We review the relevant background material and prior
work on 3D human mesh recovery, physics-based optimization, and data-driven GRF pre-
diction.

3D Mesh Recovery: While recovering the full 3D human shape and pose from a single
image is a challenging problem, many previous works have contributed to the improvement
of its accuracy using different deep-learning neural networks for whole-body pose estimation
from videos. Parametric 3D body models like SMPL[15], and SMPL-X[18] are a compact
parametric representation that can be predicted using deep learning neural networks. Meth-
ods like HMR[8] and SPIN[10] use CNNs to return body model parameters from the pixels
of images directly. Recent approaches estimate 2D-keypoints of the human body in the frame
and silhouettes as intermediate representations to improve accuracy. Combining 2D keypoint
estimation with information inferred from recurrent networks (VIBE)[9], motion discrimi-
nator (TCMR)[3], or transformers (MeshTransformer)[14] as examples, shows significant
improvement in the accuracy of the captured motion. However, most of these methods are
trained on datasets of posed subjects and do not handle foot contacts or the depth of the
camera in the environment.

Another work of interest is HybrIK[12], which fits the SMPL body model to each 2D-
keypoint estimated frame of video using the HR network [21] and inverse kinematics (IK)
optimization to enhance joint angles and twists, which potentially reduces foot sliding. In
this paper, we propose an extended framework of HybrIK, HybrIK-XL, using HybrIK-X[13]
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Figure 1: Pipeline overview of GRF-MV. Inputs can be any monocular video and its extracted
2D keypoints, then passed to the neural network to train and feet contact points are further
adjusted based on the loss value (HybrIK-XL). Generated 3D poses are converted to an
animation and optimized within Unity and calculated GRFs are visualised.

to fit and optimise the SMPL-X body model meshes as input to our GRF prediction pipeline.
Ground Reaction Force Estimation: The ground reaction force is the force exerted by

the ground on a body. GRF provides valuable insights into human motion, balance, and the
distribution of force along the body, making it essential for various healthcare applications.
However, accurately measuring GRF remains a challenging task. Traditionally, GRF is mea-
sured using specialized equipment like force plates[5] or pressure-sensitive insoles[20][2].

Currently, several datasets have been developed to enhance the accuracy of GRF esti-
mation and new datasets of motion capture with GRFs [11] and [28] datasets continue to
emerge. However, these datasets are often limited to specific aspects of movement, tar-
get stages and diseases in subjects. Datasets that were considered for this approach were
UnderPressure[17] and PSU-TMM100[25]. However, due to the fact that the UnderPressue
dataset lacks 3D body shape information and the PSU-TMM100 dataset is incompotible with
SMPL-X, they were deemed unusable.

The most suitable dataset for our approach is the GroundLink[7] dataset, which provides
synchronized video, motion capture, and force plate data. The dataset includes 60 subjects
performing a wide range of activities, such as stretching, walking, and running. A motion
capture system was used to track the 3D body pose and shape, visualized using the SMPL-
X model. The dataset also includes ground truth force plate data, making it suitable for
evaluating our approach.

Physics-Based Character Animation: Accurately estimating foot contact and GRFs
from monocular video is challenging due to 2D image ambiguity and complex human motion
dynamics. [19] proposed a method that combines a deep neural network for 3D human
motion estimation with a physics-based optimization module for foot contact optimization.
Similarly, [24] introduced a method that estimates human motion by optimizing joint torques
and contact forces to minimize discrepancies between observed and simulated motion.

Recent works have further advanced these techniques by integrating physics-based opti-
mization with deep learning and sensor data. [26] proposed Physical Inertial Poser (PIP), a
real-time motion tracking system combining sparse inertial sensor data with physics-based
optimization. [27] introduced PhysDiff, a physics-guided human motion diffusion model
that generates physically plausible motions by incorporating physics-based optimization into
the diffusion process. [23] leveraged intuitive physics to improve 3D human pose estima-
tion accuracy and plausibility. These approaches demonstrate the potential of combining
data-driven methods with physics-based optimization to enhance the accuracy and realism
of human motion estimation and synthesis from video or sensor data.

Citation
Citation
{Group} 2020

Citation
Citation
{Shahabpoor and Pavic} 2017

Citation
Citation
{Ancillao, Tedesco, Barton, and Oâ•ŽFlynn} 2018{}

Citation
Citation
{Kulbacki, Segen, and Nowacki} 2021

Citation
Citation
{Zhu, Xia, and Zhang} 2023

Citation
Citation
{Mourot, Hoyet, Clerc, and Hellier} 2022

Citation
Citation
{Yang, Hsu, Chou, Hu, Wu, Yamins, and Komura} 2021

Citation
Citation
{Han, Senderling, To, Kumar, Whiting, and Saito} 2023

Citation
Citation
{Rempe, Guibas, Hertzmann, Russell, Villegas, and Yang} 2020

Citation
Citation
{Xie, Wang, Iqbal, Guo, Fidler, and Shkurti} 2021

Citation
Citation
{Yi, Zhou, Habermann, Shimada, Golyanik, Theobalt, and Xu} 2022

Citation
Citation
{Yuan, Song, Iqbal, Vahdat, and Kautz} 2023

Citation
Citation
{Tripathi, Müller, Huang, Taheri, Black, and Tzionas} 2023



4 KATSU ET AL.: GRF-MV

3 Methodology
This section describes our framework for estimating GRFs from a monocular video, sum-
marized in Figure 1. Given an input video, human poses are estimated for each frame in
3D meshes using HybrIk-X [13] and refined within our HybrIK-XL framework, enhancing
kinematic plausibility. An animation is then generated using the joint sequence and is then
displayed within Unity. Finally, we apply the GRF equation [22] to the animated model to
calculate and evaluate GRFs.

3.1 3D Mesh Recovery
For our framework, we have chosen HybrIK-X, a state-of-the-art model for 3D mesh recov-
ery. Additionally, HybrIK-X is trained on the SMPL-X mesh dataset that allows the use of
shape, expression, and pose parameters, enabling the recovery of a more detailed 3D human
mesh.

HybrIK-X demonstrates impressive performance in estimating joint rotations and posi-
tions. However, significant errors in foot positions can still be observed. Accurate contact
estimation between the feet and the floor is crucial to estimate GRFs. Therefore, we intro-
duce HybrIK-XL, an additional loss term framework specifically designed to improve the
accuracy of foot-ground contact estimation.

In order to obtain an accurate ground plane, we manually select a frame from the video
where the person is standing on the ground, which is used to calculate the average of the
z-axis coordinates of the right and left ankle in that frame and set it as the ground truth Gz.
This value serves as a reference for comparison with the current feet position Fz along the
z-axis. The loss function is designed to adapt based on the relationship between Fz and Gz.

L f eet =

{
E0, if Fz −Gz −offset < 0.
E1, otherwise.

(1)

The loss function E0 is designed to minimize the occurrence of feet clipping as much as
possible. Equation 2 calculates the mean squared error (MSE) between the predicted feet
positions αk and the ground-truth feet positions α̂k for K feet joints. This will encourage the
predicted foot positions to align closely with the ground truth, effectively pushing the feet
upwards to avoid clipping.

E0 =
1
K

K

∑
k=1

∥ αk − α̂k ∥2 (2)

In reality, the feet are not always in contact with the ground during various movements such
as walking, running, or jumping. Thus, we cannot rely on a loss term that consistently pushes
the feet towards the ground plane. Therefore, we introduce the loss term E1, which is applied
when the feet are predicted to be above or on the ground plane (Fz −Gz −offset ≥ 0).

E1 =−
K

∑
k=1

ω0log(1− ᾱk) (3)

where ᾱk = (αk − α̂k)/σk for K feet joints and σk denotes the standard deviation. Equation
E1 employs a log-likelihood loss to create a gentle loss curve that allows for the possibility
of feet floating, controlled by the weight ω0. Using a log-likelihood loss, we ensure that the
penalty for feet floating gradually increases as the distance between the feet and the ground

Citation
Citation
{Li, Bian, Xu, Chen, Yang, and Lu} 2023

Citation
Citation
{Thompson} 2002



KATSU ET AL.: GRF-MV 5

plane grows.

From pretrained model: The HybrIK-X pretrained model contains three key compo-
nents: pose, camera, and twist angle estimation. Additional parameters from HybrIK-X are:

Lpose =−
K

∑
k=1

logQ(p̄k)− logGψ +3logσk (4)

Lcam =∥ s0 − ŝ ∥2 (5)

where Ŝ is the ground-truth scale factor.

Ltw =
1
K

K

∑
k=1

∥ (cosφk,sinφk)− (cosφ̂k,sinφ̂k) ∥2 (6)

From SMPL-X model: The SMPL-X additional parameters: shape β , expression ψ

and rotation ρ are trained individually to obtain a rest pose with additive offsets. L2 loss is
calculated for each parameter:

Lshape =∥ β − β̂ ∥2 (7)

Lexp =∥ ψ − ψ̂ ∥2 (8)

Lrot =∥ ρ − ρ̂ ∥2 (9)

where β̂ , ψ̂ and ρ̂ are the ground-truth for each parameter.
This is the full loss term for training proposed 3D pose estimation from the monocular

video method. It is formulated as:

L= Lpose +µ1Lcam +µ2Lshape +µ3Lexp +µ4Lrot +µ5Ltw +µ6L f eet (10)

The network minimized the loss calculated to obtain the best estimation. µ1,µ2,µ3,µ4,µ5
and µ6 are weights of each loss term and will be learned during training.

3.2 Physics Based Optimization
In this section, we discuss the physics-based optimization techniques employed to enhance
the stability and ensure realistic behaviour for the estimated 3D poses. The 3D poses are
extracted for each frame and connected to form an animation sequence in Blender to be
exported to Unity for further optimization.

3.2.1 Feet constraint

One of the main issues addressed in this section is the instability of the feet in existing
works in the field of 3D human mesh estimation. To tackle this problem, we perform feet
adjustment in Unity, using the manually selected plane.

We utilize Unity’s rigidbody and mesh collider for the generated feet meshes. By apply-
ing both soft constraints, we can simulate their interaction with the ground plane and ensure
proper contact. On top of soft constraints, we implement an additional vertical ray-based
constraint. From each ankle and toe joint, two rays are cast downwards with a length equal
to an offset value. When these rays hit the ground, it indicates that the feet are in contact
with the floor. We then apply a position constraint to the ankle and toe joints, preventing
them from moving lower than the plane.
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Figure 2: Visualization of Inverse Kinematics target calculation. Target T is used to de-
termine the rotation of the middle joints between the start and end joints when calculating
inverse kinematics. The angle for determining the target for knee rotation is the same as the
rotation between the root and hip.

The combination of the ray-calculated position constraint and the collision detector ef-
fectively prevents feet clipping. For ensuring full body motion smoothness, we employ
momentary inverse kinematics (IK). The lower body of the animation will switch to the cor-
responding inverse kinematics solution instead of its original animation when the feet are
about to clip through the floor. Inverse kinematics is a technique that determines the joint
positions based on the end joint’s position, which in our case is the ankle coordinates. Unity
provides the capability to manually adjust the target position (T ) that the knee should follow.

To minimize the deviation from the original animation, the coordinates of the target
position (T ) for the knee are calculated by following:

T = (xknee + cos(θ) ·H,yknee,zknee + sin(θ) ·H) (11)

where xknee,yknee and zknee represents coordinate of the corresponding knee, θ is an angle
parameter, and H is the distance to target point. The target position is set as shown also in
Figure 2. If no clipping is detected, the target position is ignored, and the model follows its
original animation.

3.2.2 Depth constraint

In addition to the feet constraint, we introduce a soft depth constraint to optimize body jitter
caused by an incorrect depth detection from the proposed neural network. We limit the
range of motion of the root of the body by a sphere with a diameter equal to twice the body’s
thickness. This range should be optimised based on the animation and the desired level of
constraint. We also allow the constraint to be violated if necessary, which helps to create
more natural and smooth movements that resemble real-life motion.

By combining the depth constraint with the previously introduced feet physics optimiza-
tion, we achieve sufficient movement for estimating GRF. The depth constraint ensures the
body moves within a plausible range, while the feet constraints maintain proper contact with
the ground. It’s worth mentioning that due to the nature of these constraints, they do not
completely prevent the feet from floating. In cases where floating feet are observed after the
3D pose estimation process adjusting the plane coordinates may serve as a potential solution,
however, this approach should be considered a secondary measure rather than the primary
method for addressing the issue.
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3.3 Ground Reaction Force

Figure 3: Diagram of basic Force
Fr components. It is a joined vec-
tor with Fma:Acceleration force and
Fmg:Gravity [22]. Fr is used to cal-
culate the ground reaction force on a
moving body.

As proposed by Newton and Thompson [22], the
GRF is equal in magnitude and opposite in direction
to the force that the body exerts on the supporting
surface through the foot, shown in Figure 3. It is im-
portant to note that the friction force can be consid-
ered as the third component of GRF. However, mea-
suring friction force is very challenging due to the
complexity of the foot-ground interface and the lim-
itations of current force platform technology. As a
result, the friction force is often ignored, as reported
by [4, 16]

To adapt the GRF calculation to our animation,
we compute the force in every frame where the ray and collision detector detects contact.
The mass of the body can be the actual mass or assumed based on the height of the sub-
ject. To capture a more comprehensive representation of the leg movement and determine
the acceleration of the body for GRF accurately, we incorporate the entire lower body and
root joint in the calculation. The change in position for acceleration is computed using the
following equation:

a = N(
1
F

F

∑
F=1

(
root + knee+ankle+ toe

4
)) (12)

where F is the number of frames and N is the normal distribution. By setting F = 5, we
calculate the mean of the average lower body’s joints change in position and normalize the
acceleration for every 5 frames. This approach ensures a smooth transition in velocity and
provides a more robust estimation of the acceleration.

Finally, combination of the optimized 3D poses, contact detection, and the adapted GRF
calculation, allow us to estimate the GRFs for each frame from the original input video.

4 Experimental Results
In this section, we will evaluate the performance of our method both quantitatively and qual-
itatively, against ground truth data from the GroundLink dataset[7].

It is important to note that due to time constraints and limited computational resources,
we were unable to conduct a full training of our proposed 3D pose estimation network
with the additional loss terms. Instead, we utilized the pretrained weights of the HybrIK-X
model[13], which were not trained specifically for this task. We instead applied our physics-
based optimization and GRF estimation pipeline to the recovered 3D poses, adapting the
pretrained model to our specific use case.

4.1 Qualitative Comparison
Overall, the qualitative comparison figures clearly show that our calculated GRFs exhibit
similar trends to the ground truth data. The estimated force profiles capture the key character-
istics and timing of the GRF patterns, demonstrating the effectiveness of our physics-based
optimization and GRF estimation pipeline.

Figure 4 (a) and (b) illustrates the estimated and ground truth GRF curves for a soc-
cer_kick and tennis_ground_stroke motion. The estimated GRF closely follows the overall
shape and timing of the ground truth data. However, the magnitude of the estimated forces
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(a) soccer_kick (b) tennis_ground_stroke (c) tennis_serve (d) chair

(e) worrier (f) tree (g) tree_arms (h) ballet_small_jump

(i) dog (j) side_stretch

Figure 4: Calculated ground reaction force (Red) compared against ground truth from
GroundLink dataset [7] (Blue) for 10 randomly chosen motions. Horizontal axis: Frame;
vertical axis: Ground reaction force (g).

is slightly higher than the ground truth, particularly during the impact phase of the motions,
likely caused by the estimation of the weight of the subject.

For steady poses, our method demonstrates a high level of accuracy. Figures 4 (d) and (e)
showcase the results of our method applied to continuous chair and warrior poses, respec-
tively. It is not only showing the accurate estimation of the consistent force profiles during
the sustained postures, our method also effectively captures the vertical force transitions
during the entering and exiting phases of the poses.

However, some failure cases can be observed especially with motions that contain hori-
zontal weight transitions. Figure 4 (i) and (j) describe the GRF comparison for the side_stretch
motions and dog pose motion. The estimated forces are higher than the ground truth on av-
erage for both motions since the force distributed between other points of contact is not
captured. In these cases, the slow velocities lead to inaccuracies in the calculation of the
velocity term in the GRF equation, resulting in miscalculations of the forces.
4.2 Quantitative Comparison
To evaluate the accuracy of our estimated GRFs, we compare them with the ground truth
GRF data from the GroundLink dataset. Table 1 presents the mean squared error (MSE)
of the calculated GRFs from our proposed approach for both the left and right feet for 10
randomly selected motions. Notably, to the best of our knowledge, this is the first study to
utilize a Unity implementation for calculating GRFs. As a result, there is limited availability
of directly comparable data from prior works.

The results in Table 1 provide insights into the performance of our method across differ-
ent human motions, including sports and yoga poses. The MSE values range from 0.003 to
0.150, indicating varying levels of accuracy in the estimated GRFs. Lower MSE values, such
as those observed for the tree_arms and tree motions, suggest a closer match between the
estimated and ground truth forces. On the other hand, higher MSE values, like those seen for
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the side_stretch and dog motions, indicate larger discrepancies between the estimated and
the actual forces. These larger values for the dog motions can be explained by the fact that
the hands are not considered as points of contact, causing these inaccuracies. Similarly, the
side_stretch motion is due to the fact that the GRF estimation prioritises front-back veloc-
ity over side-to-side motions, making it not very suitable for this approach. Motions with
more dynamic and rapid movements, such as the soccer_kick and tennis_serve, tend to have
higher MSE values compared to more static or slow-moving poses, due to the rapid changes
in velocity, and direction.

Table 1: Mean Square Error with GroundLink
ground truth dataset for 10 randomly chosen mo-
tions for both legs. Results are normalized be-
tween 0 to 1 by maximum force detected.

Motions Left Leg Right Leg
soccer_kick 0.051 0.043
dog 0.106 0.112
chair 0.013 0.028
side_stretch 0.150 0.148
tree_arms 0.003 0.006
tree 0.004 0.011
worrier 0.017 0.009
tennis_serve 0.023 0.005
ballet_small_jump 0.078 0.069
tennis_ground_stroke 0.029 0.016

Furthermore, the MSE values for the
left and right feet within each motion are
generally comparable, suggesting a con-
sistent performance of our method in es-
timating GRFs for both limbs. However,
there are a few cases where the MSE dif-
fers slightly between the left and right
feet, which could be due to asymmetries
in the motion or variations in the quality
of the 3D pose estimates.

In summary, our results demonstrate
the potential of our proposed approach
for non-invasive estimation of GRFs
from monocular video on human sub-
jects. The qualitative comparison show-
cases the ability of our method to capture
the key characteristics and trends of the GRF. The quantitative evaluation reveals promising
accuracy across various motion types, with room for improvement in handling slow weight
transfer poses and refining the force magnitudes. Despite the limitations imposed by the use
of pretrained 3D pose estimates, our results highlight the effectiveness of our physics-based
optimization and GRF estimation pipeline.

5 Conclusion

In this paper, we proposed a pipeline for GRF Estimation from Monocular Video within
a healthcare setting. Our approach begins by optimizing feet contact points using newly
proposed loss terms (HybrIK-XL), which are then combined with physics-based position
constraints to further refine the error in the contact points of the feet. We evaluated our
method using the Groundlink dataset [7] by calculating the MSE differences between our
estimated GRFs and the ground truth values. The experimental results indicate that our
pipeline achieves accurate GRF estimation, with a clear trend of force shifting captured in the
estimated profiles, and the proposed pipeline has shown a novel innovation that significantly
lowers the difficulty of GRF estimation.

Future work should aim to improve the relationship between the GRF and joint forces,
refining the loss term and physics-based optimizations. Furthermore, an ablation study of the
optimization step should be performed to confirm its significance. Additionally, evaluation
of clinical videos, not feasible within this study due to ethical consent limitations, would
confirm the effectiveness of this method within a healthcare setting.

Studies on a purely deep learning method for contact point estimation could lead to a
more efficient method of GRF estimation of monocular video without the need for special-
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ized equipment.
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