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Abstract

An early, non-invasive, and on-site detection of nutrient deficiencies is critical to
enable timely actions to prevent major losses of crops caused by lack of nutrients. While
acquiring labeled data is very expensive, collecting images from multiple views of a
crop is straightforward. Despite its relevance for practical applications, unsupervised
domain adaptation where multiple views are available for the labeled source domain as
well as the unlabeled target domain is an unexplored research area. In this work, we
thus propose an approach that leverages multiple camera views in the source and target
domain for unsupervised domain adaptation. We evaluate the proposed approach on two
nutrient deficiency datasets. The proposed method achieves state-of-the-art results on
both datasets compared to other unsupervised domain adaptation methods. The dataset
and source code are available at https://github.com/jh-yi/MV-Match.

1 Introduction
In recent years, nutrient status monitoring has become a popular topic for the precision man-
agement of fertilizer in smart farming [2, 24, 27, 33, 39]. An early, non-invasive, and on-site
identification of plant nutrient deficiencies is critical to enable timely actions to prevent ma-
jor losses of crops caused by lack of nutrients. This can help farmers improve crop yields
and prevent excess fertilization with negative environmental consequences, such as nitrous
oxide emissions or groundwater pollution. For rapid and non-invasive diagnosis of nutri-
ent deficiencies, deep learning methods applied to RGB images have been widely adopted
[13, 30, 36, 40, 43, 46, 56]. These approaches, however, do not generalize to genotypes that
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have not been observed during training. Furthermore, collecting labeled data is extremely ex-
pensive since it requires expert knowledge to recognize nutrient deficiency and it is even dif-
ficult for experts to distinguish plant stress caused by nutrient imbalances from other causes
like droughts or diseases. Detecting nutrient deficiencies across different genotypes is thus
a highly relevant application for evaluating and developing unsupervised domain adaptation
methods [28, 44, 51].

Current datasets and approaches for domain adaptation consider only a single view, i.e.,
each object or scene in the source and target domain have been taken from a single view.
Multiple views of the same scene, however, provide additional information since it allows
to learn or discard variability of the appearance that is caused by viewpoint changes and not
necessarily by changes of the domain. Utilizing this additional information is very practical
since it is straightforward for many applications like nutrient deficiency detection to collect
multiple views of the same location both for the source and target domain, in particular if
the images can be simply taken by a smartphone without the need of any camera calibration
or expensive camera setup. Despite its practical relevance, unsupervised domain adaptation
under multi-view scenarios is a widely unexplored research area. An exception is a recent
work by Lu et al. [22] that addresses domain adaptation for object detection in a surveillance
setting where the camera views of the target domain overlap. This specific setting, however,
does not generalize to other tasks where the assumption of overlapping views cannot be
guaranteed.

In this work, we thus investigate the task of unsupervised multi-view domain adaptation.
In our context, multi-view refers to multiple images of the same scene taken from different
views, which is different to the multi-view learning approach investigated in Xia et al. [53]
where views refer to different modalities. To study this challenging task, we collected a
dataset of images of crops that suffer from different nutrient deficiencies. Each crop has
been captured over the growing season multiple times and each time from multiple views as
illustrated in Figure 1. While each view does not necessarily contain exactly the same plant,
the multiple views contain very closely located plants with the same nutrient status. The im-
ages are annotated by the date, genotype, and nutrient deficiency. As a second contribution,
we propose an approach that leverages the multiple views for domain adaptation. The pro-
posed approach, which we term Multi-View Match (MV-Match), enforces the consistency
of the predictions among multiple views. In addition, we propose a Similarity-guided View
Mining (SgVM) mechanism to automatically select the most dissimilar views that contain
complementary information given a query image.

We evaluate our approach on two nutrient deficiency benchmarks and show that our ap-
proach achieves state-of-the-art performance compared to other unsupervised domain adap-
tation approaches.

2 Related Work
Plant Nutrient Deficiency. Better matching of the timing and amount of fertilizer inputs
to plant requirements will improve nutrient use efficiency and crop yields. Driven by tremen-
dous economic potential, deep learning applied to RGB images is widely adopted for early,
non-invasive, and on-site monitoring of plant nutrient deficiency in plants [40], including
rice [36, 43], sugar beet [56], hydroponic basil [13], winter wheat [57], and tomato [46].
These approaches evaluated various convolutional neural networks (CNNs) on their pro-
posed datasets [13, 46, 56, 57] or applied an ensemble of CNNs to achieve better perfor-
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Figure 1: Illustration of our multi-view setting. Related views are expected to share the same
nutrient status, both in the labeled source and the unlabeled target domain. We do not assume
that each view contains exactly the same plant, but very closely located plants with the same
nutrient status, which makes the data capturing in an open field very simple.

mance on publicly available datasets [36, 43]. However, they detected plant nutrient defi-
ciency in images of the same domain as the labeled training data, whereas we aim to identify
the nutrient status of plants in out-of-domain data.

Unsupervised Domain Adaptation. Unsupervised domain adaptation approaches [28, 44,
51] aim to adapt a model trained on a labeled source domain to an unlabeled target domain.
Due to ubiquitous domain shifts in real life, unsupervised domain adaptation approaches
were proposed for various applications, including image classification [5, 9, 19], semantic
segmentation [3, 17, 50], and smart farming [1, 10, 23, 32, 35]. Most of these approaches in-
volve the minimization of discrepancies, adversarial training, or self-training. Methods with
discrepancy minimization aim to minimize the domain gap by adopting a statistical distance
function such as maximum mean discrepancy [19, 20], correlation alignment [41, 42], or
entropy minimization [12, 50]. In adversarial training, encoders and domain discriminators
are trained to learn domain-invariant inputs [11, 15], features [9, 21], or outputs [34, 47, 50].
Recently, unsupervised domain adaptation approaches using pseudo-labels were proposed to
generate artificial supervised signals based on confidence thresholds [25, 60] or pseudo-label
prototypes [29, 59] for the unlabeled target data. Although unsupervised domain adaptation
for smart farming [23] is attracting more attention for species recognition [10], disease de-
tection [1], drought stress [35], and relative water content prediction [32], the exploration of
unsupervised domain adaptation for identification of plant nutrient deficiency [56] remains
an open area of investigation. Moreover, leveraging multiple views of a plant or object in the
source and target domain is an unexplored research area in the field of domain adaptation.

Multi-View Learning Multi-view learning is commonly adopted in 3D reconstruction
[52], 3D object recognition [31], and perception of 2D images. For 2D images, multi-view
consistency is a form of consistency regularization in semi-supervised learning, which is of-
ten applied to ensure consistency over different data augmentations [3, 6, 26] and different
crops [16, 18]. However, the aforementioned approaches for 2D images only consider multi-
views as augmented versions of the same image, which inevitably contain local patterns
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Figure 2: Proposed approach for unsupervised domain adaptation. Given multiple views of a
crop in the labeled source domain (top) and the unlabeled target domain (bottom), a random
query image is sampled from the source and the target domain (center of the green and blue
box). The Similarity-guided View Mining (SgVM) module then computes the normalized
mutual information between each query-view pair to select the top n dissimilar views of
the same crop (red dashed rectangles). From these two sets, we randomly select a second
image for each query image. We then apply weak or strong data augmentation to the four
images, i.e., the two query images and their corresponding view pair images, and feed them
to a shared model for predicting nutrient deficiencies. While the prediction of the query
image of the source domain is supervised by the ground-truth label, the other predictions are
enforced to be consistent with the corresponding view pair. For this, the query image with
weak augmentation is always considered as a reference prediction, both for the source and
target domain.

instead of the holistic appearance of a given object. In this work, we make use of images
of plants with various camera angles to include different light conditions, viewpoints, and
crop parts, to incorporate holistic details of diagnosed plants. We enforce consistency among
these multi-view images instead of augmented images. Concurrent works [22, 53] evaluated
similar settings for object detection, image classification, and 3D reconstruction, but none of
them can be applied to the task of nutrient deficiency detection.

3 MV-Match
In this work, we propose an approach for unsupervised multi-view domain adaptation. This
means that we have multiple views both in the source and the training domain, as illustrated
in Fig. 1. Such a scenario is highly relevant for applications since capturing multiple views
of the same crop or object is straightforward whereas annotating images by trained experts
is often very expensive.

Our approach, which is illustrated in Fig. 2, thus aims to leverage the multiple views in
the source and target domain. While we have labeled images for the source domain, where
xs,i denotes an image of the source domain and ys,i ∈ {1,2, · · · ,C} is the corresponding label,
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the images xt,i of the target domain are unlabeled. In our case, the images of the source and
target domain contain different genotypes and the goal is to recognize different types of
nutrient deficiencies in the target domain.

As illustrated in Fig. 2, we train a joint model for the source and target domain and aim
to learn a model that is agnostic to the domain. During training, we select for each batch the
same number of query images from the source and target domain. For each query image, we
sample a second image that shows the same crop but from a different view. This step will be
described in Section 3.2. For a query image of the source domain xs,i, we can directly apply
the cross-entropy loss using the ground-truth label ys,i:

Lgt
s (xs,i,ys,i) = H(ys,i,Pxwa

s,i
) =−

C

∑
c=1

1(c = ys,i) logPxwa
s,i
(c), (1)

where Px is the prediction of the network for image x and Px(c) is the predicted probability
for class c. The indicator function 1(c = ys,i) is 1 for the ground-truth label and 0 otherwise.
xwa is the weakly augmented version of a given image x, which is a random horizontal flip
with a probability of 50%.

For the other images, we introduce consistency loss functions, which are denoted by
Lsa2

s , Lsa1
t , and Lsa2

t . These loss functions measure the prediction consistency across views
for the source and the target domain, as illustrated in Fig. 2. We describe them in the next
section more in detail.

3.1 Multi View Matching
For each query image of the source or target domain, we have a set of images Ms,i or Mt,i
that show the same crop but from a different view. In Section 3.2, we will describe how
these two sets are obtained. For each query image xs,i and xt,i, we randomly select a second
image from the corresponding set xs, j ∈ Ms,i or xt, j ∈ Mt,i. As illustrated in Fig. 2, we
apply strong augmentation to the sampled views, which we denote by xsa

s, j and xsa
t, j. For

this, we adopt AutoAugment [7] as strong augmentation, which is described more in detail
in the supplementary material. For sampled views of the source domain, we compute the
cross-entropy to enforce that the prediction is the same as for the query image of the source
domain:

Lsa2
s (xs,i,xs, j) = 1(max

c
Pxwa

s,i
(c)≥ τ)H(ŷs,i,Pxsa

s, j
). (2)

For computing the cross-entropy H, we consider in the experiments two cases: a) ŷs,i =
argmaxc Pxwa

s,i
(c) or b) ŷs,i = Pxwa

s,i
. While a) generates a hard pseudo-label, b) is a soft labeling

based on the predicted probabilities of all classes. In the case of a hard pseudo-label, the
loss is only applied if the prediction on the query image reaches a certain confidence, i.e.,
maxc Pxwa

s,i
(c)≥ τ .

For the target images, we define a similar loss function:

Lsa2
t (xt,i,xt, j) = 1(max

c
Pxwa

t,i
(c)≥ τ)H(ŷt,i,Pxsa

t, j
), (3)

which enforces that the predictions of the two views of the target domain are consistent. In
addition, we compute a loss that measures the consistency of the weak and strong augmen-
tation of the target query image:

Lsa1
t (xt,i) = 1(max

c
Pxwa

t,i
(c)≥ τ)H(ŷt,i,Pxsa

t,i
). (4)
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For training, we combine all four loss terms without any weighting:

L= Lgt
s (xs,i,ys,i)+Lsa2

s (xs,i,xs, j)+Lsa2
t (xt,i,xt, j)+Lsa1

t (xt,i) (5)

The impact of the loss functions except Lgt
s , which is always needed, is evaluated in the

experiments.

3.2 Similarity-guided View Mining

For a given query image xs,i or xt,i, we need to select the set of images Ms,i or Mt,i. We first
select all images that have been taken from the same location as the query image but from a
different view. Since the nutrient status of the same plant might change over time, we only
consider images that have been taken on the same day as the query image.

In the experiments, we show that it is better to first select a subset of images instead of
randomly sampling xs, j from Ms,i. To this end, we select a subset of images that are most
dissimilar to the query image, but that show the same crop as the query image. In this way,
we select views that are not very similar to the query view.

For the selection, we compute the Normalized Mutual Information (NMI) [49] between
the query image xs,i and all view images xs,k of the same crop as the query image:

NMI(xs,i,xs,k) = 2
H(xs,i)−H(xs,i|xs,k)

H(xs,i)+H(xs,k)
. (6)

where H(xs,i) is the entropy of image xs,i and H(xs,i|xs,k) is the conditional entropy. Larger
NMI(xs,i,xs,k) indicates higher similarity. For building Ms,i, we select the 5 images xs,k
with the lowest NMI, i.e., we select the 5 most dissimilar images to the query image. We
denote the selection as Similarity-guided View Mining (SgVM). We apply SgVM to the
target images in the same way to obtain Mt,i.

4 Experiments

4.1 Datasets and Metrics

We evaluate our proposed MV-Match for image classification on two nutrient deficiency
benchmarks, MiPlo-B [8] and MiPlo-WW. We report the top-1 accuracy on the test set as
our metric. We also report per-nutrient accuracy as it is critical for nutrient monitoring in
smart farming. As a network, we use a ResNet50 [14].

MiPlo-B. The Mini Plot Barley (MiPlo-B) dataset consists of 18559 images with 6 nutri-
ent treatments (-N, -P, -K, -B, -S, ctrl) annotated, ranging from 21.06.2022 - 20.07.2022 (16
dates). It contains two genotypes: Barke (9305 images) and Hanna (9254 images). For each
genotype, each treatment was repeated 4 times, resulting in 24 containers, each of which has
a unique ID. Six unique containers with six different nutrient treatments were selected as the
test set while the other containers as the training set (#train:#test≈75%:25%), trying to avoid
information leaks due to commonly adopted random sampling, i.e., multi-views of the same
crop being separated into both training and test set.

MiPlo-WW. The Mini Plot Winter Wheat (MiPlo-WW) dataset has 12466 images with
6 treatments (-N, -P, -K, -B, -S, ctrl) annotated, ranging from 12.05.2023 - 24.05.2023 (13

Citation
Citation
{Vinh, Epps, and Bailey} 2010

Citation
Citation
{Deichmann, Yi, Mihiret, Zahra, Sauer, Hueging, LÃ©on, Wissuwa, Gall, and Schaaf} 2024

Citation
Citation
{He, Zhang, Ren, and Sun} 2016



YI ET AL.: MV-MATCH 7

Table 1: Top-1 Classification Accuracy (%) for adaptation across genotypes: Barley: Barke
→ Hanna. Oracle indicates the model was trained with full supervision on the Hanna
training set. Source-Only denotes the results without adaptation. The highest accuracy is
shown in bold, while the second best is underlined. TPS refers to throughput per second.

Model Barley: Barke → Hanna

-N -P -K -B -S control AVG Train Time (min) TPS (test)
Oracle 97.3 78.5 82.1 99.1 9.1 87.1 75.4 - -

Source-Only 95.1 26.0 80.4 84.3 14.8 24.2 54.0 - -
DANN [9] 93.0 36.6 59.0 68.6 24.2 46.0 54.7 215.1 35.0

ADDA [48] 83.7 47.1 50.4 79.5 17.4 33.0 51.8 125.4 35.0
JAN [20] 87.2 26.1 63.7 70.8 22.9 39.6 51.9 86.6 35.0

CDAN [21] 95.2 35.0 41.5 69.8 20.4 44.8 51.3 100.3 35.0
BSP [5] 94.5 41.3 68.2 76.0 14.5 57.2 58.8 153.0 35.0

AFN [55] 94.7 25.8 73.9 64.1 24.9 68.7 59.0 233.9 35.0
Mean Teacher [45] 94.2 32.1 81.8 89.4 11.7 52.5 60.6 266.7 35.0

FixMatch [37] 98.2 38.9 83.8 86.4 25.4 53.2 64.6 257.6 35.0
FlexMatch [58] 97.2 50.0 89.1 89.4 11.0 58.0 65.9 276.4 35.0

Ours+hard 92.7 50.0 86.8 95.3 22.7 68.9 69.6 666.7 35.0
Ours+soft 97.0 53.9 75.4 92.8 20.0 64.7 67.4 714.3 35.0

dates). It contains two genotypes: Julius (6253 images) and Meister (6213 images). The ID
settings are the same as above.

We refer to the supplementary materials for more details about the datasets and experi-
mental details.

4.2 Comparison to State of the Art
We present experimental results of our approach compared to different baselines. Source-
only denotes training only on the source domain without adaptation. DANN [9], ADDA
[48], JAN [20], and CDAN [21] learn domain-invariant features with adversarial learning:
DANN jointly trains encoder and discriminator with a gradient reversal layer; ADDA adopts
separated encoders for source and target domains and alternates training of the encoder and
discriminator; JAN adopts adversarial training to maximize a joint maximum mean discrep-
ancy (JMMD); CDAN conditions the adversarial adaptation models on both the features and
the classifier predictions. BSP [5] avoids deterioration of the feature discriminability after
adaptation by penalizing the largest singular values. AFN [55] enlarges feature norms to
enhance the transferability of features. Mean Teacher [45] constructs a teacher model by av-
eraging model weights of a student model with an exponential moving average and forcing
the consistency between the predictions of two models. FixMatch [37] takes the predic-
tions of weakly-augmented unlabeled images as pseudo-labels and their strongly-augmented
version as predictions to train the model in a supervised manner. FlexMatch [58] extends
FixMatch by considering adaptive thresholds for different classes at each time step. All ap-
proaches were trained with the same amount of images, i.e., single-view approaches were
trained using all views as images but they do not utilize multi-view information. In what
follows, we show the performance of our model in two plant nutrient deficiency benchmarks
under different settings, i.e., adaptation across genotypes (smaller domain gap) and across
cultivars (larger domain gap).

Adaptation Across Genotypes: We report in Tables 1 and 2 the performance of adap-
tation across genotypes in terms of per-nutrient accuracy and average accuracy. The results
indicate that for both settings of adaptation across genotypes, MV-Match outperforms the
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Table 2: Top-1 Classification Accuracy (%) for adaptation across genotypes: Winter
Wheat: Julius → Meister. Oracle indicates the model was trained with full supervision
on the Meister training set. Source-Only denotes the results without adaptation. The highest
accuracy is shown in bold, while the second best is underlined. TPS refers to throughput per
second.

Model Winter Wheat: Julius → Meister

-N -P -K -B -S control AVG Train Time (min) TPS (test)
Oracle 98.9 85.4 58.9 81.9 50.2 51.7 71.0 - -

Source-Only 100.0 88.8 5.6 46.6 1.1 61.6 50.5 - -
DANN [9] 99.8 54.9 22.6 52.9 20.5 58.9 51.4 196.7 35.0

ADDA [48] 99.0 57.5 50.7 51.3 30.4 44.1 55.7 130.3 35.0
JAN [20] 98.9 50.0 26.7 49.6 39.9 58.2 53.9 83.3 35.0

CDAN [21] 99.2 44.0 33.7 55.9 29.7 63.9 54.3 95.2 35.0
BSP [5] 100.0 59.7 56.3 55.9 49.8 49.4 61.9 144.4 35.0

AFN [55] 99.6 67.9 24.8 68.1 19.8 61.6 56.6 199.0 35.0
Mean Teacher [45] 99.2 67.9 62.6 72.7 18.6 37.6 59.6 266.7 35.0

FixMatch [37] 99.6 75.0 66.7 62.2 25.5 64.6 65.6 279.1 35.0
FlexMatch [58] 99.2 72.8 68.1 87.4 3.0 64.6 65.5 239.3 35.0

Ours+hard 99.2 59.0 71.1 93.7 4.6 76.4 66.9 588.2 35.0
Ours+soft 100.0 60.8 59.3 76.5 29.7 50.6 62.5 555.6 35.0

baseline methods by a large margin. Comparing Oracle and Source-Only, we see that dif-
ferent genotypes drastically deteriorate the performance without adaptation, especially for
P deficiency and control in Barley: Hanna → Barke and K deficiency, B deficiency and S
deficiency in Winter Wheat: Meister → Julius. On adapting the network, most baselines
based on adversarial learning or discrepancy minimization do not attain large improvements
over the un-adapted model for both scenarios. Notably, Mean Teacher and FixMatch achieve
a relatively large improvement. Both approaches adopt consistency regularization, which we
assume is critical for plant nutrient deficiency. With the proposed multi-view consistency,
our approach yields consistent and significant performance gains in both adaptation settings.
MV-Match with hard pseudo-labels outperforms its counterpart with soft pseudo-labels in
both settings. We furthermore report the training time and throughput per second (TPS) dur-
ing inference in Tables 1 and 2. While the inference time is the same for all methods since
they all use the same backbone suitable for real-time processing, our approach requires more
time for training due to selecting dissimilar views.

Adaptation Across Cultivars: We also evaluate the methods for adaptation across dif-
ferent crop species. This setting is extremely challenging because both crops were cultivated
in different years, where changing environmental conditions as well as abiotic and biotic
stresses might have affected the growing status of crops. This is reflected in the results in
Table 3. For many adaptation settings, baseline methods decrease the performance of the
un-adapted model. Our method consistently boosts the performance across crop species. We
attribute this robustness against the changing environment to our proposed multi-view match-
ing, which incorporates holistic visual symptoms for effective identification of plant nutrient
deficiency. Our model with soft pseudo-labels works better than with hard pseudo-labels.
This is different to the across genotypes experiments where the domain gaps are smaller.
This is not unexpected since soft pseudo-labels work better for out-of-domain unlabeled
data [54]. Note that FixMatch and FlexMatch also achieve promising results in adaptation
across genotypes, but their performance deteriorates for adaptation across crop species.
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Table 3: Mean Top-1 Classification Accuracy (%) for adaptation across crop species. Oracle
indicates the model was trained with full supervision on the target training set. Source-Only
denotes the results without adaptation. The highest accuracy is shown in bold, while the
second best is underlined.

Model Barley → Winter Wheat Winter Wheat → Barley

B → J B → M H → J H → M J → B J → H M → B M → H
Oracle 73.5 71.0 73.5 71.0 67.9 75.4 67.9 75.4

Source-Only 31.9 40.7 27.0 31.7 18.8 13.3 16.3 13.7
DANN [9] 40.5 39.4 22.2 19.3 19.0 18.7 23.8 17.6

ADDA [48] 30.6 34.4 21.3 24.4 25.2 16.0 21.0 19.8
JAN [20] 35.5 40.0 14.4 27.4 19.5 14.6 17.9 16.1

CDAN [21] 36.0 34.3 25.7 17.2 21.9 14.0 24.4 18.0
BSP [5] 39.9 42.5 30.5 29.6 22.1 16.3 21.0 18.3

AFN [55] 38.2 39.6 23.3 20.0 20.9 18.0 22.2 18.5
Mean Teacher [45] 30.6 37.6 37.1 40.9 23.3 19.9 26.0 20.4

FixMatch [37] 27.9 33.6 29.4 27.8 24.3 19.3 19.6 19.5
FlexMatch [58] 26.8 35.4 30.1 34.3 25.1 16.5 21.7 18.9

Ours+hard 33.7 33.7 28.9 31.8 20.9 16.8 21.6 16.5
Ours+soft 42.2 46.6 34.4 41.2 27.1 23.2 26.0 21.3

4.3 Ablation Study

The results in Table 4 show that forcing consistency between an unlabeled target image with
its related view significantly boosts the performance, and incorporating such consistency
for the source image brings extra gain in performance. This validates the effectiveness of
our proposed multi-view matching mechanism. Note that we only use weak augmentation
instead of strong augmentation for these results. To further explore the effects of strong
augmentation in our multi-view setting, we run a series of experiments with various combi-
nations of loss components, as shown in Table 5. The models that use Lsa2

s and Lsa2
t have

better results as compared to Table 4, indicating the effectiveness of strong augmentation.
By including Lsa1

t , we observe a decent boost in performance. The combination of Lsa2
s , Lsa2

t
and Lsa1

t achieves the highest accuracy of 69.6% on the Barley: B → H benchmark. Such
a result indicates that complementary information is learned by multi-view matching. More
ablation studies are in the supplementary material.

Lwa2
s Lwa2

t B → H
54.0

✓ 65.5
✓ ✓ 66.0

Table 4: Ablation study on effects of
multi-view matching without any strong
augmentation. Lwa2

s denotes the self-
training loss between weakly-augmented
source image (pseudo-labels) and its
weakly-augmented related view (predic-
tions). The same applies to Lwa2

t .

Lsa2
s Lsa2

t Lsa1
t B → H

54.0
✓ 67.2

✓ ✓ 68.7
✓ 64.6

✓ ✓ 67.3
✓ ✓ ✓ 69.6

Table 5: Ablation study on the impact
of loss functions in the Barley: B → H
benchmark.
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(a) (b)

Figure 3: Saliency visualization (a) without adaptation and (b) with adaptation. For each
case, we show the original image, saliency map obtained by guided backpropagation [38],
and by GradCAM++ [4].

4.4 Visualization

We present an example of saliency visualization using our model before and after adaptation
on the target dataset in Figure 3. The results show that the model fails to localize pathological
symptoms caused by potassium deficiency in crops without adapting the model to the target
domain (Figure 3a). After adaptation, the model successfully classifies the nutrient status by
focusing on the discriminative pathological symptoms (Figure 3b).

5 Conclusion
In this work, we addressed unsupervised domain adaptation for plant nutrient deficiency de-
tection. We proposed an approach that utilizes multiple views of crops both in the source and
target domain. To this end, we enforce consistency between a query image and its strongly-
augmented related view to incorporate complementary visual symptoms for the identification
of plant nutrient deficiency. We also proposed a similarity-guided view mining mechanism,
which ensures that the most dissimilar views are selected. We evaluated our approach on
two datasets and provided additional ablation studies in the supplementary material. Our
approach exhibited significantly improved performance compared to other methods in all
the settings we studied. Despite the achieved major improvements compared to other unsu-
pervised domain adaptation approaches, domain adaptation for nutrient deficiency detection
across genotypes or cultivars remains challenging. Extending the approach to a multi-modal
approach that utilizes data from other sensors, e.g., multi-spectral data, humidity, tempera-
ture, or chlorophyll fluorescence, is an interesting research direction to enhance the robust-
ness and generalization abilities.
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