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Abstract

Spatial transcriptomics (ST) technologies have transformed genomic research by fa-
cilitating spatially-resolved gene expression profiling, offering unprecedented opportu-
nities to explore cellular communication and organization. However, most existing ST
assays are constrained to resolving cell clusters or multicellular structures, resulting in
the amalgamation of signals from multiple cells and obscuring the spatial dynamics of di-
verse cell populations. To address this limitation, we conceptualize ST data as a specific
type of image, where cells represent pixels and genes are akin to channels. Consequently,
we propose a novel Hybrid Attention Transformer framework, named iHAST , to en-
hance the spatial resolution of ST data. In support of this framework, we have curated an
extensive ST dataset comprising over 800 examples from diverse cell types and sequenc-
ing technologies for training and testing purposes. Subsequently, we conducted rigor-
ous evaluations of our approach and consistently observed performance enhancements
surpassing those achieved by state-of-the-art methods, underscoring the robustness and
generalizability of our iHAST model across a diverse array of biological contexts and
experimental conditions.

1 Introduction
Spatial transcriptomics (ST) technology has transformed genomic research by enabling spatially-
resolved gene expression profiling within the native context of tissues [29][27][33][37]. This
breakthrough provides an unparalleled opportunity to unravel the spatial heterogeneity of
gene expression, offering a comprehensive depiction of cellular communication and organi-
zation. However, despite its promise, many existing ST assays primarily resolve cell clusters
or multicellular structures rather than individual cells, leading to the amalgamation of sig-
nals from multiple, potentially diverse cell types within a single measurement point[25][37].

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Rao, Barkley, Fran{ç}a, and Yanai} 2021

Citation
Citation
{Moses and Pachter} 2022

Citation
Citation
{Tian, Chen, and Macosko} 2023

Citation
Citation
{Williams, Lee, Asatsuma, Vento-Tormo, and Haque} 2022

Citation
Citation
{Marx} 2021

Citation
Citation
{Williams, Lee, Asatsuma, Vento-Tormo, and Haque} 2022



2 LI, DUAN, ZHANG: IHAST

Such aggregation may obscure the spatial dynamics of diverse cell populations, significantly
impacting various downstream analyses, such as cell-type identification, characterization of
cellular functions, and investigation of cell-to-cell communication. Therefore, it is essential
to design novel methods to enhance the resolution of ST data.

In response to the challenges associated with improving the resolution of ST data, we
have developed a novel framework for resolution enhancement, named iHAST , drawing in-
spiration from super-resolution (SR) techniques within the realm of computer vision Fig.2.
The code for iHAST is publicly available at https://github.com/aicb-ZhangLabs/
iHAST. Specifically, iHAST treats each ST dataset as a specialized form of image data,
where individual ST spots are analogized to pixels, and their corresponding gene expression
values are represented as extended RGB channels. Subsequently, iHAST employs down-
sampling of the ST data to create high-low resolution pairs to train a Hybrid Attention
Transformer model and predict high-resolution gene expression patterns. Consequently, the
trained iHAST model demonstrates the capability further to enhance the spatial resolution of
existing ST data inputs. In contrast to prevailing SR methods utilized in conventional image
analyses, we have devised two distinct modules tailored to address the specific challenges
inherent in ST data, as outlined in our contributions detailed below.

• Wavelet Transform: The substantial dynamic range of gene expressions, encom-
passing multiple orders of magnitude, presents a notable obstacle in achieving precise
expression prediction during the resolution enhancement procedure. In response to
these challenges, iHAST incorporates a Wavelet Transform module to mitigate over-
smoothing effects and bolster the encoding of high-frequency information. This mod-
ule substantially improves the encoding of fine details, a critical aspect for precise
prediction of sparse gene expressions and preservation of cell-type diversity.

• Advanced Positional Encoding: We propose a Sinusoidal and Linear Positional En-
coding strategy that enhances spatial awareness within our network architecture. This
improvement enables a more profound comprehension of both local and global cell-
cell interactions, thereby facilitating detailed biological analyses and extending in-
sights beyond conventional local observations

• Curate Large ST Dataset and Achieve SOTA Performance: We curated a compre-
hensive dataset comprising over 800 diverse datasets obtained through three promi-
nent streamline technologies, encompassing approximately 30 distinct complex tis-
sues. Subsequently, we conducted rigorous evaluations of our approach using over
100 ST datasets, consistently observing performance enhancements surpassing those
achieved by state-of-the-art methods. This extensive validation process underscores
the robustness and generalizability of our iHAST model across a diverse array of bio-
logical contexts and experimental conditions.

2 Related Work

2.1 Spatial transcriptomics

ST assays emerged as a transformative technology in genomics, enabling concurrent gene
expression profiling within the spatial confines of tissues, thereby furnishing crucial insights
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into cellular organization, communication, and function (Rao et al., 2021[29]). This method-
ology plays a pivotal role in elucidating essential biological processes, such as cell differen-
tiation, communication, tissue structure, and the tissue microenvironment. While traditional
technologies like in situ hybridization (ISH)-based methods (e.g., smFISH[2], MERFISH[3],
seqFISH[9]) and in situ sequencing (ISS)-based methods (e.g., FISSEQ[18], STARmap[35])
have significantly contributed to our understanding, they often exhibit limited throughput
and scalability, thereby constraining their utility in large-scale studies or high-resolution
mapping of gene expressions.

Recent advancements in barcode-based ST technology[30][34][22][26] enhance through-
put and scalability, allowing for the profiling of thousands of genes across defined tissue re-
gions. However, a drawback of this technology is its limited spatial resolution compared to
single-cell techniques, which can lead to the mixing of signals from different cell types at a
single measurement point. Thus, developing new computational and experimental methods
to improve ST data resolution remains crucial.

2.2 Existing methods to boost the spatial resolution of ST data

Numerous computational methods have been proposed to tackle challenge of gene-expression
prediction and resolution enhancement from diverse perspectives. For example, several re-
search groups have devised computational algorithms aimed at dissecting spatially resolved
gene expression data by estimating the contributions of individual cell types [24] [23][8].
These methods commonly rely on accurate reference profiles for each cell type, which can
pose challenges, particularly in heterogeneous tissues. Moreover, these methods may en-
counter difficulties in accurately distinguishing closely related cell types or accommodating
spatial expression variations, potentially leading to inaccuracies in cell type estimation.

Subsequently, several seminal studies highlighted the wealth of information on cell types
and transcriptomic profiles contained within histology images[12][38]. These studies em-
ployed image processing techniques to align high-resolution histology images with spatial
transcriptomics (ST) data, facilitating the integration of spatial context and cellular morphol-
ogy [28]. The fusion of these modalities enables a finer resolution of gene expressions within
tissues. However, it is worth noting that histology images may be absent in numerous ap-
plications, particularly outside the realm of cancer research, posing persistent challenges in
enhancing the resolution of ST data.

2.3 Existing SR methods for traditional image analysis

Deep learning has significantly impacted various fields, including SR in computer vision [7]
[39] [36] [19] [20]. Dong pioneered single image SR with SRCNN, employing a basic CNN
architecture [6]. Kim introduced VDSR, a deeper network with residual learning, surpassing
SRCNN’s performance [13]. Zhang enhanced SR quality with RDN, integrating residual
and dense connections [40]. Lim contributed EDSR, a 64-layer residual network [21]. Lai
developed Lap-SRN, focusing on multiresolution and efficiency [15, 16]. To address param-
eter efficiency, Kim proposed DRCN [14]. Tai extended this concept in DRRN and MemNet,
combining recursive learning and weight sharing [31, 32]. Ledig introduced SR-GAN for vi-
sually enhanced SR [17]. Haris’s DBPN offered iterative up-sampling/down-sampling layers
for better contextual information capture [10]. These advancements signify the integration
of deep learning in SR enhancement.
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Figure 1: Data preprocessing workflow Gene expression profiles are reduced in di-
mensionality using PCA, combined with cell-type annotations, and rearranged from a
honeycomb-like layout to a bitmap-like representation, enabling a computer vision process
to enhance resolution and facilitate accurate cell-type prediction.

3 Method

3.1 Large-scale ST dataset curation

We collected a total of 877 datasets from various spatial transcriptomics technology plat-
forms, including 10x Visium, StereoSeq, and SlideSeq. These datasets encompass a large
range of tissues, such as brain, embryo, and kidney.

3.2 Uniform ST Data Preprocessing

We adhered to the standard data preprocessing pipelines by Seurat[1], selecting highly ex-
pressed and variable genes for normalization using recommended parameters. After reduc-
ing gene expression dimensions to 50 components through Principal Component Analysis
(PCA) for computational efficiency, we addressed the challenge of uniform coverage in ST
data, typically sampled in a hexagonal pattern. To align with visual models, we transformed
this hexagonal structure into a regular 64x64 grid, repositioning data points to fit standard
image processing frameworks while preserving gene expression accuracy.

For the training process, we employed a preprocessed dataset comprising 877 samples
with cell-type annotations. Given the distinct gene expression profiles associated with var-
ious cell types, we incorporated cell-type labels as pivotal information in our transformer
model. Consequently, we amalgamated cell-type labels and metadata (consisting of 13 di-
mensions) with the 50-dimensional PCA result to generate a 64-dimensional representation
for each spot (pixel). Subsequently, the data underwent preprocessing into 64x64x64 in-
stances and was downsampled to 32x32x64 to construct the paired High-Low resolution data
pair. This structured representation, coupled with cell-type annotations, facilitates the acqui-
sition of intricate spatial patterns and relationships by our deep learning model, essential for
accurate resolution enhancement.
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Figure 2: Overall Architecture: The processed data is first passed through two feature extrac-
tion modules: the Wavelet Transform Module and the Positional Encoding Module. After
these modules extract and process the features, their outputs are concatenated and fed into six
Residual Attention Sets (RAS). Finally, the reconstruction phase compiles these enhanced
features to produce an output with improved resolution.

Figure 3: The structure of Wavelet Transform module, Residual Attention Set and Hybrid
Attention Set.

3.3 Over all architecture

As shown in Fig. 2, our architecture integrates three components: a Wavelet Transforma-
tion Module, a Positional Encoding Module, and a Hybrid Attention Transformer Module.
By leveraging the Wavelet Transformation Module, iHAST adeptly captures high-frequency
details such as textures and edges, significantly augmenting the diversity of the output. Con-
currently, the Positional Encoding Module bolsters the architecture’s ability to assimilate and
process global contextual information. This enriched input is then processed by the Trans-
former Module, facilitating deeper learning and refinement. Drawing inspiration from the
state-of-the-art methodologies in the SR domain, particularly the HAT [5][4] [20]framework
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and SwinIR [20] framework.

3.4 Wavelet transform Module
Unlike traditional image data, gene expression values within cells typically encompass sev-
eral orders of magnitude to accommodate diverse cellular functions and responses to various
stimuli, posing significant challenges in the super-resolution task. Conventional approaches
often yield results that appear excessively smooth or blurred, lacking the sharpness and clar-
ity of the original high-resolution counterparts. Therefore, we designed the wavelet trans-
form module to augment the extraction of multi-level high-frequency information from ST
data, thereby markedly enhancing detail and texture retention in super-resolution tasks.

Given a discrete signal x[n], the Haar transform computes the approximation coefficients
a[n] and detail coefficients d[n] using the following equations:

a[n] =
1√
2
(x[2n]+ x[2n+1]), d[n] =

1√
2
(x[2n]− x[2n+1]). (1)

For a two-dimensional image, the process is applied first along rows and then along
columns (or vice versa), resulting in four sub-bands for each level of decomposition: LL
(approximation), LH (horizontal details), HL (vertical details), and HH (diagonal details).

By discarding the LL (Approximation Coefficients) as shown in fig. 3, which contain
predominantly low-frequency information, and focusing on the concatenation of the remain-
ing high-frequency components, we construct a comprehensive high-frequency feature map
that captures intricate image details more effectively.

Subsequently, the extracted high-frequency feature map undergoes processing through
a depth-wise (DW) convolution layer, which further refines the feature representation. This
refined high-frequency feature map is then concatenated with the original up-sampled image,
reintegrating the enhanced details back into the image structure.

3.5 Positional encoding block
Given that ST data inherently contains the coordinates of each spot, perfectly aligning with
the concept of positional encoding, we have developed a novel position encoding module
to better represent this coordinate information. iHAST propose a novel position encoding
module that leverages the complementary strengths of sine/cosine and linear embeddings.
This dual-embedding approach comprehensively captures spatial information, promoting a
rich and positionally-aware feature representation. Concatenation of the encoded features is
followed by a depth-wise convolution (DW Conv) to refine spatial information and enhance
local context integration.
Sinusoidal positional embedding The Sinusoidal positional encoding for a position p and
dimension d is defined as follows:

PE(p,2i) = sin
(

p
100002i/D

)
, PE(p,2i+1) = cos

(
p

100002i/D

)
. (2)

where PE(p,2i) and PE(p,2i+ 1) are the positional encodings at position p for the ith
dimension, D is the total number of dimensions, and i ranges from 0 to D/2−1.
Linear positional embedding Linear positional embedding assigns a unique embedding to
each position in a sequence. For a given position p, the linear positional embedding is
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LPE(p) = Ep (3)

where LPE(p) denotes the linear positional embedding for position p, and Ep represents
the embedding vector associated with position p. The vectors Ep are parameters learned
during the training process of the model. Furthermore, we seamlessly integrate the output
with the results of a wavelet transform. This leverages multi-resolution analysis, capturing
both global and local dependencies within the image.

3.6 Residual Attention Module
Similar to the use of Residual Hybrid Attention Groups (RHAG) and Hybrid Attention
Blocks (HAB) from HAT [5][4] framework, our model integrates these components into
its architecture, designated as RAS and HAS respectively. However, we have strategically
omitted the Overlapping Cross-Attention Block (OCAB) component and made structural
adjustments to HAB to better suit our objectives.

Initially, a 3×3 depthwise(DW) convolution layer HConv(·) processes the enhanced low-
resolution input image ILQ ∈ RH×W×Cin , which includes wavelet features and spatial coor-
dinates, to extract shallow features F0 ∈ RH×W×C as:

F0 = HSF(ILQ), (4)

To bridge the gap from low to high-dimensional space for pixel tokens, the architecture
initially employs a DW convolution layer that processes the input image. Subsequently, deep
features, denoted as FDF ∈ RH×W×C, are derived through N1 sets of the Residual Attention
Set (RAS) blocks followed by an additional 3×3 convolution. The process is defined by

FDF = HConv(FN), (5)

where Fi is the output of the i-th RAS block, expressed as: Fi = HRASi(Fi−1), for i =
1,2, . . . ,N. We define i as 6, representing the total number of Residual Attention Set (RAS)
blocks used in the process. Deep and shallow features are amalgamated through a global
residual connection, culminating in the reconstruction of the high-quality image output. This
is articulated as:

IHQ = HRec(F0 +FDF), (6)

where pixel-shuffle is utilized for super-resolution or dual convolutions for tasks requiring
equivalent resolution. The principal elements, termed HAS, comprise N2 iterations of the
hybrid attention set (HAS) followed by a 3×3 convolution layer, integrated with a residual
connection.

4 Experiment

4.1 Training setting
The dataset used in this study includes various tissue samples, with the specific dataset name
and version noted. The tasks include classification, regression, and generation, evaluated
primarily using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure
(SSIM). The model architecture features an input size of 32×32, an output size of 64×64,
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and 64 in-channels. A pixel shuffle with a 2x upscaling factor is used for upsampling, and the
embedding dimension is set to 180. The training setup includes a batch size of 32, an initial
learning rate of 2.00× 10−4, and a predefined adjustment strategy. The Adam optimizer is
used, with L2 regularization, over 20,000 epochs. The hardware is an NVIDIA GeForce
RTX 3090, and the software framework is PyTorch, version 1.12.

4.2 Super-resolution gene expression prediction
Quantitative Results. We tested our model on three distinct datasets from different spatial
transcriptomics technologies: 10x Visium, StereoSeq, and SlideSeq. These datasets repre-
sent diverse approaches to capturing ST data, each with unique challenges in resolution and
quality. By evaluating our model across these platforms, we provide a comprehensive as-
sessment of its robustness and effectiveness in enhancing spatial resolution across different
biological contexts.

Table 1 presents the quantitative comparison of our approach at iteration 60,000 with
state-of-the-art SR methods including HAT[4, 5], SwinIR[20], IMDN[11], and RRDB[36].
Our results significantly surpass these established methods across all datasets, due in part
to optimizations specifically tailored for handling the high-dimensional nature of biological
data. This targeted enhancement enables our model to more effectively resolve the intricate
details necessary for accurate gene expression analysis in spatial transcriptomics.

Model 10xVisium StereoSeq SlideSeq
PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM

iHAST 60.38 0.9936 55.23 0.9873 61.83 0.9962
HAT[5] 46.91 0.9302 43.48 0.8707 47.02 0.9365
SWINIR[20] 58.01 0.9868 52.34 0.9662 57.44 0.9863
IMDN[11] 51.18 0.1410 49.86 0.2477 49.83 0.2603
RRDB[36] 52.03 0.9668 46.13 0.9495 47.59 0.9528

Table 1: quantitative comparison with SR method.

Table 2 shows the quantitative comparison of our approach at iteration 20,000 with the
relative gene-prediction methods : DIST [41]. The DIST work approach also utilizes graph
networks to model spatial transcriptomics (ST) data with the objective of enhancing data
resolution. However, DIST focuses on training and transferring models using individual
pairs of data, thereby facilitating parallel learning across extensive ST datasets. This strategy
enables effective scaling but may limit the model’s ability to generalize across varying tissue
types and conditions due to the isolated handling of data pairs.

Method psnr(dB) SSIM

iHAST 60.38 0.9936
DIST [41] 55.54 0.9863

Table 2: Quantitative comparison with relative biology method method.

4.3 Ablation Study
To assess the impact of individual components in our iHAST model, we conducted an ab-
lation study, as summarized in Table 3. We compared the full model’s performance with
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variants excluding the wavelet transform module (w/o Wave) and the positional encoding
module (w/o coord).

Removing the wavelet transform resulted in lower PSNR and SSIM, highlighting its
role in preserving high-frequency details. Similarly, excluding positional encoding reduced
performance, underscoring its importance in enhancing spatial awareness for modeling long-
term cell-cell interactions. These results confirm the critical roles of both modules in achiev-
ing high-quality super-resolution.

Model 10xVisium StereoSeq SlideSeq
PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM

iHAST 60.38 0.9936 55.23 0.9873 61.83 0.9962
w/o Wave 53.10 0.9803 47.31 0.9344 53.17 0.9815
w/o Coord 55.11 0.9791 42.36 0.7887 59.38 0.9932

Table 3: Ablation Study.

We explored the impact of additional metadata and cell-type information on our model’s
performance using the 10xVisium dataset, as these were not available in the other two
datasets. Specifically, we evaluated the model under three conditions: using all data ("iHAST"),
excluding cell-type information ("w/o Cell-type"), and omitting metadata ("w/o Metadata").
The results highlight the crucial roles of both cell-type information and metadata in enhanc-
ing model performance.

Method psnr(dB) SSIM
iHAST 60.38 0.9936
w/o Cell-type 45.37 0.9085
w/o Meta data 31.02 0.6694

Table 4: Ablation Study in data preprocessing of 10xVisium data.

The results, as shown in Table 4, highlight the significant impact of both cell-type an-
notations and metadata on the model’s ability to reconstruct high-quality gene-expression.
The drastic decrease in both PSNR and SSIM scores upon the removal of these components
emphasizes their pivotal role in our framework.

5 Conclusion

In this study, we introduced iHAST , a novel super-resolution framework inspired by com-
puter vision techniques aimed at enhancing the resolution of ST data. Our approach treats ST
spots as pixels with gene expression values as extended RGB channels and employs a Hy-
brid Attention Transformer architecture to synthesize a higher resolution output. Pioneering
the application of super-resolution techniques in this domain, this method integrates global,
local, high-frequency, and positional features using wavelet transformations and advanced
encoding strategies, resulting in significant improvements in detail preservation and spatial
awareness, and achieving state-of-the-art (SOTA) performance. The findings provide deeper
insights into tissue architecture and cellular interactions, laying the groundwork for future
advancements in achieving single-cell resolution in gene expression prediction.
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