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Abstract

Diverse and extensive work has recently been conducted on text-conditioned hu-
man motion generation. However, progress in the reverse direction, motion caption-
ing, has seen less comparable advancement. In this paper, we introduce a novel ar-
chitecture design that enhances text generation quality by emphasizing interpretability
through spatio-temporal and adaptive attention mechanisms. To encourage human-like
reasoning, we propose methods for guiding attention during training, emphasizing rel-
evant skeleton areas over time and distinguishing motion-related words. We discuss
and quantify our model’s interpretability using relevant histograms and density distri-
butions. Furthermore, we leverage interpretability to derive fine-grained information
about human motion, including action localization, body part identification, and the
distinction of motion-related words. Finally, we discuss the transferability of our ap-
proaches to other tasks. Our experiments demonstrate that attention guidance leads to
interpretable captioning while enhancing performance compared to higher parameter-
count, non-interpretable state-of-the-art systems. The code is available at: https:
//github.com/rd20karim/M2T-Interpretable.

1 Introduction
Motion-to-language datasets such as KIT-ML [11] have garnered significant interest in motion-
language applications. The motion captioning task is closely related to video captioning.
However, human pose representation reduces the amount of data that needs to be processed
and helps the model focus on the most important aspects of human motion, enabling more
effective descriptions of human activities. In this context, the motion captioning task aims
to generate natural language descriptions from sequences of human poses. Compared to the
significant work done in vision-based captioning, which has seen different interpretable ap-
proaches identifying zones in images or videos that most contribute to the captions [15, 17],
interpretability has been relatively less emphasized in motion captioning methods [5, 12].
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Nonetheless, an interpretable model holds significant importance in ensuring model reliabil-
ity, offering explainable predictions for users, understanding model limitations. In this paper,
taking inspiration from captioning approaches in vision, we devise a novel interpretable mo-
tion captioning system incorporating spatio-temporal and adaptive attention mechanisms.
Moreover, the attention is guided to better match the human perception. To the best of our
knowledge, this is the first interpretable system for motion captioning at both spatial and
temporal levels. We demonstrate the performance of our interpretable captioning approach
on available benchmarks: KIT Motion-Language Dataset [11] and HumanML3D [4], using
common metrics, in alignment with current best practices for this task. Our contributions are
summarized as follows:

• We propose an interpretable architecture design that offers a transparent reasoning
process, mimicking human-like attention perception and analysis, in contrast to black
box approaches.

• Novel formulation of adaptive gating mechanism, along with spatio-temporal attention
in the context of human motion captioning.

• We propose methodologies for adaptive and spatial attention supervision, aligned with
our human skeleton partitioning method, which divides the body into six parts. This
partitioning integrates separated local and global motion representations, aiming to
enhance interpretability.

• We conduct extensive evaluations and analysis of our model’s interpretability, involv-
ing qualitative assessments through attention maps and quantitative analyses utilizing
specific proposed histograms and density distributions. Moreover, we demonstrate the
capacity to leverage resulting model interpretability for action localization, body part
identification, and distinguishing motion-words.

2 Related Work
Motion Captioning. The first approach on the KIT-ML dataset [11] was introduced by
[12] using a bidirectional LSTM. Later systems mainly focused on motion generation [2, 7,
10], but motion captioning has seen a resurgence with the introduction of HumanML3D [4].
This dataset was firstly used for motion captioning by [5], which proposes learning motion
tokens using VQ-VAE that are then mapped to word tokens through a Transformer [16]. The
results of this approach was not high specifically on KIT-ML (BLEU@4 =18.4%). Then,
[13] slightly improved text generation results using a combination of Multilayer Perceptron
(MLP) and Gated Recurrent Unit (GRU). Multitask learning was introduced in MotionGPT
[6], but the disparity in tasks prevents fair comparisons. However, this strategy negatively
impacted motion captioning, yielding a low BLEU@4 score of 12.47% on HumanML3D
and no reported results on the KIT-ML dataset.

Adaptive attention. Attending to the input (e.g., image) for the generation of non-visual
words can be misleading and degrading to the performance of attention networks. To allevi-
ate this problem, [9] propose a formulation for a learnable gate variable β . The variable β

is learned to choose either to rely on the image features or only on the context of language
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generation through the visual sentinel vector. For motion captioning, this is particularly rele-
vant as only specific words ("walks", "throw", etc.) need to access motion input information
during prediction time, in contrast to non-motion words ("a", "the", etc.).

Guided attention. Attention mechanisms can focus on incorrect areas of the input or on
regions with a strong bias that aren’t particularly meaningful for human interpretation. To
mitigate these limitations [8] propose attention supervision, a technique aimed at improving
the performance and accuracy of image captioning models. This approach leads to more rel-
evant attention maps, thereby enhancing interpretability. In the context of video captioning,
spatial guiding of attention has also been shown to improve captioning performance [18].

3 Methods
We first present the general model architecture for our captioning approach (Section 3.1), fol-
lowed by more in-depth presentations of our formulations for spatial and adaptive attention,
as well as our attention guidance methodology (Section 3.2).

3.1 Architecture design for motion captioning

Our model, summarized in Figure 1, is composed of an encoder block, a spatio-temporal at-
tention block and a text generation/decoder block incorporating an adaptive attention mech-
anism.

Let X ∈ RTx×J×D be the input sequence of motion features of Tx time steps, where J is
the number of joints in the skeleton and D is the number of spatial dimensions. We note by
Xk the 3D joints positions and Vk their corresponding velocities at frame time k.

Skeleton partitioning. We group the joints in 6 body-parts: Left Arm, Right Arm, Torso,
Left Leg, Right Leg, Root. We convert the global coordinates to root-relative coordinates,
except for the root itself, which describes the global trajectory of the motion. Xik denotes the
group of joints of part i for every frame k as described in Figure 1.

Encoder. Each of the six body parts is embedded by two linear layers followed by tanh
activations, as illustrated in Figure 1. Each linear layer (FC) encode positions Xik and veloci-
ties Vik separately. The final embedding Pik for a given part i and frame k is the concatenation
of the position and velocity embeddings. We note by P the frame-level motion features of
all human body parts. P ∈ RTx×a×henc where henc the dimension of the final output encoder
and a = 6 is the number of body parts (P = Enc(X)).

Decoder. We adopt a two-LSTM decoder configuration, a Bottom LSTM for learning at-
tention weights and language context and a Top LSTM for final word generation based on the
relevant information extracted from language and motion. We note by y = (y1, . . . ,yTy), yi ∈
RKy the sequence of words describing the motion. Let ht ∈Rhdec be the decoder hidden state
of the bottom LSTM for a word wt in the sequence and h̄t for the Top LSTM. We note by Ky
the size of the target vocabulary. Tx and Ty are respectively the length of the motion sequence
and the length of its description. The decoder Dec is used to predict the next word yt given
the adaptive context vector described by c̄t and the previous word yt−1 and the bottom hidden
state ht .

p(yt | {y1, · · · ,yt−1} , c̄t) = Dec(yt−1,ht , c̄t) (1)
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Figure 1: The encoder branch encodes frame-wise part-based motion representations from
joint positions (Xik) and velocities (Vik), while the decoder branch takes as input (previous
token ˆyt−1, previous state (ht−1, mt−1)) and estimates the relative importance (β̂t gate) of
motion information to consider for word prediction ŷt . Spatial ( ˆαtik) and temporal attention
(Γtk) are computed from encoded part embeddings Pik and ht . The spatio-temporal weights
are used to compute the context vector ct which is then passed to the decoder adaptive gate.
Losslang the cross entropy between predicted, and target words is the main loss. We propose
to guide spatial and adaptive attention with Lossspat and Lossadapt .

The context vector ct is computed by a spatial-temporal attention mechanism, where tem-
poral attention determines when to focus attention, and spatial attention determines where
to focus in the body part graph. In the following, we note by P∗ ∈Rhenc×a×Tx the permutation
of P ∈ RTx×a×henc .

Temporal attention. The temporal weights are computed from extracted motion features
P∗ and the current decoder hidden state ht .

zt = wT
h tanh(W pP∗+ ep(W hht)) (2)

γ t = softmax(zt) (3)

Here W p ∈ Rd×henc ,W h ∈ Rd×hdec and wh ∈ Rd×1 are learnable parameter, ep is an ex-
pansion operator mapping to d ×a×Tx, and a the number of body parts. Moreover, γt is the
temporal attention weights for the word generated at time t. With the above formulation, we
often have discontinuities in the attention maps, yet such discontinuities are undesired, as the
action happens continuously in a given frame range. The distribution of attention weights
for a particular motion word can be modelled as a Gaussian distribution with a learnable
mean and standard deviation. The mean mt and standard deviation σt are computed from
the previous temporal attention weights γtk, which are replaced by Γtk during training in
this case (See Figure 1). Intuitively, the mean mt will approximately represent the center
time of action duration described by a motion word wt , and the spread of the distribution
approximately corresponds to the duration of the action.
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Γtk = exp(− (k−mt)
2

2σt 2 ) (4)

Spatial attention. Spatial weights are computed for each body part (Torso, left/right
arm, left/right leg) as follows:

st = wT
s tanh(WpsP

∗+ ep(Whs ht)) (5)
α t = softmax(st) (6)

Here st ∈Ra. The learnable parameters are W ps ∈Rd×henc ,W hs ∈Rd×hdec and ws ∈Rd×1.
We note by αt,m,k the spatial attention score for part m of the skeleton graph at frame k for
the word generated at time t. Thus, explicitly αt = [αt,1,1,αt,1,2, · · · ,αt,a,Tx ].

Adaptive attention. Non-motion words, particularly grammatical words, do not carry
any information about the movement. Consequently, we propose to learn a gating variable
β̂t to decide the proportion to which to use language context over motion features.

β̂t = sigmoid(W h
b .ht +We.(Eŷt−1)) (7)

Where W h
b ∈ R1×hdec ,We ∈ R1×demb are learnable matrices. E ∈ Rdemb×Ky refers to em-

bedding matrix of target words. The gating variable depends on the hidden state, which
encodes residual information about generated words up to the time step t, as well as on the
embedding of the previous word, as detailed in eq. (7).

Context vector. The context vector is derived by weighting the motion features with
spatial and temporal attention weights, and averaging across the frame-time dimension 8.

ct =
Tx

∑
k=1

a

∑
i=1

ΓtkαtikPik (8)

The motion ct and language information h̄t are embedded into the same space through an
linear layer with tanh activation (for bounded values in [-1,1]), giving et and rt respectively.

Adaptive context vector. Given by Equation (9). When β̂t = 1 the model uses full
motion information and when β̂t is close to 0 the model relies more on language structure.

c̄t = β̂t .et +(1− β̂t).rt (9)

Finally, the probability outputs are computed as in Equation (10), similarly to previous
work on video captioning [14], except we include the bottom hidden state. This ensures
that the language information of previously generated words is always present, which is
important for correct syntax, even for motion words (e.g. jogs, jogging. . . ).

p(ŷt | ŷ1:t−1, ĉt) = so f tmax(tanh(Wf .concat([ĉt ; ŷt−1;ht ]))) (10)

3.2 Spatial and adaptive attention supervision
To our knowledge, simultaneous supervision of attention mechanisms with an adaptive gate
and spatial attention has never been applied to captioning tasks, particularly motion caption-
ing. Below, we provide a formal definition of how the losses for attention supervision are
formulated.
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Language loss. The standard loss for motion-to-text generation is defined as the cross
entropy between the target and predicted words:

Losslang =−
Ty−1

∑
t=0

yt · log(ŷt) (11)

Adaptive attention loss. To build a ground truth for adaptive attention, we define map-
ping rules to distinguish between motion words, action verbs and qualifying adjectives (e.g.,
walk, circle, slowly) from non-motion words (e.g., of, person). We assign βt = 1 for motion
words and βt = 0 for non-motion words (See Supp.Sec.3).

Lossadapt =−
Ty−1

∑
t=0

βt log(β̂t)+(1−βt) log(1− β̂t) (12)

Spatial attention loss. The predicted attention score is ˆαtik for a given word wt and
part i of the source motion at the frame k. The loss is formulated in Eq. 13, where Ny is a
normalization factor that count the number of supervised words for a given target description
y (See Supp. for attention guidance strategy).

Lossspat =− 1
Ny

∑
i,t,k

αti log(α̂ti)+(1−αtik) log(1− ˆαtik) (13)

Global loss. To define the global loss, we add the loss terms for spatial attention lossspat ,
adaptive attention gate lossadapt guidance, respectively weighted by λspat ,λadapt , to control
their contributions.

Loss = losslang +λspat .lossspat +λadapt .lossadapt (14)

4 Experiments

We consider the commonly used benchmarks KIT-ML [11] and the HumanML3D (HML3D)
[4] (Dataset statistics in Supp.). We conduct ablation studies on both datasets to determine
the impact of adaptive and guided attention, followed by a detailed analysis of our model’s
interpretability.

Ablation Study. We configure a search space for (λspat ,λadapt) and run the search using
WandB [1]. Table 1 quantifies the impact of attention guidance. Due to space constraints,
more results can be found in Supp.Sec.4, and additional detailed analysis regarding the ef-
fectiveness of our architecture components can be found in Supp.Sec.5.

Hyperparameters. For both KIT-ML and HumanML3D datasets, we set respectively
the word embedding size and decoder hidden size to (demb = 64,hdec = 128) and (demb = 128,
hdec = 256), respectively. Additionally, the output dimension of each fully connected layer
FCi is 128 for layer 1 and 64 for layer 2 in KIT-ML, and 256 for layer 1 and 128 for layer
2 in HumanML3D. After concatenation, we obtain 128 and 256 joint-velocity features per
frame respectively for KIT-ML and HML3D.
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Dataset λspat λadapt BLEU@1 BLEU@4 CIDEr ROUGE|L BERTScore

KIT-ML
0 0 57.3 23.6 109.9 57.8 41.1
0 3 56.3 22.5 108.4 56.5 39.8
2 3 58.4 24.4 112.1 58.3 41.2

HML3D
0 0 69.3 24.0 58.8 54.8 38.7
0 3 69.9 25.0 61.6 55.3 40.3
2 3 69.2 24.4 61.7 55.0 40.3

Table 1: Results for different supervision modes, where λspat = λadapt = 0 represents the
case without any attention guidance for comparison. The gate (adapt) and spatial (spat) su-
pervision, perform well when used together on KIT-ML (small). For HumanML3D adaptive
attention was always beneficial, but guided spatial attention slightly degraded exact match-
ing scores (BLEU@4, ROUGE) compared to only adaptive attention (Detailed experimented
values in Supp.). The impact is more significant on the interpretability aspect Section 4.2.

Dataset Model BLEU@1 BLEU@4 ROUGE-L CIDEr BERTScore

KIT-ML

SeqGAN [3] 3.12 5.20 32.4 29.5 2.20
TM2T [5] 46.7 18.4 44.2 79.5 23.0

MLP+GRU [13] 56.8 25.4 58.8 125.7 42.1
Ours-[spat+adapt](2,3) 58.4 24.7 57.8 106.2 41.3

*Ours-[spat+adapt](2,3) 58.4 24.4 58.3 112.1 41.2

HML3D

SeqGAN [3] 47.8 13.5 39.2 50.2 23.4
TM2T [5] 61.7 22.3 49.2 72.5 37.8

MLP+GRU[13] 67.0 23.4 53.8 53.7 37.2
Ours-[adapt](0,3) 67.9 25.5 54.7 64.6 43.2

*Ours-[adapt](0,3) 69.9 25.0 55.3 61.6 40.3

Table 2: Text generation performance, assessed with beam size 2 as in [5], while * indicate a
greedy search. Our model performs better than Transformer-based (TM2T) method on both
datasets and on HumanML3D compared to MLP+GRU.

4.1 Evaluation and discussion

Table 2 presents the comparison to SOTA systems. Our approach performs significantly
better than other state-of-the-art approaches without beam search on HML3D, including the
Transformer TM2T. For KIT-ML dataset, MLP+GRU is slightly better than our approach in
terms of NLP metrics. However, in terms of interpretability, our approach provides more
information on the body parts involved in an action compared to MLP+GRU, which lacks
spatial and adaptive attention. Therefore, in their case, the motion representation doesn’t
consider the skeleton graph structure and is always utilized for generating non-motion words
that don’t require motion information, which may lead to biased learning.

4.2 Interpretability analysis

In our context, interpretability is measured by the ability to establish a correspondence be-
tween learned attention mechanisms and human attention perception. In this section, we
discuss the interpretability of learned attentions and how we can leverage interpretabiliy as
illustrated in Figure 6. To demonstrate the role of each of the context vectors ct and LSTMs
hidden states (h̄t ,ht ), we fix the β̂ value at 1 and show a representative examples compared
to adaptive gate in Table 3. Further analysis with animations are available in Supplementary.
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(a) With gate supervision, motion information is
correctly used frequently for motion-words gen-
eration.
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(b) Attention is frequently focused on relevant
parts: e.g. on Root (global trajectory) for word
"turns".

Figure 2: β̂ test set density distribution for a few motion words stems on HumanML3D and
the temporal maximum body-parts attention histogram for word "turn".

β̂ = 1 Adaptive β̂ Reference
walks forward and sits
down <eos>

a person walks forward
turns around and sits
down and gets back up
and walk back <eos>

man walks forwards
stops turns around and
sits then gets up and
walks back <eos>

jumping up and down in
place <eos>

a person jumps up and
down multiple times
<eos>

someone jumps twice
and looks down at the
ground <eos>

punching boxing and
moving hands around
<eos>

a person is boxing with
both hands <eos>

a person standing up is
making boxing motions
with their left and right
arms <eos>

Table 3: Comparison of the prediction when setting β̂ = 1 and adaptive on HML3D-(0,3)
using human motion samples involving different actions.

Spatial / Adaptive attention impact. When training a model without guiding adaptive
attention, we observe that β̂ gate values frequently takes higher values for non-motion words
(a:0.9, the:0.8) as illustrated in Figure 3a. This behavior degrades performance, as seen
in Table 1 for both datasets. However, when we introduce adaptive gate supervision (cf.
Figure 3b), the model more frequently assigns less weight β̂ to non-motion words and begins
to learn how to make decisions automatically when to use the context vector, as illustrated
also in Figure title 7b, while guided spatial attention enhances the learned attention maps.

Body part identification. We can illustrate the effectiveness of our architecture in learn-
ing a correct body part association through spatio-temporal attention by viewing the density
distribution for maximum attention across time per each body part for some motion words
as illustrated in Figures 4 and 7 (Diverse examples in Supplementary).

Action localization. Another aspect that emerges from temporal Gaussian attention
weights is action localization. The architecture shows ability to identify motion onset with-
out temporal supervision. We can derive the action onset from spatio-temporal attention
maps, as illustrated in Figure 5 where we also show their actual onset time.
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(a) Without gate supervision, decoder uses fre-
quently motion information even for non-motion
words (β frequently high).
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(b) With gate supervision, the decoder uses cor-
rectly more language context for non-motion
words (β frequently small).

Figure 3: β̂ density distribution over test set for some non-motion words (stemmed) on
HumanML3D.
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(a) Without spatial supervision, attention in-
correctly focused on legs rather than arms for
"throw" motion in some cases (left leg).
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Total # Words: 49 throws, throwing
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(b) With spatial supervision, spatial attention is
always maximal on relevant part, for this example
on the arms.

Figure 4: Effect of spatial supervision on HumanML3D across the entire test set for a given
motion word (e.g. throw) (# Refer to number of the given motion words).

Figure 5: Temporal gaussian window dis-
played for different motion words given a
prediction on KIT-ML.

Figure 6: Interpretability use towards fine-
grained captioning, based on spatial, temporal
and adaptive attention scores.
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Ref :  a figure waves with their right hand <eos> 
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Pred : a person is waving with their right hand <eos>
: 0.05 0.08 0.83 0.82 0.37 0.23 0.84 0.75 0.92
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0.3

0.4

(a) HML3D-(2,3), word waving in range
[4,27].
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R=someone performs a kick with his right foot <eos>

Root
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P=a person performs a kick with the right foot <eos>
= 0.01 0.11 0.83 0.15 0.98 0.76 0.05 0.96 0.71 0.82

0.2

0.4

0.6

(b) KIT-(2,3), word kick in range [16,26].

Figure 7: Spatio-temporal attention maps for some words, with the color scale indicating
attention score intensity per frame per body part. The model focalize correctly on relevant
parts ((a).arms, (b).legs) at precise action timing and β̂ values are semantically variable
depending on the nature of predicted words as illustrated by the predictions in figures title
(other examples in Supp.Sec.5).

Transfer to adjacent tasks. Similar tasks can benefit from the proposed methodologies.
In the context of skeleton based action recognition and localization, our proposed motion en-
coder and skeleton partitioning could be used to build an interpretable model. In a continuous
stream, action segmentation tasks could be also cast as sequence to sequence learning, thus
attention weights could be used to infer the action start/end times as an unsupervised learn-
ing. If the action time is available, these annotations could serve to supervise the spread of
temporal weights, further enhancing the accuracy of action localization and spatio-temporal
attention maps. Given an image, for each visual word in the caption, our spatial supervision
could be transformed into maximizing the attention weights on relevant objects. Finally, the
interpretability could be evaluated using the proposed density function for adaptive attention
and histograms for attention distribution on spatial locations in other captioning context.

5 Conclusion

We have introduced guided attention with adaptive gate for motion captioning. After eval-
uating the influence of different weighting schemes for the main loss terms, we have found
that our approach leads to interpretable captioning while improving performance. Inter-
pretability is very important to consider when designing an architecture, it’s gives insights
on model capability to perform a true reasoning. This ensures the ability of generalizing
instead of memorizing. The proposed model addressed the two challenges, given an inter-
pretable result with accurate semantic captions. The model and proposed methodology can
be transposed to other captioning tasks, such as supervision of spatial attention weights in
action recognition tasks.
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