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A Appendix

A.1 Calibration Error
To estimate both the calibration abilities of each balancing method and individual model we
measure the Expected Calibration Error (ECE) [3]. ECE measures the difference between
average accuracy and average confidence for datapoints within a narrow confidence interval.
We arrange predictions according to per-class confidence scores and categorize them into
K = 15 bins Bk, each linked to a corresponding equally distant confidence interval. The
lower the ECE the better the calibration of the model. With N being the total number of
datapoints, ECE can be estimated as:

ECE =
K

Â
k=1

|Bk|
N

· |acc(Bk)� conf(Bk)| . (10)

B Implementation
In this section, we provide a detailed account of the implementation steps and choices made
in our study. These specifics are crucial for replicating our work and ensuring a fair compar-
ison with previous methods.

B.1 Balancing Hyperparameters
When tuning the hyperparameters of each method, we follow a consistent strategy. Most
methods involve adjusting a few key hyperparameters. For example, AGM, PMR, and OGM
focus on the a slope of the coefficients and the endpoint of the balancing process. MMCo-
sine includes the magnitude increase scale s, while MSLR incorporates initial coefficients
init used as priors and specifies the window of epochs for averaging performance ke. Addi-
tionally, MLB has also the a slope and introduces bmax, representing the maximum accel-
eration coefficient value. All hyperparameters used are summarized in Table 2. For AGM,
OGM, and PMR, we did not observe any direct benefit from muting the balancing at a spe-
cific point, so it is not included in the table. For MLB, we noticed an improvement when bmax

was set higher than 1, indicating that acceleration was effective. However, values bmax � 2
did not show significant differences. We assume that in datasets with more severe overfitting
on one of the modalities, this might not hold, and further acceleration might be needed.

We maintained uniform computational limits across all methods, conducting grid searches
with an equal number of points. Although we slightly favored MSLR due to its multiple hy-
perparameters, this choice didn’t significantly impact the results. Each method, backbone
encoder, and fusion method underwent a separate search, leading to potentially differing
hyperparameters in each experiment.

B.2 Training Hyperparameters
For all datasets, we adopt a consistent strategy for defining training hyperparameters. Ini-
tially, we conduct a search for the learning rate and weight decay parameters when training
each unimodal encoder individually with a linear classification head. Once we establish a
suitable combination of these parameters, we apply them to the multimodal models. Interest-
ingly, we find that models are not significantly sensitive to slight variations in these values.
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Table 2: Hyperparameters for each dataset (CREMA-D, AVE, and UCF101), backbone en-
coder (ResNet and Conformer where applicable), balancing method (MSLR, MMCosine,
OGM, PMR, AGM, MLB), and fusion method (Late-Linear, MLP, FiLM, Gated, and TF
where applicable).

Method Fusion

Dataset

CREMA-D AVE UCF
ResNet Conformer ResNet ResNet

MSLR Late-Linear lr = [0.7,1.3] lr = [0.9,1.1] lr = [0.7,1.3] lr = [1.0,1.0]
ke = 20 ke = 20 ke = 10 ke = 5

MMCosine Late-Linear s = 10.0 s = 10 s = 8 s = 15

OGM Late-Linear a = 1.0 a = 1.0 a = 0.8 a = 1.0

PMR Late-Linear a = 2.0 a = 1.0 a = 1.5 a = 1.0

MLP - a = 0.5 - -

AGM

Late-Linear a = 3.0 a = 3.0 a = 1.0 a = 1.5

MLP a �1.0 a = 3.0 a = 2.0 a = 3.0

FiLM a = 1.5 a = 3.0 - -

Gated a = 3.0 a = 1.5 - -

TF a = 1.5 a = 1.5 - -

MLB

Late-Linear a = 5.0 a = 5.0 a = 2.0 a = 2.0

MLP a = 5.0 a = 3.0 a = 1.0 a = 4.0

FiLM a = 0.5 a = 4.0 - -

Gated a = 5.0 a = 5.0 - -

TF a = 5.0 a = 2.0 - -

Consequently, we set our final values uniformly across all datasets: (1e� 3, 1e� 4) for the
ResNet encoders and (5e� 5, 1e� 5) for Conformer encoders. We utilize the Adam opti-
mizer [4] with default values for (b1,b2) as (0.9,0.999) and e set to 1e� 07. Batch sizes
remain consistent across models using the same backbone encoder within each dataset but
differ between the two encoder types. Specifically, we set the batch size to 32 for ResNet and
adjust it to 8 for Conformer models to accommodate our computational resources. Model
validation occurs once at the end of each epoch. Training continues for a maximum of 1.5k

epochs, with early stopping implemented at 300 epochs. Despite the large number of epochs
allowed, we observed that nearly all runs converged before reaching 350 epochs. We employ
a learning rate scheduler [6] based on cosine annealing with warm restarts, where T0 = 4
and Tmult = 2, supplemented by a constant warming-up stage of 3 epochs. Finally, while the
use of gradient clipping [7] could potentially aid in preventing exploding gradients during
balancing, we opt not to utilize it in our models to ensure a fair comparison with previous
methods, except for AGM [5], where we strictly follow their implementation.

B.3 Dataset Splits

It is important to note that some of the previous methods introduced in the paper [5, 8, 10, 1],
based on the official code they shared, seem to have used the test set as the validation set on
CREMA-D, tuning model parameters directly on the test set. Additionally, the same actors
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were included in different sets, leading to further overfitting. Therefore, the observed per-
formance difference in our results compared to the initially reported results of these papers
is attributed to the fact that we validate the models with a separate validation set, comprising
around 10% of the total data, and we report results on the test set using 3-fold cross-validation
with the splits provided by Goncalves et al. [2].

C Coefficients Analysis
Several methods, including MLB, estimate coefficients for each modality that are exploited
to balance the multimodal learning. In Figure 7, we compare the values of the ki coefficients
for the different methods to illustrate the effect caused by each one of them. This visual-
ization demonstrates that MLB is the only one that upon convergence its coefficients are
equalizing and approach value 1 phasing out the balancing when it’s no longer necessary.

Figure 7: Comparison of balancing coefficients evolution of coefficients that amplify the
contribution of each unimodal encoder’s learning, smoothed over a 1k-point kernel. It il-
lustrates that while all methods provide some balancing, only Multi-Loss Balanced (MLB)
achieves self-muting when modalities have converged.

D Computational Complexity Analysis
The computational complexity of the proposed balancing method, MLB, is introducing neg-
ligible additional overhead compared to both training without any balancing and existing
multimodal learning approaches. To quantify this, we analyze the complexity associated
with the forward and backward passes of the multimodal encoders f1, f2, . . . , fM , with com-
putational costs denoted by Cfi

and Cbi
, respectively, alongside the common network fv with

complexity Cv.
Methods classified under gradient balancing techniques (Section 2.1) typically do not

introduce significant additional computation during network passes, rendering the balancing
computations negligible. Approaches in the second category (Section 2.2), which incorpo-
rate additional classification heads, do introduce some computational overhead. However,
these heads usually consist of linear layers or prototype networks, whose computational
costs are minimal compared to the overall network.
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To illustrate this point, consider a ResNet-18 encoder used in our experiments, which
requires approximately 1.8⇥N GFlops per forward pass for a batch size of N on the video
modality. In contrast, a linear classifier mapping from a 512-dimensional feature space to C

classes involves only 512⇥N⇥C flops, on the order of thousands of flops, rendering its cost
negligible in comparison to the rest of the network.

Notable exceptions include methods like PMR, which necessitate prototype estimation
at the end of each epoch, and the approach by Wang et al. [9], which computes balancing
coefficients on a separate validation set each epoch, introducing additional overhead. The
AGM method represents the most computationally expensive approach, as it requires 2M �1
forward passes, resulting in a training complexity of O((2M �1)⇥ (Cfi

)+Cbi
).

In contrast, MLB adds only the computational cost of the linear classifiers, the estima-
tion of additional losses, and the computation of balancing coefficients. These operations
require only thousands of flops, and thus are negligible relative to the overall model size.
Consequently, in practical terms, these computations do not result in any noticeable increase
in training time. Similarly, the memory overhead introduced by MLB remains minimal,
comparable to the most efficient methods reviewed.

E Tabular Presentation of Results
The results from Figure 3 are also provided in table format to facilitate direct access and
use by future research. Table 3 presents the accuracy of each balancing method across vari-
ous datasets and backbone encoders using Late-Linear fusion. Additionally, Table 4 details
the findings from Figure 5, illustrating the performance of different fusion methods on the
CREMA-D dataset.

Table 3: Accuracy presented in table format for each dataset (CREMA-D, AVE, and
UCF101) and backbone encoder (ResNet and Conformer where applicable), balancing
method (MMCosine, MSLR, OGM, PMR, AGM, MLB) using the Late-Linear fusion
method.

Method CREMA-D AVE UCF
ResNet Conformer ResNet ResNet

Video 55.4±2.3 69.4±2.8 62.6±1.0 30.3±1.5

Audio 60.6±3.0 76.8±2.0 45.7±1.6 38.3±0.8

Joint Training 62.6±1.4 75.1±1.7 66.7±1.5 47.7±1.5

MMCosine 58.8±1.6 73.5±2.1 66.7±0.9 46.9±3.6

MSLR 56.5±2.2 77.1±2.4 66.8±1.7 47.9±3.8

OGM 65.6±3.8 82.4±1.0 67.9±0.5 51.8±1.9

PMR 53.7±2.3 80.5±0.2 37.4±7.5 40.9±2.0

AGM 69.3±1.4 78.5±2.6 65.8±2.7 50.5±1.5

Multi-Loss 69.2±1.8 82.6±0.9 70.1±0.9 51.1±1.8

MLB 71.4±1.9 85.2±0.9 70.6±1.4 52.0±2.2
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Table 4: Accuracy presented in table format for the different fusion methods (MLP, FiLM,
Gated, TF) on CREMA-D dataset.

Method MLP FiLM Gated TF
ResNet Conformer ResNet Conformer ResNet Conformer ResNet Conformer

Joint Training 62.6±1.4 75.1±1.7 64.8±1.1 73.8±1.5 59.1±4.7 71.7±2.5 58.7±2.2 71.0±2.5

AGM 69.3±1.4 78.5±2.6 57.8±1.3 68.9±0.6 55.7±4.7 69.0±0.7 54.0±4.5 70.9±0.7

Multi-Loss 69.2±1.8 82.6±0.9 68.3±2.9 84.7±0.7 70.7±2.4 83.3±1.1 69.7±3.4 83.4±1.5

MLB 71.4±1.9 85.2±0.9 72.2±0.5 84.4±0.5 71.1±1.7 84.2±1.4 69.7±1.1 85.5±0.9
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