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Abstract

In recent years, there has been significant interest in Super-Resolution (SR), which
focuses on generating a high-resolution image from a low-resolution input. Deep learning-
based methods for super-resolution have been particularly popular and have shown im-
pressive results on various benchmarks. However, research indicates that these methods
may not perform as well on strongly compressed videos.

We developed a super-resolution benchmark to analyze SR’s capacity to upscale com-
pressed videos. Our dataset employed video codecs based on five widely-used compres-
sion standards: H.264, H.265, H.266, AV1, and AVS3. We assessed 19 popular SR
models using our benchmark and evaluated their ability to restore details and their sus-
ceptibility to compression artifacts. To get an accurate perceptual ranking of SR models,
we conducted a crowd-sourced side-by-side comparison of their outputs. We found that
some SR models, combined with compression, allow us to reduce the video bitrate with-
out significant loss of quality. We also compared a range of image and video quality
metrics with subjective scores to evaluate their accuracy on super-resolved compressed
videos. The benchmark is publicly available at videoprocessing.ai/benchmarks/super-
resolution-for-video-compression.html.

1 Introduction

Super-resolution (SR) is the task of increasing the resolution of images and videos, with
potential use ranging from detail restoration to quality enhancement [30, 39]. Some state-of-
the-art SR methods can restore details not clearly visible in the original (lower-resolution)
clip while working in real time [46]. Neighboring frames can help fill gaps when upscaling,
because small movements caused by camera tremor may provide enough information to
accurately increase the resolution, as demonstrated using a Google Pixel 3 camera [45]. This
ability of SR methods to restore video details and enhance video quality suggests their use
for improving video compression efficiency.

© 2024. The copyright of this document resides with its authors.
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Ground Truth LQ + Blcublc COMISR Real- ESRGAN

Figure 1: The comparison between 3 super-resolution models on compressed video se-
quence. COMISR eliminates the compression artifact because it is designed to work with
compressed video. On the other hand, VRT and Real-ESRGAN fail to remove this artifact.

Video traffic had accounted for more than 80% of all consumer Internet traffic by 2022 [3]
and that number is continuing to rise. Video compression that can lower bandwidth consump-
tion with minimal changes to the visual quality of the video is more critical than ever. There
have been some breakthroughs in video compression techniques, such as the recently de-
veloped MPEG compression standard MPEG-5 Part 2 Low Complexity Enhancement Video
Coding (LCEVC) [32]. The core idea of LCEVC is to use a conventional video codec at a
lower resolution and reconstruct a full-resolution video after decoding using enhancement
layers, leading to a significant decrease to bandwidth consumption.

Some recent codecs [23, 32] downscale a video before compression to cut the bitrate
and then upscale it to its original resolution using SR. Not all SR methods are suitable for
such downscale-based video compression, however, since few real-time SR models can gen-
erate acceptable-quality video. Our research shows that many SR models are unable to deal
with compression artifacts, as shown in Figure 1. Several existing benchmarks assess SR
methods’ ability to upscale compressed videos [49, 50], focusing on perceptual quality. We
improve upon this work by additionally considering video bitrate reduction.

To analyze which SR models work better with each compression standard, and to help
researchers find the best models for their codecs, we present our Super-Resolution for Video
Compression benchmark. To develop it we selected 19 popular SR models with different
architectures and assessed their compressed-video-restoration capabilities on our dataset,
which includes videos compressed using five codecs. Our effort employed objective metrics
and subjective evaluation to assess model quality. In addition, we analysed the correlation
between objective-quality metrics and subjective scores and calculated bitrate reduction that
can be achieved using each SR model during the compression.

Our main contributions are as follows:

1. We present a comprehensive SR benchmark to test the ability of 19 SR models to
upscale and restore videos compressed by five video codecs of different standards. We
evaluate the perceptual quality of the restored videos by conducting a crowd-sourced
subjective comparison with 5397 subjects. The benchmark is publicly available at
https://videoprocessing.ai/benchmarks/super-resolution-for-video-compression.html.

2. For every tested codec, we show which SR methods provide the most video bitrate
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reduction with the least quality loss. We find bitrate improvements of up to 65%
compared to using the base codec directly without SR.

3. We analyse six video quality metrics by their correlation with subjective scores on our
dataset. Based on their performance on individual video clips, we construct a simple
metric combination with improved results.

2 Related Work

In this section we provide an overview of existing SR methods, downscale-based video
codecs, and SR benchmarks.

2.1 Super-resolution methods

SR has received extensive attention since neural networks were first applied to this area,
resulting in many approaches.

Some SR algorithms rely on the temporal redundancy of video frames, allowing them to
restore a single high-resolution frame from a series of low-resolution ones. RBPN [17] inte-
grates spatial and temporal contexts from a video using a recurrent encoder-decoder module.
COMISR [27] upscales compressed videos; it employs bidirectional recurrent warping for
detail-preserving flow estimation, and it applies Laplacian enhancement. BasicVSR++ [15]
also adopts bidirectional propagation and spatial alignment. VRT [29] extracts video fea-
tures, upscales them, and then reconstructs HQ frames on the basis of these features using
a transformer network. RVRT [30] divides videos into multiple clips and uses previously
inferred clip features to estimate subsequent clip features. Additionally, a guided deformable
attention mechanism facilitates clip-to-clip alignment by predicting and aggregating multi-
ple relevant locations across different clips. Swin2SR [16] explores Swin Transformer V2
to improve SwinIR [28] compressed image super-resolution.

Generative adversarial networks (GANs) serve widely in deep learning and especially in
SR. ESRGAN [38] modifies the SRGAN architecture by adding residual-in-residual dense
block as well as improved adversarial loss and perceptual loss. Real-ESRGAN [39] en-
hances this approach by incorporating high-order degradation modeling to simulate real-
world degradation.

Lately, diffusion models have demonstrated impressive abilities to generate high-quality
results in various applications, and SR is no exception [33, 35, 41, 51]. Although diffusion-
based models have shown promising results, their drawback lies in the long inference pro-
cess. These models usually need multiple inference steps to produce a final output, which
hinders their practical use. Since they are unable to work in real time, they can’t be used in
the video decoding process. Therefore, in this study we are not considering diffusion models.

Given the limited number of SR models designed to work with compressed video, as-
sessing the performance of existing SR models on compressed video remains a critical task.

2.2 Downscale-based video codecs

Recently, some video codecs have been designed to downscale the video before compres-
sion to reduce the bitrate, and then upscale it to the original resolution on the decoder side.
Researchers are exploring many approaches to the upscaling module, ranging from simple
filters to extensive neural networks.
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The core idea of LCEVC [32] is to use a conventional video codec at a lower resolution
and reconstruct a full-resolution video by combining the decoded low-resolution video with
up to two enhancement sub-layers of residuals encoded with specialized low-complexity
coding tools. Some video codecs use the similar idea of implementing a super-resolution
network on the decoder side.

SRVC [23] encodes video into two bitstreams: a content stream and a model stream.
The content stream is produced by compressing downsampled low-resolution video with
the existing codec. The model stream encodes updates to the lightweight super-resolution
network, which is used to upscale video at the decoder side. The SR network is trained on
local segments of the video during the encoding process.

RR-DnCNN [19] addresses the problem of removing compression artifacts during the
downscale-based video coding. A straightforward approach of applying compression artifact
removal techniques before SR may result in detail loss. The paper proposes an end-to-end
restoration-reconstruction deep neural network using the degradation-aware technique.

ViSRTA [11] takes one step further and dynamically resamples the video not only spa-
tially, but also temporally during the encoding process. CNN-based architecture is used to
restore spatial resolution, and temporal upsampling is performed by frame repetition.

Lin et al. [31] proposes a CNN-based SR method for resample-based video coding on the
basis of the VTM codec. The authors designed separate networks for the luma and chroma
components which exploit the cross-component correlation by using the luma reconstruction
as the auxiliary information for the chroma network.

In our benchmark we take the idea of these codecs and try to apply it to different combi-
nations of widely-used codecs and SR methods. Downscale-based video codecs are usually
designed to transmit extra features of the original video alongside the low-resolution video
data, to aid in the upscaling process during decoding. In our benchmark, codecs and SR
methods work independently of each other, as our main goal is to evaluate how different
codec and SR methods fit together.

2.3 Super-resolution benchmarks

Many SR benchmarks and challenges have appeared recently. We focus our attention on the
ones prioritizing super-resolving compressed videos.

NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed
Video [50] presents evaluation results of quality enhancement of compressed videos (track
1), quality enhancement with 2x and 4x SR (track 2 and track 3 respectively). More than 600
participants have registered on all tracks in total. This challenge proposes LDV 2.0 dataset
with 335 videos and uses PSNR to evaluate participants.

The AIM 2022 Challenge on Super-Resolution of Compressed Image and Video [49]
presents two tracks: restoration of compressed images and compressed video. PSNR is
used to evaluate the results, and an extension of the previously mentioned LDV 2.0 dataset,
the LDV 3.0 dataset of 365 videos, is proposed. The second track of this task requires
participants to enhance and 4 x super-resolve HEVC compressed videos.

Our benchmark improves upon all the benchmarks presented above by a wider set of
video quality metrics and a variety of video codecs used to create distorted videos. We also
measure the bitrate reduction that SR models can provide when used during decompression.
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Figure 2: Distribution of Google Spatial and Tempo- preset for all of these codecs.

ral [40] information for videos we considered when cre-
ating our training dataset. Chosen videos appear in or-
ange, others in blue.

3 Benchmark Methodology

In this section, we describe the process of preparing the dataset for our benchmark, includ-
ing the methodology for selecting videos and preprocessing them. We also describe our
benchmark evaluation procedure and quality assessment.

3.1 Dataset preparation

To ensure the benchmark dataset is diverse enough to test various aspects of SR models, we
collected 1920 x 1080 videos from multiple sources:

* Vimeo: We gathered 50 sequences, including both real world and animation. We split
them into scenes using the Scene Change Detector plugin for VQMT [6].

* Camera: We shot several videos using a Canon EOS 7D. The settings aimed to mini-
mize blur and achieve the appropriate brightness — the ISO was 4000 and the aperture
400. Those settings provided clear ground-truth (GT) videos without blur or noise. We
shot 20 indoor videos and 30 outdoor videos. The indoor ones consist of synthetically
crafted scenes containing objects from everyday life. Each scene includes either mov-
ing objects or horizontal camera motion.

* Games: We recorded 20 clips from various 2D and 3D videogames.

We then obtained the following features for each video: Google Spatial and Temporal fea-
tures [40], frames per second (FPS), colorfulness [18], and maximal number of faces [5]
throughout the video. On the basis of these features we separated all videos into 20 clusters
using the K-Means clustering and selected one video from each cluster, as shown in Figure 2.
We refer to these selections as source videos. A preview of them appears in Figure 3.

To ensure that important fine details of the video are not completely lost after downscal-
ing and compression, we considered only videos with low space and time complexity, and no
major blur or noise. However, camera motion was required, as it can help video SR models
restore each frame more faithfully using neighboring frames.
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Figure 3: Example videos from the dataset. The dataset includes real-world sequences,
animation, and clips from games.
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Figure 4: The evaluation pipeline of our benchmark. The pipeline consists of three steps:
4x bicubic downscaling, compression, and 4x SR upscaling.

3.2 Benchmark pipeline

To select SR models for evaluation we used SR benchmarks that target two tasks: detail
restoration [4] and perceptual-quality improvement [10]. We excluded similar SR methods
based on their performance in these benchmarks.

We selected the following 19 methods: BasicVSR++ [15], COMISR [27], DBVSR [34],
EGVSR [14], LGFN [36], RBPN [17], Real-ESRGAN [39], RealSR [21], RSDN [20],
SOF-VSR-BD [37], SOF-VSR-BI [37], SwinIR [28], TMNet [47], VRT [29], RVRT [30],
IART[48], AnimeSR[46], Topaz Video Al [8], and bicubic interpolation. For all models we
used pretrained weights provided by authors. Given the scarcity of high-quality video SR
models, we decided to include image SR in our comparison.

We employed the standard video codecs for five widely-used compression standards, as
detailed in Table 1.

A brief visualization of the benchmark pipeline can be seen in Figure 4. First, we down-
scaled the source video to 480 x 270 resolution using FFmpeg with the flags=bicubic
option. We then compressed the low-resolution video using each of the five video codecs at
three target bitrates: 0.6, 1.0, and 2.0 Mbps. To get more accurate objective metric scores,
we also compressed videos at 0.1, 0.3, and 4.0 Mbps; however, these bitrates were not used
in the subjective evaluation. We chose these bitrates to be relatively low and to form a log-
arithmic curve. All codecs employed the medium preset during compression. Compressed
videos underwent transcoding to PNG sequences using FFmpeg, which were then passed as
inputs to an SR model. We applied image SR models to each frame individually; video SR
models received the path to the directory containing frames in the correct order. We tested
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Codec SR Subj. score } ERQAT LPIPS| PSNRT MDTVSFA |
x264  SwinlR [28] 3.695 0.698 0.206  24.895 0.564
x264  Real-ESRGAN [39] 3.092 0740 0267  26.983 0.501
x264  No SR 2.895 0.802 0306  27.125 0.547
X265  RVRT [30] 2.768 0.751 0281  27.021 0.506
X265  No SR 2.011 0.825 0221 27152 0.496
X265  COMISR [27] 1.831 0726 0285  26.967 0.506
vvenc  RVRT [30] 2.421 0.755 0295  27.425 0.501
vvenc  RBPN[17] 1.393 0752 0331  27.424 0.509
vvenc  No SR 0.944 0.835 0325 26467 0.500
uavs3e  No SR 2313 0.833 0270 27.174 0.505
uavs3e  RVRT [30] 1.682 0.761 0.291  27.040 0.503
uavs3e RBPN[17] 1.404 0.737 0.294  26.998 0.499
aomenc No SR 2.884 0.856  0.235  27.238 0.509
aomenc RVRT [30] 1.752 0.755 0.283  27.046 0.501
aomenc RBPN [17] 1.599 0730 0288  27.018 0.499

Table 2: Comparison of SR+codec pairs by subjective score and objective metrics for
“Restaurant” sequence.! The best result appears in bold.

a 4x upscale using our benchmark, but some SR models can only handle 2x. In this latter
case, we applied the model twice.

3.3 Quality estimation and subjective study

After super-resolving videos, we calculated the following objective-video-quality metrics on
the results: PSNR, MS-SSIM [43], VMAF [2], LPIPS [52], MDTVSFA [26] and ERQA [24].
We considered mainly full-reference metrics since we prioritized detail restoration over per-
ceptual quality. PSNR, MS-SSIM, and VMAF are the standard for compressed video qual-
ity evaluation [1], while LPIPS and ERQA are well-suited for super-resolved images [4].
The only no-reference metric we used is MDTVSFA, since it shows promising results when
evaluating compressed sequences [12]. To rank bitrate reduction, we calculated BSQ-rate
(bitrate-for-the-same-quality rate) [53] for each SR+codec pair relative to base codec perfor-
mance, where the base codec is the one we used to compress low-resolution video. A lower
BSQ-rate means more bitrate saving for the same quality.

To subjectively rank SR models, we conducted a crowd-sourced comparison through
Subjectify.us [7] service. Because detail loss and compression artifacts can be difficult to
notice in a full frame, the subjective evaluation employed crops. We needed pairs of crops to
fit on the assessors’ screens during the comparison, so we choose the resolution of the crops
to be 480 x 270. First, we generated saliency maps for each source video using a method
proposed in Kroner et al. [25]. Second, we averaged the saliency maps over all frames and
applied a Gaussian-blur kernel to the result in order to determine the video’s most salient
region. Third, we took distorted videos from the benchmark dataset and cut one 480 x 270
crop from each one, with the most salient area at the center of the crop. We evaluated
objective metrics on these crops to determine the correlation with the subjective scores.

We split our comparison into five sections by codec, using only the 10 best SR models as

"Full results are available on the benchmark page: https:/videoprocessing.ai/benchmarks/super-resolution-for-
video-compression.html
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SR codec x264  x265 aomenc vvenc uavs3e
No SR 1.000 1.000 1.000 1.000 1.000
RealSR[21] 0.196 0.502 1.513 4470 0.639
RVRTI[30] 0.271 0.724  2.806 1.665 1.750
SwinIR[28] 0.304 0346 1.505 2.502  0.640
Real-ESRGAN[39] | 0.335 0.640 2.411 4368 2.430
COMISR[27] 0.367 0.741 2799 0.701 1.603
VRT[29] 1.245 3.175 4157 4.185 3.663
BasicVSR++[15] 1.971 3390 4.199 4.185 4.250
RBPNJ[17] 1.979 3434 4226 4246 4470

Table 3: Average BSQ-rate [53] over subjective scores for each SR+codec pair. Lower BSQ-
rate is better. The best result appears in bold, the second best is underlined, and the third
best is in italics.

determined by the LPIPS value. Also, from each group of models with similar architectures,
like SOF-VSR-BI and SOF-VSR-BD, we selected only one model showing the best LPIPS
values.

During the experiment we showed each participant a pair of videos from two random
SR models and asked them to choose the video that looks more realistic and has fewer
compression artifacts (“indistinguishable” was also an option). Every video pair was viewed
by 15 participants. Each participant compared 25 pairs total.

Among the 25 questions were three verification ones, which had obvious predefined
answers. We excluded the results from any participant who failed to correctly answer one
or more of the verification questions. A total of 5662 people participated in our subjective
evaluation. We excluded the results from 265 of them because they failed to correctly answer
verification questions. Our calculation of the final subjective scores, using the Bradley-Terry
model [13], employed the remaining 120,316 responses.

4 Evaluation Results

In this section we present the results of our Super-Resolution for Video Compression bench-
mark. We discuss two different ways of comparing SR models in our benchmark: by evalu-
ating the quality of the results and by the bitrate reduction compared to the baseline codec.
We also analyze existing video quality metrics based on subjective evaluation.

4.1 Comparison by resulting video quality

Table 2 lists two best SR methods for each codec and “No SR” method, which applies the
video codec to the source video without downscaling or super-resolving. The best meth-
ods are chosen based on subjective scores on the “Restaurant” sequence compressed at an
approximate bitrate of 2 Mbps.

We can see that RBPN and RVRT appear to be the best methods for various advanced
codecs, mainly due to their video restoration capabilities. However, this is not the case for
x264 codec, where SwinIR and Real-ESRGAN come on top. Videos compressed with x264
at lower bitrates have many compression artifacts that make it hard to faithfully restore the
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Metric PLCC SRCC
MS-SSIM [42] 0.146  0.151
PSNR 0.187 0.285
VMAF [2] 0.344  0.448
LPIPS [52] 0.414 0.431
ERQA [24] 0.582 0.624
MDTVSFA [26] 0.634 0.644
ERQAXMDTVSFA | 0.770 0.801

only x264 RealSR + x264

bitrate: 3.8 Mbps bitrate: 1.2 Mbps
Table 4: Mean Pearson (PLCC) and
Figure 5: RealSR applied to video com- Spearman (SRCC) rank correlation coef-
pressed with x264 codec at 1.2 Mbps can ficients between metrics and subjective-
achieve the same visual quality as plain comparison results.

x264 codec at 3.8 Mbps.

original sequence. Thus, generative SR models such as Real-ESRGAN perform subjectively
better by generating realistic frames.

We also see that “No SR” exhibits the best results for the aomenc codec. This is likely be-
cause at low bitrates, AV1 codecs use a special mode that encodes frames at a low resolution
and applies an upsampler when decoding [22], making the additional use of SR redundant.

4.2 Comparison by bitrate reduction

The results of BSQ-rate calculation over subjective scores of each SR+codec pair appears
in Table 3. As the table shows, the best SR model differs by codec, proving that no single
SR model can handle distortion from all compression standards with equal effectiveness.
Although RealSR shows significantly less accurate results at high bitrates than other SR
models, it gives more visually pleasing results at low bitrates, which are subjectively compa-
rable to “No SR” results at high bitrates. We can see that “No SR” shows better results with
aomenc codec for the same reason we discussed in the previous subsection.

4.3 Video quality metrics assessment

Judging by the results in Section 4.1, some video quality metrics cannot reproduce the result
of the subjective evaluation obtained by crowd-sourcing. To analyze the objective metrics,
we calculated them on the crops that were used for the crowd-sourced evaluation. Pearson
(PLCC) and Spearman (SRCC) correlations of objective metrics with subjective scores are
presented in Table 4.

We analyzed the performance of the best metrics and noticed that ERQA shows a high
correlation on the video crops where MDTVSFA has a low correlation, and vice versa. We
believe that these two metrics take into account different features of the input video and can
complement each other. Since ERQA values range from 0 to 1, ERQA can be used as a
correction value for MDTVSFA. We attempted to combine the ERQA and MDTVSFA met-
rics by multiplying their results. We called this method ERQA xMDTVSFA. This approach
yielded a significant increase in correlation, as shown in Table 4.
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5 Conclusion

In this paper we proposed a new benchmark for super-resolution (SR) compression restora-
tion. Our work assessed 19 SR models applied to five video codecs using both objective-
quality metrics and subjective evaluation.

Our research shows that SR models, such as RealSR [21] and RVRT [30], can serve in
downscale-based codecs on the decoder side to enhance the subjectively perceived quality of
videos with low bitrates. RVRT can improve the quality of videos compressed by x265 and
vvenc codecs. RealSR can be used with x264 to reduce the video bitrate by more than 65%
without significant quality loss, as shown in Figure 5.

We find that existing video-quality metrics correlate poorly with subjective scores and are
therefore unsuitable for assessing the results of downscale-based video coding. MDTVSFA
and ERQA show better results, and their combination ERQA xMDTVSFA achieves Spear-
man’s rank correlation of 0.801 on our dataset.

Our benchmark is publicly available at videoprocessing.ai/benchmarks/super-resolution-
for-video-compression.html. We welcome SR researchers to contribute to it by submitting
SR models.
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