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Abstract

Synthetic data is increasingly crucial for training machine learning models, espe-
cially in fields where real data is scarce or sensitive. This is particularly true for facial
data, given growing privacy concerns and the need for rapid development in face recogni-
tion systems. However, synthetic facial data often derives from existing datasets, raising
privacy issues as synthesizers may inadvertently expose real training data. Our method
is motivated to address this important aspect. In this paper, we develop a model that pro-
vides a probabilistic score indicating how likely a synthetic face incorporates elements
from the training dataset. We focus on facial traits — eyes, nose, mouth and their fu-
sion —modeling training set membership as a probability. This approach allows us to
assess whether a synthesizer captures training set characteristics too closely. In addition
to generating whole synthetic faces, we explore the generative models’ latent space by
creating variations in specific facial traits, to more thoroughly assess whether the syn-
thesizer overly relies on facial features from the training set. This method provides a
deeper understanding of the synthesizer’s tendency to reproduce learned characteristics.
Our findings demonstrate that we can establish boundaries for determining full or par-
tial presence of a sample in the training set, depending on specific facial traits. We also
found that combining multiple facial traits in our model improves accuracy. The resulting
privacy score indicates how much a synthetic dataset contains identifiable features from
its training data, effectively measuring its level of compromise. In summary, our results
show that by analyzing individual facial features, we can assess how well a synthetic face
dataset preserves privacy, relative to the real dataset used to train its synthesizer.
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1 Introduction
The widespread use of face-based applications has raised significant privacy concerns re-
garding personal data usage. In response, there is a growing trend towards synthetic data
generation and profiling [1]. However, state-of-the-art synthesizers can often produce sam-
ples with minimal distortion of the training data [19, 41], potentially enabling identification
of individuals in the training set – a major privacy setback. Simply removing synthetic sam-
ples similar to real individuals in the training set is not a comprehensive solution [10]. While
this problem has been studied, there is a lack of methods for detecting the susceptibility of
image synthesizers in leaking private information. Existing methods primarily report cases
where the training data is almost exactly replicated. In this paper, we argue that replication of
identifiable facial features, such as individual facial traits (eyes, nose, mouth), should be con-
sidered as potential privacy risks when assessing synthetic facial data. Existing technologies
like face swapping allow for generating partially synthetic face images by copying specific
traits or regions from one face to another, further emphasizing the need for a trait-based or
region-based technique for matching faces. We address this issue in the context of both full
and partial face synthesis. In summary, we list our main contributions:

1. We present a fusion strategy to determine the probability of a face coming directly
from the training data.

2. We present a model to detect separately which face traits might be synthetic, either
partially or fully, thus providing a level of accountability.

3. We evaluate the contribution of each trait to the synthesis detection, and therefore its
descriptiveness in the task.

This paper is organized as follows: Section 2 reviews related work, Section 3 presents
our approach, Section 4 provides experimental results and finally Section 5 concludes this
paper.

2 Related Work
In recent years, we observe a trend in new face synthesis techniques in which enhancing
privacy is the primary technology component [26]. Several works address the problem of
privacy by - not releasing the training set, hiding/concealing training samples or match-
ing synthetic data with all samples from the training set. One approach to address privacy
preservation in synthetic data is Differential Privacy (DP) [8]. The key element of DP is that
it provides a mathematical guarantee that the inclusion or exclusion of a single individual’s
data does not “significantly” affect the outcome of any analysis, making it difficult to infer
whether a specific person’s data was part of the training set. For example, Zhang et al. [40]
design a GAN that incorporates DP by adding a small amount of noise during gradient prop-
agation. The authors propose a strategy to prevent poor image quality resulting from this
perturbation. Whereas, Qingrong et al. [5] propose a data augmentation strategy whereby
the model is trained in three stages: first with private data, then with public data and in the
final stage with public generated data. In the first stage, random noise is injected to the
model’s gradients to implement DP. Hanyu et al. [34] propose a DP model by targeting the
latent space in order to preserve privacy. The method uses an encoder to extract a feature
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Figure 1: Our strategy is to detect the facial landmarks (Section 3.1) we crop the face, eyes, nose and mouth and train a feature
extraction model for each trait (Section 3.2) . We model the extracted features using a probabilistic approach to determine privacy
score (Section 3.3)

vector from an image, which then serves as input latent code for a generator that reconstructs
the image. The method produces significantly better visual results than common strategies
(e.g. blur, mosaics, pixel manipulation). The main challenge of DP methods is to achieve
high image quality compared to non-DP counterparts.

Another family of approaches to protect the training set leverages federated learning,
where the model learns without directly having access to the data [36]. However, even within
this framework, generated data might violate the privacy of samples in the training set [21]
and care must be taken to address the issue of malicious federated contributors. Recent
approaches provide techniques to mitigate individual malicious contributors attempting to
recover the original data by ensuring that aggregations are protected [29]. An alternative
set of approaches attempts to protect identities prior to training by using de-identification
techniques [3], which make it difficult to generate synthetic samples highly similar to the
training set [23]. Although these efforts show good progress [9], it is worth noting that the
synthetic data can have a significant number of facial artifacts [22, 38]. These models rely
on noise and distortion for de-identification and are not designed to measure the similarity
of synthetic samples with the training set.

As methods are created to generate data in a privacy preserving way, other works at-
tempt to challenge the integrity of the training dataset, primarily using re-identification tech-
niques [33]. These methods involve creating models to identify individuals across multiple
samples within the training set [17]. They require extensive data and numerous samples from
a target identity to verify membership [39]. Essentially, they address whether a query person
matches across different samples, which are assumed to be part of the training set [20]. While
useful for identifying individuals, these methods do not effectively determine the extent to
which face samples belong to the training set [35]. Additionally, it is generally understood
that only real samples, not synthetic ones, are used in re-identification tasks. Varkarakis et al.
[32] investigated whether synthetic faces are unique compared to a real reference set. They
found that parameter tuning greatly affects the similarity measure for synthetic faces. Their
study also examined identity uniqueness within the reference set. Our work shares a similar
motivation to [32], but differs in key aspects. We focus on the probability distribution of
facial traits rather than overall face similarity. Additionally, we do not consider identity in
our analysis, instead concentrating solely on facial characteristics.

3 Proposed Method
Our proposed strategy, as illustrated in Figure 1, begins with the detection and demarcation
of facial traits of interest using an off-the-shelf landmark detector, carefully preserving fa-
cial geometry. We then train feature extractors for both individual traits taken separately and
all the traits taken together. These extracted features are subsequently compared against the
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training dataset using a distance metric. To transform these computed distances into proba-
bilities, we apply a Bayesian Mixture Model (BMM), generating a Probability Distribution
Function (PDF). The mixture model’s posterior score serves as the key determining factor of
whether a query trait belongs to the training dataset. A low score indicates a private sample,
suggesting that no close match exists in the training dataset. This approach produces con-
sistently low scores for data not present in the training set, regardless of whether the query
sample is real or synthetic. The rationale being that there is a significant shift between the
real and synthetic PDFs with respect to the chosen distance metric. Consequently, the gap
between these PDFs is used to establish the privacy score.

3.1 Landmarks
To identify the location of each facial trait, we use the PFLD (Practical Facial Landmark
Detector) [4] (see Figure 1). To preserve facial geometry, we establish a set of proportional
metrics based on face and eye detection, which guide the cropping of each facial trait. We
crop the face using the maximum and minimum coordinates of detected landmarks.

For the eyes, we extend the cropped region 50% horizontally and 25% vertically from
the inter-eye distance. The nose region is defined by extending 90% above and 25% be-
low the nose, using the inter-eye distance as a reference. The mouth region extends 30%
vertically and 25% horizontally from the lip corners. These proportional cropping methods
ensure consistent trait extraction across different face sizes and orientations. We apply these
cropping techniques to generate a dataset of facial traits. Figure 2 illustrates examples of
these extracted facial traits.

3.2 Feature Extraction
Our feature extraction process for facial traits consists of two stages. In the first stage, we
train separate Vision Transformer (ViT)-32 models [7] for each facial trait using the labels
(distinct identities) from our training set. In the second stage, we use these trained models to
convert all images into feature vectors. We then calculate distances between these vectors,
which serve as inputs for training a probabilistic model.

It is worth noting that some architectures can be used directly without labels and produce
very descriptive features, e.g., autoencoders [16]. However, following a similar approach to
people re-identification, using identity directly can generate more descriptive features [37].
For example, such features may be more informative than reconstruction-based features, as
the target function can consider face variations, e.g., size, shape, color etc., from the labeling
process. We’re also influenced by recent work on general-purpose face recognition pipelines
that generate highly descriptive features [2, 6]. These methods involve training a feature
extractor and optimizing its output for a specific task. For instance, Carlini et al. [2] use
existing feature models (e.g. ResNet and ViT) to find the most similar identity generated
from text prompts. Similarly, Deng et al. [6] use a specialized loss function to distinguish
identities. Formally, our feature extraction model solves the following problem:

argmax
c

f (x,yc), (1)

where f is the model mapping the trait x to the label yc. The RGB image x ∈ Rnx×ny×3 has
spatial dimensions nx ×ny. The label yc ∈ [0,1c] is a one-hot encoded vector, where c is the
number of distinct identities (classes).
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We train the model from scratch, consistently cropping and scaling the facial trait inputs.
Once the model converges, following [15], we use the weights for feature extraction:

z =
L∥∥∥

l=1

σ

(
Wl,rxr

)
(2)

here, L represents the number of ViTs in the ensemble, with one ViT dedicated to each trait..
xr is the image trait patch r, Wl,r the image encoder from the l-th ViT in the ensemble and
σ the GeLU activation function. This process produces an M-dimensional feature vector,
z ∈ RM .

To determine similarity between image samples, we construct a symmetric distance ma-
trix D ∈ RN×N , where N is the number of samples, using the full set of features z ∈ RN×M .
We set the diagonal with large values to avoid using distances between identical samples.
The embeddings’ distance, using the p-norm, is calculated as:

Di, j =

{
10000 if i = j
(|zi − z j|)1/p if i ̸= j

(3a)

To prepare the input for our probabilistic model, we introduce a design matrix X̂ . This design
matrix represents, for each sample, the average of the top-k minimum distances to any other
sample in the dataset, excluding itself. We compute this for each facial trait t (face, eyes,
nose, and mouth) separately. For each trait t, we construct a design matrix X̂t as follows:

X̂t =
1
k

k

∑
j=1

D t
i, j (3b)

where X̂t represents the input feature for the probabilistic model, D t the distance matrix for
trait t and k is the number of smallest distances used to calculate the average.

3.3 Probabilistic Model
Our pipeline uses two distinct modules to model facial traits: one for individual traits and
another for their combination. The probabilistic model in each module is trained using the
embedding distances described earlier, first for each trait individually and then for their fu-
sion. We utilize a BMM for this training process, leveraging Bayesian inference on the
features extracted from facial traits. In this framework, we consider the observation matrix
X̂ = {x̂1, x̂2, . . . x̂N} as a collection of N independent and identically distributed (i.i.d) samples
drawn from an observable distribution. Each x̂i represents a sample vector corresponding to
a specific facial trait. We define our mixture model as follows:

p(X̂ |θ) =
M

∑
m=1

πm N (X̂ |µm,Σm) (4)

where p(X̂ |θ) is the probability of observing X̂ given the model parameters θ ; M is the total
number of components in the mixture model, πm is the mixing coefficient (or weight) for
the m-th component and N (X̂ |µm,Σm) represents a multivariate Gaussian distribution with
mean µm and covariance matrix Σm. The model parameters θ = {π,µ,Σ} consist of the set
of mixing coefficients π = π1,π2, ...,πM , the set of mean vectors µ = µ1,µ2, ...,µM and the
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Figure 2: CELEBA samples with extracted facial traits from left to right: Face, Eyes, Nose, Mouth.

set of covariance matrices Σ = Σ1,Σ2, ...,ΣM . We then select the number of components q,
that maximizes the posterior probability:

q = argmax
q

p(X̂ |πq,µq,Σq) (5)

Each component represents a multivariate Gaussian distribution used in our mixture
model. For each facial trait, we found that using just one or two components typically
produces satisfactory results. We use the model’s output scores to infer if a sample was in
the training set. Higher scores indicate a greater likelihood that the sample was part of the
training data. This aligns with our method’s goal of maximizing the posterior probability to
best represent the real data distribution. This is shown below:

p(x̂t |π,µ,σ)> γ. (6)

To determine if a query sample is private for trait t, we compare its privacy score x̂t to a
threshold γ . If x̂t > γ , we consider the sample private. To automatically determine γ we run
a linear greedy search over the validation set. We create a range of 50 evenly spaced values
for γ , spanning from the minimum to the maximum posterior in the set. Starting from the
lower bound, we gradually increase γ until we reach the maximum value. It’s worth noting
that both the minimum and the maximum posteriors give an accuracy of approximately 0.5.
Once we have the optimal value, it’s then used to evaluate the test set.

4 Experiments
Our experiments utilize 2 face image datasets: Flick Faces High Quality (FFHQ) 1 and
Large-scale CelebFaces Attributes (CELEBA) 2 [13, 25]. These datasets contain 70K and
30K real face images respectively, with multiple samples per identity. Figure 2 displays sam-
ples from CELEBA, showcasing both the original images and their corresponding cropped
facial traits. For generating synthetic faces, we use StyleGAN2 [14] and SGAN-XL [30]
models, each trained from scratch on the 2 datasets. To explore the latent space of these syn-
thesizers more thoroughly, we use a latent code optimization technique [27]. This method
allows us to augment the synthetic dataset by generating several variations for each synthetic
face by applying control inputs to specific regions of interest, namely the eyes, the nose and
the mouth. Figure 3 illustrates this process, showing two subjects and several samples pro-
duced through this process of controlled variation generation. By exploring the latent space
of the generated images more comprehensively, we enhance the robustness of our evaluation.

1
https://github.com/NVlabs/ffhq-dataset

2
https://github.com/tkarras/progressive_growing_of_gans
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Figure 3: DragGAN [27] introduces variations in synthetic faces, focusing on the eyes, nose and mouth. This helps to more
thoroughly assess if the latent space of the synthesizer has captured traits from the reference set.

4.1 Best Backbone Feature Selection

We’ve conducted ablation experiments to identify the best feature extraction model, as de-
tailed in section 3. To this end, we use the CELEBA dataset and evaluated the models on 3
criteria: the mAp score across all three individual traits and the whole face, the number of
parameters in the model and the processing times for both training and validation.

As Table 1 shows, the ViT-32b variant achieves competitive mAp scores while utilizing
significantly fewer parameters and requiring less processing time. This makes it an optimal
choice for our backbone model. Our experiments also revealed that the ViT-32b model con-
verges around 15 epochs, at which point the loss stabilizes. This makes it faster to converge
and more stable than the other feature extractors.

4.2 Training Separate Traits Models

We train separate models for each trait, maintaining the original face geometry. Instead of
using the original ViT’s input dimensions, we crop samples (see section 3.1), resize them
and train from scratch. This maintains trait-specific details while standardizing inputs.

Figure 2 shows a few samples used for training, each focusing on a single facial trait.
We use 80% of the data for training and reserve 20% for testing. To ensure data quality,
we exclude identities with fewer than 9 samples. This prevents scenarios where we have
samples for training but not for testing, which would limit the model’s learning.

Model RunTime (seconds) (↓) Parameters (↓) mAp (↑)
RS-101 [11] 2498 61M 0.2348
RS-34 [11] 899 26M 0.1936
DN-101 [12] 9975 16M 0.2105
VGG-19 [31] 6890 177M 0.1642
ViT-16b [7] 2379 92M 0.2153
ViT-16L 6152 312M 0.2195
ViT-14 30980 642M 0.2612
ViT-32b (chosen) 941 94M 0.2454
ViT-32L 3897 315M 0.1978

Table 1: Backbone feature extraction model performance, in terms of mAp scores across all four individual face traits.

The main purpose of our model is to learn a feature representation of facial traits that
allows us to determine whether a query sample contains elements from the training dataset,
either in whole or in part. We train a separate ViT model for each trait, with each model
learning to distinguish approximately 9,500 identities. The model is trained for 25 epochs
using a cross-entropy loss function and stochastic gradient descent optimizer. We employ
sample augmentation techniques and implement learning rate plateau detection across each
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Figure 4: Red/Blue dotted lines signify Synthetic / Real images. Top-k matches for synthetic faces across the eyes, nose and
mouth traits. Panel on the left shows the matched individual traits whereas panel on the right shows their corresponding whole faces.
To select the top matches, we use ℓ2-distances in embedding space.

of the seven iterations. To expedite training, we parallelized the process across four GTX-
4090 GPUs.

Table 2 presents the best performance in terms of mean Average precision (mAp) for
each of our trait models. For context, random classification would yield an accuracy of ap-
proximately 1

9500 ≈ 10−4. Our results show that identities are most easily classified using the
whole face. The individual traits, in descriptive order are: the eyes, the mouth and the nose.
This aligns with previous research [18] that identified the eyes as the most descriptive facial
feature, followed by the mouth. For a given synthetic face, we can now use the embeddings
(Eq. 2) from our trained models to retrieve top-k matches against the training set.

Figure 4 visualizes these matches for the eyes, nose and mouth models. It compares
synthetic features against the top-k matched features from the training set using ℓ2-distances
in embedding space. The matches for the different features are run on the same set of people.

Trait RunTime (seconds) Parameters Split Batch mAp (↑)
Face 975 94M 0.8 512 0.3941
Eyes 834 94M 0.8 4096 0.2278
Mouth 789 94M 0.8 2048 0.1674
Nose 845 94M 0.8 8192 0.1307

Table 2: Facial traits model performances on identity classification. Using the whole face gives the best performance followed
by the models that use the eyes, the mouth and the nose separately.

For the eyes, we note that the synthetic ones closely resemble their real counterparts. For
the nose, we find that the best matched noses do not come from the same subject as the best
matched eyes. This suggests that our individual facial trait analysis can detect similarities in
specific traits independently of the whole face. For the mouth, it is important to highlight
that the mouth pose, whether open or closed, has a significant impact on the matches. As
Figure 4 shows, smiling mouths are matched with other smiling mouths. The mouth exhibits
more variation in pose compared to noses and eyes, which may explain the mouth model’s
lower performance in identity classification. We hypothesize that the mouth requires more
samples with variations for effective modeling compared to the mostly static nose.
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Sy
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tic

Eyes -36.19 -31.94 -23.41 -27.58 -22.14 -35.23 -28.70 -17.94
Nose -18.15 -19.66 -15.29 -15.25 -19.96 -23.09 -16.71 -19.49

Mouth -23.54 -16.25 -21.26 -15.07 -27.29 -32.62 -17.46 -25.30
Face -15.50 -10.94 -15.11 -14.13 -17.97 -19.94 -21.19 -19.96

Fusion -31.00 -21.88 -30.22 -28.26 -35.94 -39.87 -42.37 -39.92

R
ea

l

Eyes -1.17 -3.10 -4.98 -1.27 -1.21 -3.95 -2.50 -11.74
Nose -2.41 -3.54 -4.78 -1.82 -1.69 -5.21 -3.69 -12.14

Mouth -2.22 -4.46 -5.21 -1.96 -1.34 -4.19 -3.22 -13.24
Face -0.69 -2.66 -3.87 -1.06 -0.39 -3.88 -2.47 -11.09

Fusion -4.24 -5.15 -7.22 -3.45 -3.16 -7.24 -4.96 -26.41

Figure 5: Posterior scores for synthetic (First row) and real (Second row) images from the individual and fused models. Larger
value implies higher likelihood of the trait being from the training set.

4.3 Probabilistic Models

Our final set of experiments focuses on inference models that produces probabilities by us-
ing both individual traits separately, as well as their fusion. We train separate probabilistic
models for each trait to generate individual scores, as well as a fusion model that combines
all traits. Figure 5 shows the posteriors produced by these models.

Table 3 presents the results for our models when tested against synthesizers trained on
CELEBA and FFHQ separately. The findings indicate that using the whole face is a reliable
method for determining whether a face belongs to the training set. However, the best scores
are achieved if we consider the other facial traits in conjunction with the whole face. Since
the posterior is the product of composed probabilities, we can infer that incorporating more
traits will consistently enhance our privacy inference model’s performance. Fig 5 shows the
scores produced by the probability models for a few samples.

Trait CELEBA FFHQ
SGAN-XL [30] StyleGAN2 [14] SGAN-XL [30] StyleGAN2 [14]

Face 0.9317 0.9417 0.8109 0.8636
Eyes 0.8422 0.9085 0.7374 0.7698
Mouth 0.8017 0.8201 0.6022 0.6574
Nose 0.7741 0.8674 0.7274 0.7485
Fusion 0.9585 0.9534 0.8210 0.8403

Table 3: Comparison of mAp scores for the probabilistic models, calculated on images from SGAN-XL and StyleGAN2 models
trained on either the CELEBA or FFHQ datasets. Fusion models generally perform the best, followed by face-only models. Highest
scores are in bold, second-highest underlined.

The fusion model produces lower scores for synthetic samples when compared with the
other models and higher scores for real samples. This is an important outcome for account-
ability. While the fusion model provides the best overall performance, the individual trait
models allow us to pinpoint which specific facial feature caused a query sample image to be
flagged for low privacy – a capability the fusion model lacks. The results also show that the
method has very competitive accuracy in detecting synthetic facial traits. We also compared
our probabilistic model against two prominent approaches: Carlini et al. [2] and ArcFace [6].
For Carlini et al.’s method, we used the CLIP [28] architecture, specifically it’s image-only
variant. Following the authors’ recommendations, we trained ResNet-50 and ViT-32 models
from scratch for each trait. This experimental configuration ensures a fair comparison against
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our backbone. We use the cosine similarity defined in [2] to evaluate the feature extractor.
It’s worth noting that all methods used the same greedy approach to determine the optimal
threshold. For the ArcFace [6] comparison, we utilized the weight pipeline defined in [24],
which uses CNN architectures with 32 and 64 filters, generating a 512-dimensional feature
embedding. We observed no notable differences in accuracy between these versions, though
they demanded higher computational resources. We adapted the radial loss function from
ArcFace [6], using the angular similarity distance metric to evaluate the feature extractors.
For both the compared methods [2, 6], we used the embedded space distance to determine
the privacy score at the trait level. Since our focus is not on identity determination, we sim-
ply threshold the ℓ2-distances in feature space, as suggested by Carlini et al. [2], for both the
methods. It’s important to note that neither CLIP nor ArcFace have fusion embedding ca-
pacities. Therefore, our comparison is limited to individual facial traits and doesn’t involve
the fused model.

Method Trait
Eyes Nose Mouth Face

CLIP/ViT-32 [2] 0.8112 0.7422 0.8141 0.9104
CLIP/RS-50 [2] 0.7969 0.7548 0.7922 0.8869
CNN/ArcFace/32 [6] 0.8317 0.7756 0.8121 0.9256
CNN/ArcFace/64 [6] 0.8396 0.7612 0.8265 0.9304
ViT-32/BMM (ours) 0.8422 0.7741 0.8017 0.9317

Table 4: Comparison of mAp compared models calculated on images generated from SGAN-XL models trained on CELEBA.
Bold marks the highest score and underline marks the second highest.

Table 4 shows that our method achieves the best performance for face and eyes traits. Our
approach has the unique ability to fuse information and analyze all facial traits simultane-
ously, while still achieving outstanding performance on individual traits. The other methods
can only analyze traits in isolation.

5 Conclusions

Our paper introduces a framework that assigns a score to synthetic faces, indicating their
similarity to samples from the dataset used to train the synthesizer. This assessment applies
to both whole faces and individual facial traits. Our concern stems from the potential for
privacy violations when a synthesizer replicates not just entire faces, but also distinctive
traits like eyes, nose and mouth. We’ve developed models for these individual traits as well
as a fusion model that combines analysis of the whole face with isolated individual traits. Our
work shows that the fusion model excels in detection accuracy and when used in conjunction
with the individual traits models, enhances accountability by allowing us to identify which
specific traits contribute to the overall score and to what degree. Our results show that
the privacy score’s accuracy varies across facial traits, with the eyes showing the highest
precision. This is in line with previous work in the field. We believe that our framework
can be a valuable tool in evaluating synthetic datasets. It offers a quantitative measure of
privacy concerning replicated traits, which can complement other privacy techniques such
as DP. Moreover, by comparing scores across multiple synthetic datasets produced by the
same synthesizer, we can gauge the level of privacy that can be expected from that particular
synthesizer relative to the training set.
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