
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045

AUTHOR(S): ON PPC IN THE DINO FAMILY OF SSL METHODS 1

Supplementary: On Partial Prototype
Collapse in the DINO Family of
Self-Supervised Methods

BMVC 2024 Submission # 949

A Appendix

A.1 Extended related work
Clustering-based self-supervised learning: Self-supervised learning based on the clus-
tering pretext task is a promising paradigm that has proven to be successful and grown
tremendously in recent years. Initial works [1, 5, 6] used a two-stage process of assigning
pseudo-labels by clustering the representations and then training the representations using
the pseudo-labels as targets. Caron et al. [5] proposed uniform pseudo-label sampling that
is equivalent to weighting the loss contribution of an input by the inverse of its assigned
cluster’s size. Caron et al. [7] used online assignment of pseudo-labels in every batch by
clustering the representations over a small window of batches. By adapting this to ViTs,
Caron et al. [8] proposed a self-distillation framework where a teacher network produced the
target latent classes. Govindarajan et al. [13] demonstrated that this objective corresponds to
learning a von Mises-Fisher mixture distribution. Li et al. [18] extended the DINO objective
to patch tokens while also leveraging efficient architectures like Swin [20]. iBOT [30] is a
recent state-of-the-art method that poses the masked image modeling (MIM) task of BeIT
[3] as a clustering task. Another branch of works have focused on improving the few-shot
learning performance of these methods [2, 24]. Recently, DINOv2 [22] built upon iBOT
by making several modifications. By pre-training on the large LVD142M dataset, DINOv2
demonstrated performance surpassing many state-of-the-art visual benchmarks at image and
pixel levels.

A.2 Sinkhorn-Knopp and probability centering
Let the batch of B logit scores be denoted as LLL ∈ RB×K with corresponding probability
distributions PPP. Then, the Sinkhorn-Knopp adjusted probability distributions P̃PP are obtained
by alternating between normalizing the rows and columns of the matrix exp(LLL), so that they
sum up to 1. Note that the exponent function is applied element-wise to the matrix. Let the
elements of the matrix be denoted as LLLb,k. Then, normalizing along the rows yields,

P̃PPb,k←
exp(LLLb,k)

∑b exp(LLLb,k)
=

1
B exp(LLLb,k)

1
B ∑b exp(LLLb,k)

=
1
B

exp(LLLb,k− log(
1
B ∑

b
exp(LLLb,k))).

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Asano, Rupprecht, and Vedaldi} 2020

Citation
Citation
{Caron, Bojanowski, Joulin, and Douze} 2018

Citation
Citation
{Caron, Bojanowski, Mairal, and Joulin} 2019

Citation
Citation
{Caron, Bojanowski, Joulin, and Douze} 2018

Citation
Citation
{Caron, Misra, Mairal, Goyal, Bojanowski, and Joulin} 2020

Citation
Citation
{Caron, Touvron, Misra, J{é}gou, Mairal, Bojanowski, and Joulin} 2021

Citation
Citation
{Govindarajan, Sid{é}n, Roll, and Lindsten} 2023

Citation
Citation
{Li, Yang, Zhang, Gao, Xiao, Dai, Yuan, and Gao} 2022{}

Citation
Citation
{Liu, Lin, Cao, Hu, Wei, Zhang, Lin, and Guo} 2021

Citation
Citation
{Zhou, Wei, Wang, Shen, Xie, Yuille, and Kong} 2022

Citation
Citation
{Bao, Dong, Piao, and Wei} 2022

Citation
Citation
{Assran, Caron, Misra, Bojanowski, Bordes, Vincent, Joulin, Rabbat, and Ballas} 2022

Citation
Citation
{Ruan, Singh, Morningstar, Alemi, Ioffe, Fischer, and Dillon} 2023

Citation
Citation
{Oquab, Darcet, Moutakanni, Vo, Szafraniec, Khalidov, Fernandez, Haziza, Massa, El-Nouby, etprotect unhbox voidb@x protect penalty @M  {}al.} 2023



046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091

2 AUTHOR(S): ON PPC IN THE DINO FAMILY OF SSL METHODS

Next, normalizing P̃PP along the columns we obtain,

P̃PPb,k←
exp(LLLb,k− log( 1

B ∑b exp(LLLb,k)))

∑
K
j=1 exp(LLLb, j− log( 1

B ∑b exp(LLLb, j)))
.

If we consider the initial logit scores LLLb to be already normalized over the components K
such that ∑k exp(LLLb,k) = 1, then the exponents within the inner sum can be replaced with
probabilities. Thus, we obtain the probability distributions after 1 iteration of Sinkhorn-
Knopp adjustment as,

P̃PP(sk1)
b,k ←

exp(LLLb,k− log( 1
B ∑b PPPb,k))

∑
K
j=1 exp(LLLb, j− log( 1

B ∑b PPPb, j))
.

On the other hand, the probability centered distributions proposed by Govindarajan et al.
[13] are obtained as follows, where the centering parameter ck is calculated as a moving
average estimate with momentum parameter m:

P̃PP(pc)
b,k =

exp(LLLb,k− ck)

∑
K
j=1 exp(LLLb, j− c j)

, ck← mck +(1−m) log

[
1
B

B

∑
b=1

PPPb,k

]
.

Comparing the above expressions for P̃PP(sk1)
b,k and P̃PP(pc)

b,k (Eq. (2) and Eq. (3) in section 3
of the main paper), we observe that probability centering is equivalent to one iteration of
Sinkhorn-Knopp with the key distinction that the logit adjustment is calculated as a moving
average instead of a batch estimate.

A.3 KoLeo prototypes implementation
Given a set of K prototypes WWW ∈ RK×D, to compute the KoLeo estimate of the differential
entropy of the prototypes hkl(WWW ), we require computing nearest neighbor distances for each
of the prototypes. This can be memory intensive when a large number of prototypes are used.
Note that this is not a problem in the case of DINOv2 [22], as the KoLeo objective is com-
puted between the B data representations in the batch (B is typically much smaller than K).
Instead, we resort to a stochastic estimate when calculating the loss objective in each batch.
For each batch, we randomly partition the prototypes into disjoint partitions containing 2048
prototypes each, WWW = {WWW 1, ...,WWW T},WWW t ∈ R2048×D. Then, we compute the KoLeo estimate
as follows: hkl(WWW ) = ∑

T
t=1 hkl(WWW t). This efficient batched implementation adds negligible

computational overhead, in terms of both memory and time (15 MB additional GPU memory
when K = 8192 and unchanged image throughput).

A.4 Experimental details
A.4.1 Hyperparameter settings

The complete hyperparameter configuration for full-scale iBOT-vMF pre-trainings on Ima-
geNet using ViT-Small/16 and ViT-Base/16 models are provided in Table A.4.1. For pre-
training on iNaturalist-2018, we use a similar hyperparameter configuration except that we
use pre-train both ViT-Small/16 and ViT-Base/16 models for 300 epochs. The complete
hyperparameter configurations for MSN and PMSN pre-trainings on the iNaturalist-2018
dataset using the ViT-Small/16 model are provided in Table A.4.1.

Citation
Citation
{Govindarajan, Sid{é}n, Roll, and Lindsten} 2023

Citation
Citation
{Oquab, Darcet, Moutakanni, Vo, Szafraniec, Khalidov, Fernandez, Haziza, Massa, El-Nouby, etprotect unhbox voidb@x protect penalty @M  {}al.} 2023



092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

AUTHOR(S): ON PPC IN THE DINO FAMILY OF SSL METHODS 3

Hyper-parameter ViT-Small/16 ViT-Base/16

training epochs 800 400
batch size 1024 512
learning rate 2e−3 1.5e−3
warmup epochs 10 10
freeze last layer epochs 1 3
min. learning rate 1e−6 2e−6
weight decay 0.04→ 0.4 0.04→ 0.4
stochastic depth 0.1 0.1
gradient clip 3.0 0.3
optimizer adamw adamw
shared head ✓ ✓
fp16 ✓ ✓

momentum 0.996→ 1.0 0.996→ 1.0
global crops 2 2
global crops scale [0.25,1.0] [0.32,1.0]
local crops 10 10
local crops scale [0.05,0.25] [0.05,0.32]

head mlp layers 3 3
head hidden dim. 2048 2048
head bottleneck dim. 256 256
norm last layer ✗ ✗
num. prototypes 8192 8192
vmf normalization ✓ ✓
centering probability probability
koleo reg. strength 0.1 0.1

teacher temp. 0.04→ 0.07 0.04→ 0.07
temp. warmup epochs 30 50
student temp. 0.1 0.1

pred. ratio [0.0,0.3] [0.0,0.3]
pred. ratio variance [0.0,0.2] [0.0,0.2]
pred. shape block block

Table A1: Hyperparameter settings for iBOT

A.4.2 MSN and PMSN discusion

When pre-training on the iNaturalist-2018 dataset using the ViT-Small/16 model, we run
hyperparameter sweeps to select suitable values for the KL penalty strength parameter λ .
We consider the values {1.0,5.0,15.0}. Based on the linear probing results shown in Ta-
ble A.4.2, we select λ = 1.0 for MSN and λ = 5.0 for PMSN. Using a higher λ with MSN
strongly encourages the MLCD to match a uniform prior distribution. When the pre-training
dataset is naturally long-tailed, strongly encouraging a uniform prior leads to worse perfor-
mance. However, we find a smaller penalty strength helps MSN to even outperform PMSN.
This indicates that using a weak uniform prior can still be a reasonable choice when pre-
training on long-tailed datasets.

A.4.3 Transfer linear probing

We perform our transfer linear classification experiments on the standard suite of datasets
used in self-supervised learning: Caltech101 [19], CIFAR10, CIFAR100 [17], DTD [10],
Flowers [21], Food [4], Pets [23] and SUN397 [28]. We follow the evaluation protocol from
Ericsson et al. [12] and Chen et al. [9] and train L2-regularized linear classifiers. We select
the regularization strength among a set of 45 values spaced linearly in the range [−6,5] in
log-space and report the standard evaluation metric for each dataset.

Citation
Citation
{Li, Andreeto, Ranzato, and Perona} 2022{}

Citation
Citation
{Krizhevsky} 2009

Citation
Citation
{Cimpoi, Maji, Kokkinos, Mohamed, and Vedaldi} 2014

Citation
Citation
{Nilsback and Zisserman} 2008

Citation
Citation
{Bossard, Guillaumin, and Vanprotect unhbox voidb@x protect penalty @M  {}Gool} 2014

Citation
Citation
{Parkhi, Vedaldi, Zisserman, and Jawahar} 2012

Citation
Citation
{Xiao, Hays, Ehinger, Oliva, and Torralba} 2010

Citation
Citation
{Ericsson, Gouk, and Hospedales} 2021

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020



138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

4 AUTHOR(S): ON PPC IN THE DINO FAMILY OF SSL METHODS

Hyper-parameter MSN PMSN

training epochs 300 300
batch size 1536 1536
learning rate 6e−3 6e−3
warmup epochs 15 15
min. learning rate 1e−6 2e−6
weight decay 0.04→ 0.4 0.04→ 0.4
stochastic depth 0.1 0.1
gradient clip 3.0 3.0
optimizer adamw adamw
fp16 ✗ ✗

momentum 0.996→ 1.0 0.996→ 1.0
random crops 1 1
local crops 10 10
patch drop rate 0.15 0.15

head mlp layers 3 3
head hidden dim. 2048 2048
head bottleneck dim. 256 256
norm last layer ✓ ✓
num. prototypes 8142 8142
kl penalty weight (λ ) 1.0 5.0

teacher temp. 0.025 0.025
sinkhorn teacher ✓ ✓
temp. warmup epochs 30 50
student temp. 0.1 0.1

Table A2: Hyperparameter settings for MSN / PMSN

Method K M Overall Head Middle Tail

ViT-Small/16
MSN (λ = 1) 8142 3363 43.8 51.4 43.9 41.8
MSN (λ = 5) 8142 3123 42.3 49.6 42.5 40.4
MSN (λ = 15) 8142 1562 40.9 49.5 40.6 39.1

PMSN (λ = 1) 8142 2919 41.4 48.9 41.3 39.7
PMSN (λ = 5) 8142 3005 41.8 50.2 41.9 39.7
PMSN (λ = 15) 8142 2927 41.0 49.1 41.4 38.7

Table A3: iNaturalist-2018 linear probing accuracy with full data

A.4.4 Sinkhorn-Knopp and mean entropy maximization hyperparameters

For Sinkhorn-Knopp, we firstly use the vMF normalized version of iBOT and ablate over
the number of iterations 1, 3, 5 and find that 3 iterations to work best. This choice for the
number of iterations is in agreement with DINOv2 [22]. For both SK (iter=3) and mean
entropy maximization and for each compute budget (2, 4 or 8 GPUs for 2 days) we ablate
over the following hyperparameters:

• vMF normalization: True / False [13]

• Teacher temperature:

– τ = 0.04→ 0.07 (default in Zhou et al. [30] and Govindarajan et al. [13])

– τ = 0.05→ 0.025 (default in Ruan et al. [24])

For SK(iter=3), we find smaller teacher temperatures to be beneficial as in Ruan et al.
[24] and using vMF normalization or not has marginal impact on the performance. For ME-
MAX, we find that not using vMF normalization and a smaller teacher temperature leads to
better performance.

Citation
Citation
{Oquab, Darcet, Moutakanni, Vo, Szafraniec, Khalidov, Fernandez, Haziza, Massa, El-Nouby, etprotect unhbox voidb@x protect penalty @M  {}al.} 2023

Citation
Citation
{Govindarajan, Sid{é}n, Roll, and Lindsten} 2023

Citation
Citation
{Zhou, Wei, Wang, Shen, Xie, Yuille, and Kong} 2022

Citation
Citation
{Govindarajan, Sid{é}n, Roll, and Lindsten} 2023

Citation
Citation
{Ruan, Singh, Morningstar, Alemi, Ioffe, Fischer, and Dillon} 2023

Citation
Citation
{Ruan, Singh, Morningstar, Alemi, Ioffe, Fischer, and Dillon} 2023



184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

AUTHOR(S): ON PPC IN THE DINO FAMILY OF SSL METHODS 5

A.4.5 Fine-tuning recipes

ImageNet fine-tuning: We fine-tune on the ImageNet dataset by following the fine-tuning
recipe used in BeIT [3] and iBOT [30], which is found to produce consistently good per-
formance in reasonably fewer epochs compared to other fine-tuning recipes. We fine-tune
ViT-Small and ViT-Base models for 200 and 100 epochs respectively and use a batch size
of 1024. We use a layer-wise learning rate decay of 0.75 for ViT-Small and 0.65 for ViT-
Base. We report the best performance achieved after considering 4 different learning rates:
{8e−4,9e−4,1e−3,2e−3}.

iNaturalist-2018 fine-tuning: We find the fine-tuning recipe of DeIT [25] using a smaller
learning rate and a larger number of epochs to work better for the iNaturalist-2018 dataset.
This is similar to the transfer fine-tuning setup of iBOT [30]. We use a fine-tune both ViT-
Small and ViT-Base models for 360 epochs using a batch size of 1024. We use learning rates
of 5e−5 and 7.5e−6 for ViT-Small and ViT-Base respectively.

A.5 Additional results

A.5.1 MLCD regularization

To study the MLCD regularization, we focus on iBOT, which is a strong recent baseline
among the DINO family of methods and also used as the foundation for DINOv2 [22]. We
pre-train the models on the ImageNet-1K dataset [11] by modifying the public codebase of
iBOT. We use the same hyperparameter settings as in iBOT for different ViT backbones (re-
fer A.4.1 for details) and use the vMF normalized variants [13], which are shown to produce
stable trainings and improved performance.

100 150 200 250 300 350
GPU-hrs

64

66

68

70

72

74

kN
N

 to
p-

1 
ac

cu
ra

cy

Probability centering
SK(iter=3)
ME-MAX

Figure A1: ImageNet top-1 kNN ac-
curacy with different MLCD regular-
izations. Probability centering per-
forms better than SK and ME-MAX
at different compute budgets.

Here, we run ablation experiments to select the
method to regularize MLCD. We pre-train ViT-S/16
backbone with different MLCD regularization tech-
niques - Sinkhorn-Knopp (SK), probability centering
(PC) and mean entropy maximization (ME-MAX).
For PC, we use the vMF normalized version of
iBOT. For SK and ME-MAX, we chose to use a
smaller teacher temperature based on a hyperparam-
eter search (refer A.4.1 for details). We also consider
three different compute budgets (2, 4 and 8 GPUs for
2 days), which allows us to evaluate the impact of
batch size on these techniques. With more GPUs, we
can accommodate a larger batch size. The number
of epochs is adjusted such that the total number of
iterations are the same for all the compute budgets.
We do this to avoid the expensive process of optimizing the learning rates for each compute
budget and regularization method. Overall, from Figure A1, we find that probability cen-
tering performs better than the other alternatives at different compute budgets. Interestingly,
PC achieves performance on par or better than the alternatives, even at half of the compute
budget (e.g. PC/4GPUs vs ME-MAX/8GPUs).

The methods discussed above have all been proposed in the literature as ways to regular-
ize the MLCD. We argue that the main difference between them is whether the regularization
is done over a single batch (SK, ME-MAX) or based on moving average statistics (PC). We

Citation
Citation
{Bao, Dong, Piao, and Wei} 2022

Citation
Citation
{Zhou, Wei, Wang, Shen, Xie, Yuille, and Kong} 2022

Citation
Citation
{Touvron, Cord, Douze, Massa, Sablayrolles, and J{é}gou} 2021

Citation
Citation
{Zhou, Wei, Wang, Shen, Xie, Yuille, and Kong} 2022

Citation
Citation
{Oquab, Darcet, Moutakanni, Vo, Szafraniec, Khalidov, Fernandez, Haziza, Massa, El-Nouby, etprotect unhbox voidb@x protect penalty @M  {}al.} 2023

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{Govindarajan, Sid{é}n, Roll, and Lindsten} 2023



230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

6 AUTHOR(S): ON PPC IN THE DINO FAMILY OF SSL METHODS

observe that PC performs significantly better than the alternatives at the lowest compute bud-
get, which uses a small batch size. As we increase the compute budget and thereby also the
batch size, the gap is reduced. This indicates that PC is more robust to the choice of batch
size. We conjecture that this is due to too noisy estimates of the MLCD when computed
over a batch, which is not surprising considering that we estimate probability vectors in a
high-dimensional space. Therefore, in all the experiments in the main paper, we use the
vMF normalized iBOT with MLCD regularized using probability centering.

A.5.2 Partial prototype collapse in more existing models

In addition to investigating partial prototype collapse in Table 1, we also investigate other
self-supervised clustering methods that use a prototypical formulation such as EsViT [18]
and SWaV [7]. We demonstrate in Table A4 that partial prototype collapse also occurs
in these methods. We observe that partial prototype collapse also occurs in methods using
Resnet50 [14], ViL [29] and CvT [27] backbones. Though we focus on ViT backbone models
in this work, note that partial prototype collapse is not only limited to ViT backbones.

Backbone Method
Initialized
prototypes

(K)

Unique
prototypes

(M)

ViT-S/16 DINO 65536 1078
ViT-B/16 DINO 65536 804
ViT-S/16 DINO-vMF 65536 1157
ViT-B/16 DINO-vMF 65536 939
ViT-S/16 iBOT 8192 3242
ViT-B/16 iBOT-vMF 8192 1170
ViT-L/16 iBOT 8192 969
ViT-L/16 iBOT∗∗ 8192 1037
Resnet50 SWaV 3000 1669
Resnet50 DINO 60000 984
Swin-Tiny/W=7 EsViT 65536 1157
Swin-Base/W=14 EsViT 65536 4088
ViL EsViT 65536 1741
CvT EsViT 65536 1178

Table A4: Number of unique prototypes in existing models with ε = 0.025 (default pre-
training: ImageNet-1K, ∗∗: ImageNet-22K)

A.5.3 Ablation experiment for KoLeo-prototype regularization strength

We conduct an ablation experiment to evaluate the impact of the regularization strength (λ )
of the KoLeo-proto regularization term. We consider a 100 epoch iBOT-vMF pre-training
using 8192 prototypes on the Imagenet dataset and evaluate λ = {0.02,0.1,0.5}. From Ta-
ble A5, we find that too small λ = 0.02 is unable to fully utilize all the initialized prototypes.
We observe improved performance and effective utilization of the prototypes using λ = 0.1
but do not observe further improvements from increasing λ further. The main goal of this
regularization is to effectively utilize the prototypes. We use the minimum regularization
strength λ = 0.1 which is sufficient to achieve this in the experiments in this paper.

A.5.4 Computational analysis

The prototype layer in the self-supervised clustering methods that use a prototypical for-
mulation noticeably contributes to the computational cost of training such methods. The

Citation
Citation
{Li, Yang, Zhang, Gao, Xiao, Dai, Yuan, and Gao} 2022{}

Citation
Citation
{Caron, Misra, Mairal, Goyal, Bojanowski, and Joulin} 2020

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Zhang, Dai, Yang, Xiao, Yuan, Zhang, and Gao} 2021

Citation
Citation
{Wu, Xiao, Codella, Liu, Dai, Yuan, and Zhang} 2021



276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

AUTHOR(S): ON PPC IN THE DINO FAMILY OF SSL METHODS 7

λ

Initialized
prototypes

(K)

Unique
prototypes

(M)
kNN top-1 accuracy

0.0 8192 1045 72.39
0.02 8192 4693 72.56
0.1 8192 8192 72.62
0.5 8192 8192 72.64

Table A5: Ablation experiment for KoLeo-proto regularization strength (λ )

Batch size (B) Number of prototypes (K) GPU memory (GB)

64 1024 12.9
64 2048 13.7
64 4096 15.3
64 8192 18.6
64 10240 20.2
100 1024 19.7
100 2048 21.0
100 4096 23.5
100 8192 28.6
100 10240 31.1

Table A6: Computational cost of training iBOT method with different number of prototypes

weights associated with K prototypes consists of a K×D matrix. Typically, the bottleneck
dimension D = 256. The DINO models use a large K = 65536 and the prototype layer alone
adds an additional 16M trainable parameters to the method. A batch of size B, results in
the computation of probability distributions of size B×K. For iBOT, which computes the
probability distributions for all tokens resulting even larger set of probability distributions
of size B×T ×K. The number of prototypes in iBOT is set to 8192 in the default config-
uration. Computing such large probability distributions involve heavy memory GPU usage
and longer training times. For the default configurations of iBOT with ViT-S/16 backbone,
we test the GPU memory use for different numbers of prototypes and batch sizes in the fp16
mode and report the results in Table A6. Consequently, effective utilization of prototypes
can help in reducing the GPU memory required for training such models. For instance, at
a batch size of 100, effectively utilizing only 1024 prototypes is significantly cheaper (19.7
GB GPU memory) than using only ∼1024 unique prototypes out of 8192 initialized proto-
types (28.6 GB GPU memory). Effective prototype utilization consumes ∼31% lower GPU
memory compared to the baseline.

A.5.5 ImageNet pre-training with a CNN backbone

In order to explore an additional method and backbone combination, we consider the DINO
method pre-training using a Resnet50 backbone. We base our pre-training settings on the
hyperparameter configuration in the publicly available DINO codebase 1. We use the vMF
normalized version, use probability centering, 8192 prototypes and train for 100 epochs. In
Table A7, we observe that the KoLeo-proto regularization mitigates the partial prototype
collapse and achieves improved performance compared to the baseline and KoLeo-data reg-
ularization.

1https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/args.txt



322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

8 AUTHOR(S): ON PPC IN THE DINO FAMILY OF SSL METHODS

Method Epochs M kNN Linear

DINO-vMF 100 684 59.1 69.6
DINO-vMF (kd) 100 1373 59.8 70.4
DINO-vMF (kp) 100 8192 60.1 70.8

Table A7: ImageNet classification with full data (kNN, linear) using Resnet50 backbone
model

Method Cal101 C10 C100 DTD Flwrs. Food Pets SUN Avg.

ViT-Base/16
DINO-vMF 94.5 97.1 86.3 74.8 95.7 82.5 94.6 68.7 86.8
iBOT-vMF 95.5 98.0 88.0 74.7 94.8 83.6 93.9 70.2 87.3
iBOT-vMF (kp) 94.6 96.5 84.1 74.3 95.6 83.6 94.0 69.7 86.6
MSN 92.8 96.9 85.3 73.7 92.8 80.0 93.9 66.8 85.3

ViT-Small/16
DINO-vMF 93.7 96.0 83.9 74.1 95.0 80.1 93.9 66.6 85.4
iBOT-vMF 94.1 96.7 84.6 72.8 94.3 80.3 94.1 67.3 85.5
iBOT-vMF (kp) 94.5 96.7 83.9 73.7 94.4 80.5 93.7 67.5 85.6
MSN 93.1 95.9 82.9 72.0 93.3 77.8 92.8 65.5 84.1
WE-SSL 94.6 93.8 81.4 74.9 93.9 79.1 92.8 66.5 84.6

Table A8: Transfer learning classification accuracies when pre-trained on Imagenet-1K and
transferred to other datasets

A.5.6 Detailed transfer learning results

We follow the transfer learning protocol explained in A.4.3 to evaluate the representations
learned by pre-training on Imagenet-1K and iNaturalist-2018 datasets. We report the trans-
fer learning performance in Table A8 and Table A9 for a suite of datasets on their available
validation/test splits. With Imagenet pre-training, we observe that effective utilization of
the prototypes using KoLeo-proto regularization produces on par or worse transfer learn-
ing performance (based on the overall average) compared to the baseline and KoLeo-data
regularization. On the other hand, with iNat-18 pre-training, we observe that effective uti-
lization of the prototypes produces better transfer learning performance (based on the overall
average) compared to the baseline and KoLeo-data regularization.

A.5.7 Representation robustness evaluation

We evaluate the impact of effective prototype utilization on representation robustness by
evaluating on standard robustness benchmarks such as Imagenet-A [16] and Imagenet-C
[15] datasets. The Imagenet-A dataset contains a set of adversarial images curated from the
web, that commonly fool classifiers trained on Imagenet-1K dataset in a supervised manner.
Imagenet-C contains images from Imagenet-1K with several types of corruptions and per-
turbations. We report the robustness metrics in Table A10. We observe small but consistent
improvement in the robustness to adversarial and corrupted images with effective utilization
of prototypes, when compared to the iBOT-vMF baseline.

A.6 Visual explanations

In this section, we present a qualitative comparison of a model trained with and without
KoLeo-proto regularization. We compare the iBOT-vMF baseline method based on the ViT-
S/16 backbone trained on the iNat18 dataset. We visualize the unique prototypes along with
their redundancy factors in Figure A2 using t-SNE plots [26]. This illustrates the partial

Citation
Citation
{Hendrycks, Zhao, Basart, Steinhardt, and Song} 2021

Citation
Citation
{Hendrycks and Dietterich} 2019

Citation
Citation
{Vanprotect unhbox voidb@x protect penalty @M  {}der Maaten and Hinton} 2008



368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

AUTHOR(S): ON PPC IN THE DINO FAMILY OF SSL METHODS 9

Method Cal101 C10 C100 DTD Flwrs. Food Pets SUN Avg.

ViT-Small/16
DINO-vMF 79.2 86.3 68.5 65.4 93.0 66.1 66.9 48.0 71.7
iBOT-vMF 80.3 87.0 69.2 66.3 93.6 66.4 64.2 47.4 71.8
iBOT-vMF (kd) 79.3 86.3 68.1 64.7 94.2 66.4 65.4 47.6 71.5
iBOT-vMF (kp) 80.1 86.7 69.9 66.8 93.2 66.6 65.5 47.4 72.0
MSN (λ = 1) 70.8 82.3 62.8 64.0 88.6 61.5 60.3 45.3 67.0
PMSN (λ = 5) 71.2 81.3 62.6 62.1 88.4 60.7 58.1 44.1 66.1

ViT-Base/16
iBOT-vMF (kd) 82.4 87.9 70.8 66.3 94.6 68.6 66.9 48.5 73.2
iBOT-vMF (kp) 82.0 88.7 72.1 66.3 94.7 68.7 68.1 48.7 73.7

Table A9: Transfer learning classification accuracies when pre-trained on iNat-2018 and
transferred to other datasets

Method Backbone Pre-training data INet-A ↑ INet-C ↓

DINOv2 ‡ ViT-S/14 LVD-142M 33.5 54.4
DINOv2 ‡ ViT-B/14 LVD-142M 55.1 42.7
iBOT ViT-L/16 INet-22K 41.5 43.9
DINO ViT-B/8 INet-1K 23.9 56.6

iBOT-vMF ViT-B/16 INet-1K 22.7 43.8
iBOT-vMF (kp) ViT-B/16 INet-1K 23.5(+0.8) 43.7(−0.1)

iBOT-vMF ViT-S/16 INet-1K 14.2 51.1
iBOT-vMF (kp) ViT-S/16 INet-1K 14.3(+0.1) 50.9(−0.2)

‡: Distilled from a larger ViT-g/14 model pre-trained using DINOv2

Table A10: Representation robustness evaluation on standard robustness benchmarks. We
report the accuracy (%) for Imagenet-A dataset and mean corruption error in % (lower is
better) for Imagenet-C dataset.

prototype collapse in the baseline and the impact of adding the KoLeo-proto regularization
on the prototypes. KoLeo-proto regularization encourages diverse prototypes by spreading
them out in the latent space, resulting in a higher number unique prototypes compared to
the baseline. We visualize the representations corresponding to images that are assigned to
a set of latent classes by the iBOT-vMF baseline in Figure A3. In Figure A4, we visualize
the representations corresponding to the exact same images based on the iBOT-vMF model
trained with KoLeo-proto regularization. We observe that the KoLeo-proto regularization
encourages more fine-grained clusters compared to the baseline. In Figure A7 and Figure A6,
we show a few example images belonging to the latent classes shown in Figure A5. Without
KoLeo-proto regularization, only one coarse latent class is learned containing images of
ducks. With KoLeo-proto regularization, this is further divided into three finer latent classes.
This demonstrates that the model learns more informative representations which enable it to
discriminate between these finer latent classes.



414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

10 AUTHOR(S): ON PPC IN THE DINO FAMILY OF SSL METHODS

Baseline

Redundancy
factor, rm

8
16
24
32
40
48

KoLeo-proto

Redundancy
factor, rm

1
2
3
4

Figure A2: t-SNE plot of the M unique prototypes learned by the baseline method and with
KoLeo-proto regularization, colored by their redundancy factors rm. There are fewer unique
prototypes in the baseline (M = 1806), noticeable from their sparse spread in the plot. The
baseline prototypes are impacted by partial prototype collapse, resulting in high redundancy
factors. With KoLeo-proto regularization, the model learns more unique prototypes (M =
7895) with significantly smaller redundancy factors compared to the baseline. With KoLeo-
proto regularization, the method learns diverse prototypes that are well spread over the latent
space.



460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

AUTHOR(S): ON PPC IN THE DINO FAMILY OF SSL METHODS 11

Figure A3: iBOT-vMF baseline

Figure A4: iBOT-vMF with KoLeo-proto

Figure A5: For the exact same set of images, the representations after the head (256 dimen-
sional) are visualized using TSNE plots. The points are colored based on the latent class
that they belong to and the corresponding prototypes are denoted using the + marker (the
prototype markers are slightly shifted to prevent them from blocking some smaller clusters).
The images belong to 7 latent classes in the iBOT-vMF baseline and the same images belong
to 18 latent classes when the KoLeo-proto regularization is used. Partial prototype collapse
in the baseline results in fewer unique prototypes and coarser clusters. KoLeo-proto regu-
larization encourages diverse prototypes which leads to a more fine-grained clustering of the
same data.



506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

12 AUTHOR(S): ON PPC IN THE DINO FAMILY OF SSL METHODS

Figure A6: Sample images from the latent classes shown in Figure A4 obtained from iBOT-
vMF with KoLeo-proto regularization. Same colors are used to indicate the latent classes.

Figure A7: Sample images from the latent classes shown in Figure A3 obtained from iBOT-
vMF baseline method. Same colors are used to indicate the latent classes.



552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597

AUTHOR(S): ON PPC IN THE DINO FAMILY OF SSL METHODS 13

References
[1] Yuki Markus Asano, Christian Rupprecht, and Andrea Vedaldi. Self-labelling via si-

multaneous clustering and representation learning. In ICLR, 2020.

[2] Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes,
Pascal Vincent, Armand Joulin, Mike Rabbat, and Nicolas Ballas. Masked siamese
networks for label-efficient learning. In ECCV, 2022.

[3] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT: BERT pre-training of
image transformers. In ICLR, 2022.

[4] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discrim-
inative components with random forests. In ECCV, 2014.

[5] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep cluster-
ing for unsupervised learning of visual features. In ECCV, 2018.

[6] Mathilde Caron, Piotr Bojanowski, Julien Mairal, and Armand Joulin. Unsupervised
pre-training of image features on non-curated data. In ICCV, 2019.

[7] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Ar-
mand Joulin. Unsupervised learning of visual features by contrasting cluster assign-
ments. In NeurIPS, 2020.

[8] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bo-
janowski, and Armand Joulin. Emerging properties in self-supervised vision trans-
formers. In ICCV, 2021.

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. In ICML, 2020.

[10] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea
Vedaldi. Describing textures in the wild. In CVPR, 2014.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In CVPR, 2009.

[12] Linus Ericsson, Henry Gouk, and Timothy M Hospedales. How well do self-supervised
models transfer? In CVPR, 2021.

[13] Hariprasath Govindarajan, Per Sidén, Jacob Roll, and Fredrik Lindsten. DINO as a von
mises-fisher mixture model. In ICLR, 2023.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In CVPR, 2016.

[15] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to
common corruptions and perturbations. Proceedings of the International Conference
on Learning Representations, 2019.

[16] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural
adversarial examples. CVPR, 2021.



598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

14 AUTHOR(S): ON PPC IN THE DINO FAMILY OF SSL METHODS

[17] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, 2009.

[18] Chunyuan Li, Jianwei Yang, Pengchuan Zhang, Mei Gao, Bin Xiao, Xiyang Dai,
Lu Yuan, and Jianfeng Gao. Efficient self-supervised vision transformers for repre-
sentation learning. In ICLR, 2022.

[19] Fei-Fei Li, Marco Andreeto, Marc’Aurelio Ranzato, and Pietro Perona. Caltech 101,
2022. URL https://data.caltech.edu/records/20086.

[20] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted win-
dows. In ICCV, 2021.

[21] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a
large number of classes. In 2008 Sixth Indian Conference on Computer Vision, Graph-
ics & Image Processing, 2008.

[22] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil
Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby,
et al. Dinov2: Learning robust visual features without supervision. arXiv preprint
arXiv:2304.07193, 2023.

[23] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs.
In CVPR, 2012.

[24] Yangjun Ruan, Saurabh Singh, Warren Richard Morningstar, Alexander A Alemi,
Sergey Ioffe, Ian Fischer, and Joshua V Dillon. Weighted ensemble self-supervised
learning. In ICLR, 2023.

[25] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablay-
rolles, and Hervé Jégou. Training data-efficient image transformers & distillation
through attention. In ICML, 2021.

[26] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. JMLR,
2008.

[27] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei
Zhang. Cvt: Introducing convolutions to vision transformers. In ICCV, 2021.

[28] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun
database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010.

[29] Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu Yuan, Lei Zhang, and Jian-
feng Gao. Multi-scale vision longformer: A new vision transformer for high-resolution
image encoding. In ICCV, 2021.

[30] Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao
Kong. Image BERT pre-training with online tokenizer. In ICLR, 2022.

https://data.caltech.edu/records/20086

