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Supplementary: On Partial Prototype
Collapse in the DINO Family of
Self-Supervised Methods
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A Appendix

A.1 Extended related work
Clustering-based self-supervised learning: Self-supervised learning based on the clus-
tering pretext task is a promising paradigm that has proven to be successful and grown
tremendously in recent years. Initial works [1, 5, 6] used a two-stage process of assigning
pseudo-labels by clustering the representations and then training the representations using
the pseudo-labels as targets. Caron et al. [5] proposed uniform pseudo-label sampling that
is equivalent to weighting the loss contribution of an input by the inverse of its assigned
cluster’s size. Caron et al. [7] used online assignment of pseudo-labels in every batch by
clustering the representations over a small window of batches. By adapting this to ViTs,
Caron et al. [8] proposed a self-distillation framework where a teacher network produced the
target latent classes. Govindarajan et al. [13] demonstrated that this objective corresponds to
learning a von Mises-Fisher mixture distribution. Li et al. [18] extended the DINO objective
to patch tokens while also leveraging efficient architectures like Swin [20]. iBOT [30] is a
recent state-of-the-art method that poses the masked image modeling (MIM) task of BeIT
[3] as a clustering task. Another branch of works have focused on improving the few-shot
learning performance of these methods [2, 24]. Recently, DINOv2 [22] built upon iBOT
by making several modifications. By pre-training on the large LVD142M dataset, DINOv2
demonstrated performance surpassing many state-of-the-art visual benchmarks at image and
pixel levels.

A.2 Sinkhorn-Knopp and probability centering
Let the batch of B logit scores be denoted as LLL ∈ RB×K with corresponding probability
distributions PPP. Then, the Sinkhorn-Knopp adjusted probability distributions P̃PP are obtained
by alternating between normalizing the rows and columns of the matrix exp(LLL), so that they
sum up to 1. Note that the exponent function is applied element-wise to the matrix. Let the
elements of the matrix be denoted as LLLb,k. Then, normalizing along the rows yields,

P̃PPb,k←
exp(LLLb,k)

∑b exp(LLLb,k)
=

1
B exp(LLLb,k)

1
B ∑b exp(LLLb,k)

=
1
B

exp(LLLb,k− log(
1
B ∑

b
exp(LLLb,k))).
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Next, normalizing P̃PP along the columns we obtain,

P̃PPb,k←
exp(LLLb,k− log( 1

B ∑b exp(LLLb,k)))

∑
K
j=1 exp(LLLb, j− log( 1

B ∑b exp(LLLb, j)))
.

If we consider the initial logit scores LLLb to be already normalized over the components K
such that ∑k exp(LLLb,k) = 1, then the exponents within the inner sum can be replaced with
probabilities. Thus, we obtain the probability distributions after 1 iteration of Sinkhorn-
Knopp adjustment as,

P̃PP(sk1)
b,k ←

exp(LLLb,k− log( 1
B ∑b PPPb,k))

∑
K
j=1 exp(LLLb, j− log( 1

B ∑b PPPb, j))
.

On the other hand, the probability centered distributions proposed by Govindarajan et al.
[13] are obtained as follows, where the centering parameter ck is calculated as a moving
average estimate with momentum parameter m:

P̃PP(pc)
b,k =

exp(LLLb,k− ck)

∑
K
j=1 exp(LLLb, j− c j)

, ck← mck +(1−m) log

[
1
B

B

∑
b=1

PPPb,k

]
.

Comparing the above expressions for P̃PP(sk1)
b,k and P̃PP(pc)

b,k (Eq. (2) and Eq. (3) in section 3
of the main paper), we observe that probability centering is equivalent to one iteration of
Sinkhorn-Knopp with the key distinction that the logit adjustment is calculated as a moving
average instead of a batch estimate.

A.3 KoLeo prototypes implementation
Given a set of K prototypes WWW ∈ RK×D, to compute the KoLeo estimate of the differential
entropy of the prototypes hkl(WWW ), we require computing nearest neighbor distances for each
of the prototypes. This can be memory intensive when a large number of prototypes are used.
Note that this is not a problem in the case of DINOv2 [22], as the KoLeo objective is com-
puted between the B data representations in the batch (B is typically much smaller than K).
Instead, we resort to a stochastic estimate when calculating the loss objective in each batch.
For each batch, we randomly partition the prototypes into disjoint partitions containing 2048
prototypes each, WWW = {WWW 1, ...,WWW T},WWW t ∈ R2048×D. Then, we compute the KoLeo estimate
as follows: hkl(WWW ) = ∑

T
t=1 hkl(WWW t). This efficient batched implementation adds negligible

computational overhead, in terms of both memory and time (15 MB additional GPU memory
when K = 8192 and unchanged image throughput).

A.4 Experimental details
A.4.1 Hyperparameter settings

The complete hyperparameter configuration for full-scale iBOT-vMF pre-trainings on Ima-
geNet using ViT-Small/16 and ViT-Base/16 models are provided in Table A.4.1. For pre-
training on iNaturalist-2018, we use a similar hyperparameter configuration except that we
use pre-train both ViT-Small/16 and ViT-Base/16 models for 300 epochs. The complete
hyperparameter configurations for MSN and PMSN pre-trainings on the iNaturalist-2018
dataset using the ViT-Small/16 model are provided in Table A.4.1.
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Hyper-parameter ViT-Small/16 ViT-Base/16

training epochs 800 400
batch size 1024 512
learning rate 2e−3 1.5e−3
warmup epochs 10 10
freeze last layer epochs 1 3
min. learning rate 1e−6 2e−6
weight decay 0.04→ 0.4 0.04→ 0.4
stochastic depth 0.1 0.1
gradient clip 3.0 0.3
optimizer adamw adamw
shared head ✓ ✓
fp16 ✓ ✓

momentum 0.996→ 1.0 0.996→ 1.0
global crops 2 2
global crops scale [0.25,1.0] [0.32,1.0]
local crops 10 10
local crops scale [0.05,0.25] [0.05,0.32]

head mlp layers 3 3
head hidden dim. 2048 2048
head bottleneck dim. 256 256
norm last layer ✗ ✗
num. prototypes 8192 8192
vmf normalization ✓ ✓
centering probability probability
koleo reg. strength 0.1 0.1

teacher temp. 0.04→ 0.07 0.04→ 0.07
temp. warmup epochs 30 50
student temp. 0.1 0.1

pred. ratio [0.0,0.3] [0.0,0.3]
pred. ratio variance [0.0,0.2] [0.0,0.2]
pred. shape block block

Table A1: Hyperparameter settings for iBOT

A.4.2 MSN and PMSN discusion

When pre-training on the iNaturalist-2018 dataset using the ViT-Small/16 model, we run
hyperparameter sweeps to select suitable values for the KL penalty strength parameter λ .
We consider the values {1.0,5.0,15.0}. Based on the linear probing results shown in Ta-
ble A.4.2, we select λ = 1.0 for MSN and λ = 5.0 for PMSN. Using a higher λ with MSN
strongly encourages the MLCD to match a uniform prior distribution. When the pre-training
dataset is naturally long-tailed, strongly encouraging a uniform prior leads to worse perfor-
mance. However, we find a smaller penalty strength helps MSN to even outperform PMSN.
This indicates that using a weak uniform prior can still be a reasonable choice when pre-
training on long-tailed datasets.

A.4.3 Transfer linear probing

We perform our transfer linear classification experiments on the standard suite of datasets
used in self-supervised learning: Caltech101 [19], CIFAR10, CIFAR100 [17], DTD [10],
Flowers [21], Food [4], Pets [23] and SUN397 [28]. We follow the evaluation protocol from
Ericsson et al. [12] and Chen et al. [9] and train L2-regularized linear classifiers. We select
the regularization strength among a set of 45 values spaced linearly in the range [−6,5] in
log-space and report the standard evaluation metric for each dataset.
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Hyper-parameter MSN PMSN

training epochs 300 300
batch size 1536 1536
learning rate 6e−3 6e−3
warmup epochs 15 15
min. learning rate 1e−6 2e−6
weight decay 0.04→ 0.4 0.04→ 0.4
stochastic depth 0.1 0.1
gradient clip 3.0 3.0
optimizer adamw adamw
fp16 ✗ ✗

momentum 0.996→ 1.0 0.996→ 1.0
random crops 1 1
local crops 10 10
patch drop rate 0.15 0.15

head mlp layers 3 3
head hidden dim. 2048 2048
head bottleneck dim. 256 256
norm last layer ✓ ✓
num. prototypes 8142 8142
kl penalty weight (λ ) 1.0 5.0

teacher temp. 0.025 0.025
sinkhorn teacher ✓ ✓
temp. warmup epochs 30 50
student temp. 0.1 0.1

Table A2: Hyperparameter settings for MSN / PMSN

Method K M Overall Head Middle Tail

ViT-Small/16
MSN (λ = 1) 8142 3363 43.8 51.4 43.9 41.8
MSN (λ = 5) 8142 3123 42.3 49.6 42.5 40.4
MSN (λ = 15) 8142 1562 40.9 49.5 40.6 39.1

PMSN (λ = 1) 8142 2919 41.4 48.9 41.3 39.7
PMSN (λ = 5) 8142 3005 41.8 50.2 41.9 39.7
PMSN (λ = 15) 8142 2927 41.0 49.1 41.4 38.7

Table A3: iNaturalist-2018 linear probing accuracy with full data

A.4.4 Sinkhorn-Knopp and mean entropy maximization hyperparameters

For Sinkhorn-Knopp, we firstly use the vMF normalized version of iBOT and ablate over
the number of iterations 1, 3, 5 and find that 3 iterations to work best. This choice for the
number of iterations is in agreement with DINOv2 [22]. For both SK (iter=3) and mean
entropy maximization and for each compute budget (2, 4 or 8 GPUs for 2 days) we ablate
over the following hyperparameters:

• vMF normalization: True / False [13]

• Teacher temperature:

– τ = 0.04→ 0.07 (default in Zhou et al. [30] and Govindarajan et al. [13])

– τ = 0.05→ 0.025 (default in Ruan et al. [24])

For SK(iter=3), we find smaller teacher temperatures to be beneficial as in Ruan et al.
[24] and using vMF normalization or not has marginal impact on the performance. For ME-
MAX, we find that not using vMF normalization and a smaller teacher temperature leads to
better performance.
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A.4.5 Fine-tuning recipes

ImageNet fine-tuning: We fine-tune on the ImageNet dataset by following the fine-tuning
recipe used in BeIT [3] and iBOT [30], which is found to produce consistently good per-
formance in reasonably fewer epochs compared to other fine-tuning recipes. We fine-tune
ViT-Small and ViT-Base models for 200 and 100 epochs respectively and use a batch size
of 1024. We use a layer-wise learning rate decay of 0.75 for ViT-Small and 0.65 for ViT-
Base. We report the best performance achieved after considering 4 different learning rates:
{8e−4,9e−4,1e−3,2e−3}.

iNaturalist-2018 fine-tuning: We find the fine-tuning recipe of DeIT [25] using a smaller
learning rate and a larger number of epochs to work better for the iNaturalist-2018 dataset.
This is similar to the transfer fine-tuning setup of iBOT [30]. We use a fine-tune both ViT-
Small and ViT-Base models for 360 epochs using a batch size of 1024. We use learning rates
of 5e−5 and 7.5e−6 for ViT-Small and ViT-Base respectively.

A.5 Additional results

A.5.1 MLCD regularization

To study the MLCD regularization, we focus on iBOT, which is a strong recent baseline
among the DINO family of methods and also used as the foundation for DINOv2 [22]. We
pre-train the models on the ImageNet-1K dataset [11] by modifying the public codebase of
iBOT. We use the same hyperparameter settings as in iBOT for different ViT backbones (re-
fer A.4.1 for details) and use the vMF normalized variants [13], which are shown to produce
stable trainings and improved performance.

100 150 200 250 300 350
GPU-hrs

64

66

68

70

72

74

kN
N

 to
p-

1 
ac

cu
ra

cy

Probability centering
SK(iter=3)
ME-MAX

Figure A1: ImageNet top-1 kNN ac-
curacy with different MLCD regular-
izations. Probability centering per-
forms better than SK and ME-MAX
at different compute budgets.

Here, we run ablation experiments to select the
method to regularize MLCD. We pre-train ViT-S/16
backbone with different MLCD regularization tech-
niques - Sinkhorn-Knopp (SK), probability centering
(PC) and mean entropy maximization (ME-MAX).
For PC, we use the vMF normalized version of
iBOT. For SK and ME-MAX, we chose to use a
smaller teacher temperature based on a hyperparam-
eter search (refer A.4.1 for details). We also consider
three different compute budgets (2, 4 and 8 GPUs for
2 days), which allows us to evaluate the impact of
batch size on these techniques. With more GPUs, we
can accommodate a larger batch size. The number
of epochs is adjusted such that the total number of
iterations are the same for all the compute budgets.
We do this to avoid the expensive process of optimizing the learning rates for each compute
budget and regularization method. Overall, from Figure A1, we find that probability cen-
tering performs better than the other alternatives at different compute budgets. Interestingly,
PC achieves performance on par or better than the alternatives, even at half of the compute
budget (e.g. PC/4GPUs vs ME-MAX/8GPUs).

The methods discussed above have all been proposed in the literature as ways to regular-
ize the MLCD. We argue that the main difference between them is whether the regularization
is done over a single batch (SK, ME-MAX) or based on moving average statistics (PC). We
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observe that PC performs significantly better than the alternatives at the lowest compute bud-
get, which uses a small batch size. As we increase the compute budget and thereby also the
batch size, the gap is reduced. This indicates that PC is more robust to the choice of batch
size. We conjecture that this is due to too noisy estimates of the MLCD when computed
over a batch, which is not surprising considering that we estimate probability vectors in a
high-dimensional space. Therefore, in all the experiments in the main paper, we use the
vMF normalized iBOT with MLCD regularized using probability centering.

A.5.2 Partial prototype collapse in more existing models

In addition to investigating partial prototype collapse in Table 1, we also investigate other
self-supervised clustering methods that use a prototypical formulation such as EsViT [18]
and SWaV [7]. We demonstrate in Table A4 that partial prototype collapse also occurs
in these methods. We observe that partial prototype collapse also occurs in methods using
Resnet50 [14], ViL [29] and CvT [27] backbones. Though we focus on ViT backbone models
in this work, note that partial prototype collapse is not only limited to ViT backbones.

Backbone Method
Initialized
prototypes

(K)

Unique
prototypes

(M)

ViT-S/16 DINO 65536 1078
ViT-B/16 DINO 65536 804
ViT-S/16 DINO-vMF 65536 1157
ViT-B/16 DINO-vMF 65536 939
ViT-S/16 iBOT 8192 3242
ViT-B/16 iBOT-vMF 8192 1170
ViT-L/16 iBOT 8192 969
ViT-L/16 iBOT∗∗ 8192 1037
Resnet50 SWaV 3000 1669
Resnet50 DINO 60000 984
Swin-Tiny/W=7 EsViT 65536 1157
Swin-Base/W=14 EsViT 65536 4088
ViL EsViT 65536 1741
CvT EsViT 65536 1178

Table A4: Number of unique prototypes in existing models with ε = 0.025 (default pre-
training: ImageNet-1K, ∗∗: ImageNet-22K)

A.5.3 Ablation experiment for KoLeo-prototype regularization strength

We conduct an ablation experiment to evaluate the impact of the regularization strength (λ )
of the KoLeo-proto regularization term. We consider a 100 epoch iBOT-vMF pre-training
using 8192 prototypes on the Imagenet dataset and evaluate λ = {0.02,0.1,0.5}. From Ta-
ble A5, we find that too small λ = 0.02 is unable to fully utilize all the initialized prototypes.
We observe improved performance and effective utilization of the prototypes using λ = 0.1
but do not observe further improvements from increasing λ further. The main goal of this
regularization is to effectively utilize the prototypes. We use the minimum regularization
strength λ = 0.1 which is sufficient to achieve this in the experiments in this paper.

A.5.4 Computational analysis

The prototype layer in the self-supervised clustering methods that use a prototypical for-
mulation noticeably contributes to the computational cost of training such methods. The
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λ

Initialized
prototypes

(K)

Unique
prototypes

(M)
kNN top-1 accuracy

0.0 8192 1045 72.39
0.02 8192 4693 72.56
0.1 8192 8192 72.62
0.5 8192 8192 72.64

Table A5: Ablation experiment for KoLeo-proto regularization strength (λ )

Batch size (B) Number of prototypes (K) GPU memory (GB)

64 1024 12.9
64 2048 13.7
64 4096 15.3
64 8192 18.6
64 10240 20.2
100 1024 19.7
100 2048 21.0
100 4096 23.5
100 8192 28.6
100 10240 31.1

Table A6: Computational cost of training iBOT method with different number of prototypes

weights associated with K prototypes consists of a K×D matrix. Typically, the bottleneck
dimension D = 256. The DINO models use a large K = 65536 and the prototype layer alone
adds an additional 16M trainable parameters to the method. A batch of size B, results in
the computation of probability distributions of size B×K. For iBOT, which computes the
probability distributions for all tokens resulting even larger set of probability distributions
of size B×T ×K. The number of prototypes in iBOT is set to 8192 in the default config-
uration. Computing such large probability distributions involve heavy memory GPU usage
and longer training times. For the default configurations of iBOT with ViT-S/16 backbone,
we test the GPU memory use for different numbers of prototypes and batch sizes in the fp16
mode and report the results in Table A6. Consequently, effective utilization of prototypes
can help in reducing the GPU memory required for training such models. For instance, at
a batch size of 100, effectively utilizing only 1024 prototypes is significantly cheaper (19.7
GB GPU memory) than using only ∼1024 unique prototypes out of 8192 initialized proto-
types (28.6 GB GPU memory). Effective prototype utilization consumes ∼31% lower GPU
memory compared to the baseline.

A.5.5 ImageNet pre-training with a CNN backbone

In order to explore an additional method and backbone combination, we consider the DINO
method pre-training using a Resnet50 backbone. We base our pre-training settings on the
hyperparameter configuration in the publicly available DINO codebase 1. We use the vMF
normalized version, use probability centering, 8192 prototypes and train for 100 epochs. In
Table A7, we observe that the KoLeo-proto regularization mitigates the partial prototype
collapse and achieves improved performance compared to the baseline and KoLeo-data reg-
ularization.

1https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/args.txt
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Method Epochs M kNN Linear

DINO-vMF 100 684 59.1 69.6
DINO-vMF (kd) 100 1373 59.8 70.4
DINO-vMF (kp) 100 8192 60.1 70.8

Table A7: ImageNet classification with full data (kNN, linear) using Resnet50 backbone
model

Method Cal101 C10 C100 DTD Flwrs. Food Pets SUN Avg.

ViT-Base/16
DINO-vMF 94.5 97.1 86.3 74.8 95.7 82.5 94.6 68.7 86.8
iBOT-vMF 95.5 98.0 88.0 74.7 94.8 83.6 93.9 70.2 87.3
iBOT-vMF (kp) 94.6 96.5 84.1 74.3 95.6 83.6 94.0 69.7 86.6
MSN 92.8 96.9 85.3 73.7 92.8 80.0 93.9 66.8 85.3

ViT-Small/16
DINO-vMF 93.7 96.0 83.9 74.1 95.0 80.1 93.9 66.6 85.4
iBOT-vMF 94.1 96.7 84.6 72.8 94.3 80.3 94.1 67.3 85.5
iBOT-vMF (kp) 94.5 96.7 83.9 73.7 94.4 80.5 93.7 67.5 85.6
MSN 93.1 95.9 82.9 72.0 93.3 77.8 92.8 65.5 84.1
WE-SSL 94.6 93.8 81.4 74.9 93.9 79.1 92.8 66.5 84.6

Table A8: Transfer learning classification accuracies when pre-trained on Imagenet-1K and
transferred to other datasets

A.5.6 Detailed transfer learning results

We follow the transfer learning protocol explained in A.4.3 to evaluate the representations
learned by pre-training on Imagenet-1K and iNaturalist-2018 datasets. We report the trans-
fer learning performance in Table A8 and Table A9 for a suite of datasets on their available
validation/test splits. With Imagenet pre-training, we observe that effective utilization of
the prototypes using KoLeo-proto regularization produces on par or worse transfer learn-
ing performance (based on the overall average) compared to the baseline and KoLeo-data
regularization. On the other hand, with iNat-18 pre-training, we observe that effective uti-
lization of the prototypes produces better transfer learning performance (based on the overall
average) compared to the baseline and KoLeo-data regularization.

A.5.7 Representation robustness evaluation

We evaluate the impact of effective prototype utilization on representation robustness by
evaluating on standard robustness benchmarks such as Imagenet-A [16] and Imagenet-C
[15] datasets. The Imagenet-A dataset contains a set of adversarial images curated from the
web, that commonly fool classifiers trained on Imagenet-1K dataset in a supervised manner.
Imagenet-C contains images from Imagenet-1K with several types of corruptions and per-
turbations. We report the robustness metrics in Table A10. We observe small but consistent
improvement in the robustness to adversarial and corrupted images with effective utilization
of prototypes, when compared to the iBOT-vMF baseline.

A.6 Visual explanations

In this section, we present a qualitative comparison of a model trained with and without
KoLeo-proto regularization. We compare the iBOT-vMF baseline method based on the ViT-
S/16 backbone trained on the iNat18 dataset. We visualize the unique prototypes along with
their redundancy factors in Figure A2 using t-SNE plots [26]. This illustrates the partial
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Method Cal101 C10 C100 DTD Flwrs. Food Pets SUN Avg.

ViT-Small/16
DINO-vMF 79.2 86.3 68.5 65.4 93.0 66.1 66.9 48.0 71.7
iBOT-vMF 80.3 87.0 69.2 66.3 93.6 66.4 64.2 47.4 71.8
iBOT-vMF (kd) 79.3 86.3 68.1 64.7 94.2 66.4 65.4 47.6 71.5
iBOT-vMF (kp) 80.1 86.7 69.9 66.8 93.2 66.6 65.5 47.4 72.0
MSN (λ = 1) 70.8 82.3 62.8 64.0 88.6 61.5 60.3 45.3 67.0
PMSN (λ = 5) 71.2 81.3 62.6 62.1 88.4 60.7 58.1 44.1 66.1

ViT-Base/16
iBOT-vMF (kd) 82.4 87.9 70.8 66.3 94.6 68.6 66.9 48.5 73.2
iBOT-vMF (kp) 82.0 88.7 72.1 66.3 94.7 68.7 68.1 48.7 73.7

Table A9: Transfer learning classification accuracies when pre-trained on iNat-2018 and
transferred to other datasets

Method Backbone Pre-training data INet-A ↑ INet-C ↓

DINOv2 ‡ ViT-S/14 LVD-142M 33.5 54.4
DINOv2 ‡ ViT-B/14 LVD-142M 55.1 42.7
iBOT ViT-L/16 INet-22K 41.5 43.9
DINO ViT-B/8 INet-1K 23.9 56.6

iBOT-vMF ViT-B/16 INet-1K 22.7 43.8
iBOT-vMF (kp) ViT-B/16 INet-1K 23.5(+0.8) 43.7(−0.1)

iBOT-vMF ViT-S/16 INet-1K 14.2 51.1
iBOT-vMF (kp) ViT-S/16 INet-1K 14.3(+0.1) 50.9(−0.2)

‡: Distilled from a larger ViT-g/14 model pre-trained using DINOv2

Table A10: Representation robustness evaluation on standard robustness benchmarks. We
report the accuracy (%) for Imagenet-A dataset and mean corruption error in % (lower is
better) for Imagenet-C dataset.

prototype collapse in the baseline and the impact of adding the KoLeo-proto regularization
on the prototypes. KoLeo-proto regularization encourages diverse prototypes by spreading
them out in the latent space, resulting in a higher number unique prototypes compared to
the baseline. We visualize the representations corresponding to images that are assigned to
a set of latent classes by the iBOT-vMF baseline in Figure A3. In Figure A4, we visualize
the representations corresponding to the exact same images based on the iBOT-vMF model
trained with KoLeo-proto regularization. We observe that the KoLeo-proto regularization
encourages more fine-grained clusters compared to the baseline. In Figure A7 and Figure A6,
we show a few example images belonging to the latent classes shown in Figure A5. Without
KoLeo-proto regularization, only one coarse latent class is learned containing images of
ducks. With KoLeo-proto regularization, this is further divided into three finer latent classes.
This demonstrates that the model learns more informative representations which enable it to
discriminate between these finer latent classes.
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Baseline

Redundancy
factor, rm

8
16
24
32
40
48

KoLeo-proto

Redundancy
factor, rm

1
2
3
4

Figure A2: t-SNE plot of the M unique prototypes learned by the baseline method and with
KoLeo-proto regularization, colored by their redundancy factors rm. There are fewer unique
prototypes in the baseline (M = 1806), noticeable from their sparse spread in the plot. The
baseline prototypes are impacted by partial prototype collapse, resulting in high redundancy
factors. With KoLeo-proto regularization, the model learns more unique prototypes (M =
7895) with significantly smaller redundancy factors compared to the baseline. With KoLeo-
proto regularization, the method learns diverse prototypes that are well spread over the latent
space.
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Figure A3: iBOT-vMF baseline

Figure A4: iBOT-vMF with KoLeo-proto

Figure A5: For the exact same set of images, the representations after the head (256 dimen-
sional) are visualized using TSNE plots. The points are colored based on the latent class
that they belong to and the corresponding prototypes are denoted using the + marker (the
prototype markers are slightly shifted to prevent them from blocking some smaller clusters).
The images belong to 7 latent classes in the iBOT-vMF baseline and the same images belong
to 18 latent classes when the KoLeo-proto regularization is used. Partial prototype collapse
in the baseline results in fewer unique prototypes and coarser clusters. KoLeo-proto regu-
larization encourages diverse prototypes which leads to a more fine-grained clustering of the
same data.
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Figure A6: Sample images from the latent classes shown in Figure A4 obtained from iBOT-
vMF with KoLeo-proto regularization. Same colors are used to indicate the latent classes.

Figure A7: Sample images from the latent classes shown in Figure A3 obtained from iBOT-
vMF baseline method. Same colors are used to indicate the latent classes.
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