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Abstract

A prominent self-supervised learning paradigm is to model the representations as
clusters, or more generally as a mixture model. Learning to map the data samples to
compact representations and fitting the mixture model simultaneously leads to the repre-
sentation collapse problem. Regularizing the distribution of data points over the clusters
is the prevalent strategy to avoid this issue. While this is sufficient to prevent full rep-
resentation collapse, we show that a partial prototype collapse problem still exists in the
DINO family of methods, that leads to significant redundancies in the prototypes. Such
prototype redundancies serve as shortcuts for the method to achieve a marginal latent
class distribution that matches the prescribed prior. We show that by encouraging the
model to use diverse prototypes, the partial prototype collapse can be mitigated. Effec-
tive utilization of the prototypes enables the methods to learn more fine-grained clusters,
encouraging more informative representations. We demonstrate that this is especially
beneficial when pre-training on a long-tailed fine-grained dataset.

1 Introduction

Self-supervised learning (SSL) is an effective approach to learn representations from unla-
belled datasets. SSL methods have progressed rapidly in recent years and even surpassed the
performance achieved by supervised training on several downstream tasks [10, 13, 22, 25,
47]. Broadly, SSL methods can be categorized into contrastive and non-contrastive meth-
ods. In contrastive methods [11, 24, 34], all data samples repel all other data samples re-
sulting in an approximately uniform distribution of representations in the latent space [42].
Recent state-of-the-art SSL methods [12, 22, 25, 47] use Vision Transformers [17] and non-
contrastive training methods. The prototypical formulations used in the DINO family of
methods [10, 21, 31, 36, 47] enable data samples belonging to the same semantic cluster to
concentrate while only repelling other clusters. Such methods learn representations that are
effective at nearest neighbor tasks and few-shot learning.
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Figure 1: (a) The DINO family of methods result in a trivial full representation collapse
without any regularization. (b) Using MLCD regularization such as centering and sharpening
prevents full representation collapse but a partial prototype collapse still occurs. (c) KoLeo-
data proposed in Oquab et al. [36] spreads the data representations further apart but does not
address the partial prototype collapse. Note that the method (both baseline and with KoLeo-
data) uses the partial prototype collapse to achieve a MLCD closer to a uniform distribution
over all the prototypes. But the MLCD over only the unique prototypes is non-uniform. (d)
We propose KoLeo-proto regularization that explicitly encourages diverse prototypes and
prevents partial prototype collapse.

A common problem in this family of methods is the representation collapse. This orig-
inates from the simultaneous learning of the image representations as well as the clustering
parameters. All existing methods regularize the marginal latent class distribution in order to
prevent collapse. We show that these methods are still affected by a partial prototype col-
lapse (i.e. some groups of prototypes converge to the same vector), resulting in much fewer
unique prototypes compared to the initialized number (K). We consider a prototype to be
unique if it is at least € distance away from all other prototypes. We show an illustration of
this in Figure 1. Moreover, varying the hyperparameter K has limited effect on the number of
unique prototypes. The consequence is that the number of learned clusters cannot be reliably
controlled through the hyperparameter. Hence, it is thus far unclear what impact varying the
number of clusters will have on these methods.

Contributions: We formally define a partial prototype collapse and demonstrate its oc-
currence in the DINO family of methods, one of the most prominent family of SSL. methods
currently. We propose KoLeo-proto regularization to prevent such a collapse by explicitly
encouraging diverse prototypes by maximizing their differential entropy. Then, we study
the downstream impact of effective utilization of the prototypes. For datasets like Imagenet
with uniform class distribution, we find this to be beneficial for few-shot learning (FSL) and
marginally improves performance in full data scenarios. However, we observe a trade-off
that exists between FSL performance on the pre-training dataset and transfer performance,
that is consistent with other methods that report improved FSL performance. When pre-
training on a long-tailed dataset such as iNaturalist-2018, we observe a clear performance
gain when classifying the same dataset without affecting the transfer performance.

2 Background

The DINO-family of methods [2, 3, 10, 21, 31, 47] use the pretext task of assigning data to
K latent classes with multi-view class consistency. Consider an encoder model that produces
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a L2-normalized representation y = gg(x) such that ||y|| = 1, for a data point x using param-
eters 0. The probability of assigning a data point to a latent class k under the assumption of a
T Pr(y|z=k)
25'(:1 mPr(y|z=J)
prior m; = 1/K (which is true in most prior work [2]), Govindarajan et al. [21] showed that
the prototypical formulation in the DINO family corresponds to a von Mises-Fisher mixture

model, with parameters {t;, K} and a normalization constant C, (k)

latent class prior 7 is given by: P(y) = Pr(z =kly) = . With a uniform class

Cp(Kk) exp<Kk#kay>

. @))
25'(:1 Cp(K;j)exp(Kil;,y)

P(y) =

Here, u, is the mean vector (a.k.a prototype) with ||it,|| = 1 and & > 0 is the precision,
which is a measure of concentration around the mean vector. The pre-training objective
minimizes the KL-divergence between the latent class distributions of multiple views of
each image. This task has a trivial solution where all data points can be mapped to the same
representation. To prevent this collapse, it is essential to add some form of regularization to
the training objective. The regularization techniques used in such methods can be motivated
using the two requirements: (i) the model should learn distinct clusters and (ii) spread the
data over all these clusters. The collapse where one or a few components dominate violates
requirement-(ii). The collapse of individual probability distributions to uniform distributions
implies that all the prototypes are equidistant from all the data representations. In practice,
this leads to all prototypes collapsing to the same vector, which violates requirement-(i).

Connection between DINO and contrastive learning: Contrastive learning typically
uses the normalized temperature-scaled cross entropy loss based on cosine similarities. Then,
the probability distribution of a query representation y, being similar to a set of candidate
representations y, is defined as: Pi(y,) = %. SimCLR [11] uses candidate
representations from the same batch and MoCo [24] uses a memory bank instead to avoid
large batch sizes. Comparing this to Eq. (1), one can observe that the prototypes in DINO
can be viewed as exemplary representatives of the dataset, replacing the memory bank. Thus,
the DINO family of methods are a sparse variant of sample-contrastive methods [20].

3 Marginal latent class distribution

Before discussing a newly identified mode of collapse in the next section, we review and
provide a unified understanding of some of the regularization techniques proposed in the
literature to avoid collapse. We define the marginal latent class distribution (MLCD) as
the probability vector with elements, p, = E,[Pc(gg(x))]. To our knowledge, all existing
methods avoid representation collapse by regularizing the MLCD. Specifically, the MLCD
is encouraged to match a prescribed prior distribution. A uniform prior is the default choice
except for Assran et al. [3], who propose a power law distribution to better adapt the model
to long-tailed data.

Adjusting the target distributions such that the MLCD matches a prior distribution can
be posed as an entropy-regularized optimal transport problem, which can be solved using
the Sinkhorn-Knopp (SK) algorithm [15]. SK is typically run for a few iterations and adds a
small but noticeable computational overhead. Caron et al. [10] proposed centering, a simpler
and computationally efficient method to adjust the target distributions. A key distinction

between Sinkhorn-Knopp and centering is that they adjust the target distributions Pk(t) (y)
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based on batch and moving average estimates of the MLCD, respectively. On the other hand,
Assran et al. [2, 3] add a prior-matching penalty on the batch-estimates of MLCD obtained
from the online distributions Pk<°) (y). The penalty is defined as the KL-divergence between
the MLCD and the prior distribution. With a uniform prior, this is equivalent to maximizing
the entropy of MLCD, known as mean entropy maximization.

Is the centering adjustment ad-hoc? At first glance, the centering adjustment in DINO
might appear somewhat ad-hoc. However, we find that probability centering (PC) [21] is
closely connected to SK. Consider a batch of B logit scores over K latent classes L € RE*K
and corresponding probability distributions P. The SK adjusted (1 iteration) probability
distributions are obtained as follows (derivation in A.2 of supplementary):

POkl _ exp(Lyx —log(% Xy Py i)
P K exp(Ly,j—og(5 Xy Py )

On the other hand, the probability centered distributions are obtained as follows, where the
centering parameter cy, is calculated as a moving average estimate with momentum rate m:

@

= (nc L, — B
poo _ _Xpok—c) cx < mey+ (1—m)log [;ZPM]- 3)
b=1

bk
Y5 exp(Lyj—c))

Comparing Eq. (2) and Eq. (3), we observe that probability centering is equivalent to one
iteration of SK with the key distinction that the logit adjustment is calculated as a moving
average instead of a batch estimate. We compare them empirically in A.5.1 of supplementary.

4 Partial prototype collapse

Regularizing the MLCD enables the methods to meet the requirement of spreading data over
clusters. However, the MLCD depends on

both the data representations and the proto- Initialized  Unique
types. Given a set of frozen data representa-  Backbone  Method prototypes  prototypes

X . . K M

tions, a method can achieve MLCD matching &) @)
I : : VIT-8/16  DINO-YMF 65536 1157
a prior dlstnbuthn simply by manipulating the (.2 0 o TIOE cesae 939
prototypes (see Figure 1). This holds true forall ~ vitB/16  iBOT 8192 875
g : : VIT-B/I6  iBOT-YMF 8192 1170
existing n}ethods in the DINQ famlly, as they oo BT 419 069
all regularize the MLCD in a similar manner, as ViT-S/16 ~ MSN* 8142 3363
VIT-8/16 ~ PMSN* 8142 3005

discussed in the previous section. Sharpening
prevents the extreme case when all prototypes lable 1: Number of unique prototypes in
collapse to the same vector. However, except €Xisting models with & = 0.025 (default
for this limited guardrail, the existing regular- Pre-training: ImageNet-1K, +: iNat-2018)
ization techniques do not ensure that the meth-

ods learn unique prototypes. We define the term partial prototype collapse, where only a
significantly small proportion of the learned prototypes are unique.

Definition 4.1 (Partial prototype collapse). Consider the set W = {y; : k=1,...,K} of K
prototype vectors, i, such that ||, || = 1. A partial prototype collapse (of degree M and €
distance) is said to have occurred if there exists a set of M disjoint partitions of prototype
vectors V,, CW,m=1,...,M, and M representative prototype vectors v,, € V;,, such that for
allm=1,..M,1— v;uj < ¢, forall u; €V, The set of M unique prototypes is defined as
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Figure 2: We reassign data to only the
M unique representative prototypes and
compute the average proportion of data
assigned to prototypes having specific re-
dundancy factors. We find that the mod-
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U=A{vn }%:1. For each representative prototype, the redundancy factor r,, is defined as the
size of the corresponding set partition, 7, = |V,,|.

Investigating learned MLCD and prototypes: When training with MLCD regulariza-
tion, the DINO family of methods are prone to partial prototype collapse since it enables
the method to spread probability mass associated with each unique prototype across its €-set
of redundant prototypes. This acts as a shortcut to match the MLCD to the specified prior
distribution. Govindarajan et al. [21] make an empirical observation that the DINO models
used significantly smaller number of unique prototypes compared to the hyperparameter K.
However, this problem is neither studied further nor addressed by their proposed method.
Based on our definition of partial prototype collapse and using a cosine distance metric, we
investigate the prototypes learned by several self-supervised clustering methods that use a
prototypical formulation, from SwAV [9] to iBOT [47]. In Table 1 and Table A4 (in supple-
mentary), we show that such a collapse exists in all the considered methods. We observe that
prototypes with a higher redundancy factor tend to be assigned a larger proportion of the data
samples (see Figure 2). Hence, the partial prototype collapse serves as a shortcut to achieve
a MLCD closer to the specified uniform prior in these works. This shortcut is important
to be aware of, if the intention is to encourage the MLCD to match a specific non-uniform
distribution based on knowledge about the dataset domain. In addition, this means that the
hyperparameter K does not play its intended role of controlling the number of clusters.

4.1 Regularizing prototype distribution

The number of latent classes is an important choice in clustering as this controls the fine-
grainedness of the clusters. Firstly, this controls the difficulty of the self-supervision task.
Secondly, more informative representations are required to discriminate between more fine-
grained latent classes. With this motivation, we believe that the number of prototypes is
an important design choice in SSL. However, prior works have found inconsistent results
when ablating for this choice, likely because of the occurrence of partial prototype collapse.
Given that we want the prototypes to be as diverse as possible, a meaningful choice is to
encourage the prototypes W = {”'}kK:I to be uniformly distributed in the latent space. We
propose to achieve this by maximizing the differential entropy of the prototype vectors, ob-
tained using the Kozachenko-Leonenko estimator [35, 28, 39], hy (W) = —%Zszl log(dy),
where dj, = min; ||, — p,;||. We efficiently compute an estimate of Lxp = /(W) by ran-
domly partitioning the prototypes into batches and we show in A.3 of supplementary that
this adds negligible computational overhead. We verify in section 6.1 that this regularization
can mitigate the partial prototype collapse. Then, we focus on our main goal of studying the
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6 GOVINDARAJAN ET AL.: ON PPC IN THE DINO FAMILY OF SSL METHODS

downstream impact of effectively utilizing the initialized prototypes through various experi-
ments that evaluate the learned representations.

5 Related Work

Connection to DINOv2: Our proposed KoLeo-proto regularization is formulated similar
to Sablayrolles et al. [39]. Recently, DINOv2 [36] proposed the KoLeo-data regularization
which uses a similar formulation but applied to spread the data representations instead of
the prototypes. Hence, DINOv2 can be viewed as an interpolation between the uniformly
distributed representations of contrastive learning and clustered representations of the DINO
family. In contrast, KoLeo-proto preserves the clustered representations of DINO and en-
courages the method to learn diverse clusters. We illustrate this difference in Figure 1.

Regularizations in clustering-based SSL: We provide an extended discussion of clus-
tering based SSL methods in A.1 of supplementary and focus our discussion on the regular-
ization methods in this section. Asano et al. [1] and Caron et al. [9] used the Sinkhorn-Knopp
(SK) algorithm to regularize the MLCD [15]. This is shown by Assran et al. [3] to encourage
the MLCD to match a uniform prior. While SK requires multiple iterations for convergence,
a simpler and computationally cheaper approach known as centering is proposed in DINO
[10] and also used in EsViT [31] and iBOT [47]. Govindarajan et al. [21] proposed prob-
ability centering, that computed the centering parameter in the probability space instead of
the logit space. MSN [2] and PMSN [3] proposed to add an explicit prior matching penalty
to encourage the MLCD to align with prescribed prior distributions. Methods using the
prior-matching penalty and SK depend on batch estimates of the MLCD. On the other hand,
centering uses moving average estimates; we showed the connection of probability center-
ing to SK in section 3. While all the above methods regularize the MLCD, we show the
occurrence of a partial prototype collapse by investigating the prototypes learned by existing
pre-trained models. We propose a new KoLeo-proto regularization as a tool to prevent this
collapse and study the downstream impact of effectively utilizing the prototypes.

Pre-training on long-tail datasets: Most SSL methods are evaluated by pre-training
on ImageNet with a uniform class distribution and there is limited research on pre-training
SSL methods on long-tailed datasets. Caron et al. [8] investigated pre-training on a large
uncurated dataset. Recently, Kukleva et al. [30] explored the benefits of using temperature
schedules in the context of contrastive learning. Assran et al. [3] showed that pre-training on
a long-tailed dataset can benefit from choosing an appropriate long-tail prior. We investigate
the impact of effective prototype utilization when pre-training on a long-tailed dataset in
section 6.3. Yang et al. [45] overcame a minority collapse issue [19] in supervised long-
tailed classification with a fixed classification layer based on equiangular tight frames (ETF)
geometry. However, this comes with the implicit assumption that all class prototypes should
be equidistant which is a strong assumption for the latent classes learned in SSL.

6 Experiments

To study the MLCD and prototype regularizations, we focus on iBOT, which is a strong
recent baseline among the DINO family of methods and also used as the foundation for
DINOV2 [36]. We pre-train the models on the ImageNet-1K dataset [16] by modifying the
public codebase of iBOT. We use the same hyperparameter settings as in iBOT for different
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Figure 3: (left) The number of unique prototypes are similar for the baseline and KoLeo-data
regularization at different number of initialized prototypes. With KoLeo-proto, most of the
initialized prototypes remain unique. This means that the hyperparameter K can meaning-
fully control the number of learned clusters. (right) The number of initialized prototypes
has no impact on the baseline performance. With any form of KoLeo-regularization, more
prototypes lead to better performance and KoLeo-proto consistently performs best.

ViT backbones (see configuration details in A.4.1 and additional experiment with a CNN
backbone in A.5.5 of supplementary) and use the vMF normalized variants [21], which are
shown to produce stable trainings and improved performance. We found that probability
centering consistently performs better than the other alternatives (Sinkhorn-Knopp and Mean
Entropy Maximization) at different compute budgets. In all the following experiments, we
use the vMF normalized iBOT with MLCD regularized using probability centering.

6.1 Prototype regularization

We add our proposed KoLeo-proto regularization to the iBOT-vMF baseline, resulting in the
overall loss objective, £ = Ligor + A Lkp. These results are indicated by "(kp)". Similarly,
we indicate the KoLeo-data regularization used by Oquab et al. [36] as "(kd)". We use
A = 0.1 and observe that such a small A is sufficient to mitigate partial prototype collapse
(see ablation in A.5.3 of supplementary). In Figure 3, we compare the number of unique
prototypes M when we vary the initialized number of prototypes hyperparameter K. With the
baseline and KoLeo-data regularization, changing K has no impact on the number of unique
prototypes learned by the method, which is significantly smaller than the initialized number
of prototypes. This indicates the occurrence of partial prototype collapse. With KoLeo-proto
regularization, we observe that M ~ K and hence the hyperparameter K reliably controls the
number of learned clusters.

We observe that the baseline shows similar performance at different numbers of initial-
ized prototypes. On the other hand, with KoLeo-data, the performance is worse than the
baseline but continues to improve as the number of prototypes are increased. KoLeo-data
encourages the data to spread on the hypersphere. Hence, data is assigned to more diverse
prototypes compared to the baseline in the initial training phase. We conjecture that this
initial training dynamic benefits from having more prototypes, even if many of these proto-
types eventually collapse to the same vector. We limit the maximum number of prototypes
to 10240 due to computational limitations. Computing probability distributions for all the
tokens over more dimensions adds a large computational overhead. However, the KoLeo reg-
ularization itself only adds a negligible computational overhead (cf. A.3 in supplementary).
With KoLeo-proto, we observe around 0.1% improvement in accuracy when adding every
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Method kNN Linear  Finetuning 1% data 5 img/cls 2 img/cls 1 img/cls Avg. Transfer
ViT-Base/16

DINO-vMF 774 78.8 83.6 70.4 66.1 59.3 50.3 86.8
MSN 73.3 74.8 - 69.1 65.5 58.9 49.8 85.3
WE-SSL 77.2 78.9 - 71.5 68.3 62.4 53.7 -
iBOT-vMF 78.7 80.3 84.1 723 68.3 61.1 51.6 87.3
iBOT-vMF (kp)  78.8 80.5 84.1 72.7 69.1 62.0 52.5 86.6
ViT-Small/16

DINO-vMF 74.7 77.0 81.8 65.0 59.1 494 39.2 85.4
MSN 74.9 76.6 - 67.2 62.8 55.8 47.1 84.1
WE-SSL 75.2 714 - 68.7 65.1 58.9 50.1 84.6
iBOT-vMF 75.3 77.9 82.3 66.4 60.6 51.1 40.7 85.5
iBOT-vMF (kp)  75.5 779 82.3 67.0 61.1 51.7 41.6 85.6

Table 2: ImageNet classification with full data and few-shot scenarios and transfer learning.

2K additional prototypes. Overall, increasing the number of prototypes from 2K to 10K re-
sults in a 0.4% improvement. Further scaling of the number of prototypes can bring larger
performance gains which should be feasible with the efficient implementation in DINOv2.

6.2 Pre-training with ImageNet

We pre-train iBOT-vMF with efficient prototype utilization using KoLeo-proto regulariza-
tion for ViT-S/16 and ViT-B/16 backbones. To ensure fair comparison, we set the number
of prototypes to 8192, similar to iBOT. Hence, any changes in performance can be associ-
ated to only the effective prototype utilization. In Table 2, we report the top-1 accuracies
obtained using kNN and linear classification based on frozen backbone features, few-shot
accuracies averaged over 3 different splits and the accuracy obtained after fine-tuning. For
kNN, linear evaluation and finetuning, we follow the same protocol as in DINO and iBOT.
We perform few-shot evaluation similar to Assran et al. [2] and use the provided data splits.
We compare against the iBOT-vMF baseline, MSN and the best performing models from
WE-SSL [38]. We observe on par or marginal improvements for kNN, linear and fine-tuned
classification performance. The kNN performance improvement with respect to the baseline
at 8192 prototypes after full-scale pre-training mirrors the improvement (+0.2%) observed
after the small-scale ablation in Figure 3. This suggests that by using an even larger number
of prototypes one can improve the performance further with efficient prototype utilization
(cf. Figure 3), which we found to not be the case for the baseline in ablation experiments.

We find larger gains for few-shot learning (FSL) performance when adding KoLeo-proto
to the baseline, even at 8192 prototypes. Note that the prediction head architecture and
other hyperparameters are tuned in WE-SSL to achieve the best FSL performance with ViT-
S/16. This explains the significantly better results achieved by WE-SSL with ViT-S/16. With
ViT-B/16, iBOT-vMF (kp) outperforms WE-SSL at 1% and 5 img/cls settings. Note that
iBOT-vMF can be tuned similar to WE-SSL but we have not investigated this. Instead, we
focus on studying the impact of effective utilization of the prototypes on general downstream
performance and do not perform any task-specific tuning.

Transfer learning: We conduct linear classification experiments on the standard suite
of datasets trained using features extracted from a frozen pre-trained model. In Table 2, we
report the accuracies averaged over all datasets. The detailed results and evaluation setup
are provided in A.5.6 of supplementary. We observe on par or decreased transfer perfor-
mance with effective prototype utilization compared to the iBOT-vMF baseline. Interest-
ingly, we note that the transfer performance decreases also in other methods that improve
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few-shot learning performance such as MSN [2] and WE-SSL [38] compared to their DINO
baseline. This indicates that tuning for few-shot learning performance can potentially harm
transfer performance. We hypothesize that certain features that improve few-shot learning
performance on the pre-training dataset could be too specific to the pre-training data and do
not generalize to other datasets considered for transfer learning. Compared to these meth-
ods, our proposed regularization leads to better transfer performance. There appears to be
a trade-off between few-shot learning performance on the pre-training dataset and transfer
learning performance. Currently, it is unclear why such a trade-off exists and this requires
further investigation. Note that DINOv2 constructs the LVD142M pre-training dataset by
finding images similar to the suite of transfer datasets of interest, thus limiting the domain
gap between the pre-training and transfer datasets.

6.3 Pre-training with iNaturalist-2018

Most SSL methods are pre-trained on ImageNet which is well-curated and contains uni-
formly distributed data across its classes. It is of practical interest to pre-train SSL methods
on data collected in the wild, which is often long-tailed. We study pre-training the DINO
family of methods on long-tailed datasets, which has gained limited attention. We consider
the iNaturalist-2018 (iNat18) dataset | which is around 1/3rd of the size of ImageNet and
contains a long-tail distribution of data from 8142 classes. We pre-train all the models for
300 epochs using the default publicly available hyperparameters. For MSN and PMSN [2, 3],
we choose the regularization strength A based on a hyperparameter search (see A.4.2 in sup-
plementary for details). This analysis of regularization strength A indicated that weakly
encouraging a uniform prior in MSN produces better performance than using a long-tailed
prior as in PMSN. With this motivation, we retain the uniform prior assumption of the other
methods. In Table 3, we report the top-1 classification accuracy obtained using a linear and
a fine-tuned classifier. For linear classification, we follow a similar protocol as in the Ima-
geNet experiments. For fine-tuning, we use longer trainings with a smaller learning rate as in
DINO [10] (see details in A.4.5 of supplementary). We consider iBOT-vMF as our baseline
method, which significantly outperforms MSN and PMSN.

For ViT-S model, we find that both KoLeo regularization methods bring performance
benefits compared to the baseline. After evaluating the two forms of KoLeo regularization
on the ViT-B model as well, we conclude that KoLeo-proto regularization performs best.
With partial prototype collapse, mod-

els learn more Coarse_gralned la:tent Method M Linear  Fine-tuned  Avg. Transfer
classes where the number of unique e ——
prototypes are less than the num-  DINO-vMF 1380 497 68.5 71.7
: iBOT-vMF 1804  50.1 69.4 718
ber of classes (see M in Tablfa 3). {BOTAMF (kd) 1843 505 60.1 s
Then, the learned clusters are likely iBOT-vMF (kp) 7895  51.1 69.3 72.0
~ MSN(A=1) 3363 438 63.5 67.0
to have merged several of the fine-  puoyG5) 3005wz ea2 66.1
grained classes. This is mitigated :
” ViT-Base/16
when the prototypes are effectively iBOT.VMF (kd) 1634 504 733 732
utilized, leading to more diverse clus- ~_BOTYMFkp) 7573 514 740 52

ters and hence’ more informative rep_ Table 3: 1Nat-2018 (linear prObing and ﬁne'tuning)

resentations which are beneficial for and avg. transfer classification accuracies
long-tailed and fine-grained classifi-

IThis dataset was used for academic purposes only.
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cation. Hence, iNat-2018 pre-training benefits more from effectively utilizing prototypes
compared to the Imagenet experiments. We report average transfer learning accuracies in
Table 3 and detailed results in Table A9 of supplementary. In contrast to the ImageNet ex-
periments, effective utilization of prototypes in KoLeo-proto is also beneficial for transfer
performance.

7 Conclusion

We identified the occurrence of a previously unnoticed mode of collapse in the DINO family
of methods, termed as partial prototype collapse that results in significant redundancies in
the prototypes. As a consequence, the hyperparameter controlling the number of prototypes
did not perform its intended role of controlling the number of clusters learned by the model.
We proposed the KoLeo-proto regularization to encourage the model to learn diverse pro-
totypes. By adding our proposed regularization, we showed that the initialized prototypes
are effectively utilized. With effective prototype utilization, scaling the number of proto-
types is useful in learning better image representations of the underlying dataset. Using the
same moderate number of 8K prototypes as before, we showed that few-shot learning per-
formance can be improved and full data trainings can be marginally improved. As indicated
in our ablation experiments, it seems possible that further scaling the number of prototypes
can result in more significant improvements. However, we observed a worse transfer perfor-
mance and this trade-off is consistent with other methods that specifically improve few-shot
learning. On the other hand, we found that learning fine-grained clusters on a long-tailed
fine-grained dataset such as iNat-2018 is more beneficial, indicated by the larger perfor-
mance gains achieved using a similar number of prototypes.

We have shown that the hyperparameter for the number of prototypes can be reliably
controlled using our regularization. This has broad implications on applying methods from
the DINO family. One can better understand the impact of using different numbers of clusters
in the self-supervised pretext task for their own dataset and method of choice. This could
vary depending on the domain of the dataset and how fine-grained the semantic concepts are
in that domain. Computing probability distributions over a large number of latent classes
comes at a significant computational cost (see A.5.4 in supplementary). If indeed a small
number of clusters are sufficient for some dataset, effectively utilizing fewer prototypes can
help in reducing computational expenses.
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