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Abstract

Visual Simultaneous Localization and Mapping (vSLAM), a variant of SLAM sys-
tems, is a navigation technique in which autonomous robots leverage visual data from
camera to create a map of an unknown environment while concurrently determining their
own position on that map. Panoptic segmentation-based Visual SLAM offers a more
comprehensive, efficient, and robust solution for robot perception and scene understand-
ing compared to approaches that rely solely on semantic or geometric information. In
Visual SLAM, the panoptic segmentation simultaneously identifies and delineates all ob-
jects in an image, providing a detailed understanding of both their instances and semantic
categories. It offers the potential to improve the robustness and accuracy of SLAM sys-
tems in complex and dynamic environments. Recent Panoptic segmentation based works
on Visual SLAM ignore the problem of loop closure. Also, these methods use offline
bundle adjustment, which can lead to drift errors, highlighting the need for online bundle
adjustment. In this paper, we introduce a novel architecture that integrates loop closure
and online bundle adjustment, expanding on the PVO model[22]. The results show that
our model outperforms state-of-the-art methods in visual odometry tasks. The ablation
study shows that our technique outperforms current state-of-the-art methods, exhibiting
superior performance across majority of sequences.

1 Introduction
Simultaneous Localization and Mapping (SLAM) is a fundamental capability of mobile
robots exploring unknown environments without GPS, enabling them to map the surround-
ings and localize within this map concurrently. It can be categorized into different types
based on the sensor used [4], such as visual SLAM (using cameras), LiDAR SLAM (using
LiDAR sensors), and RGB-D SLAM (using depth cameras). Visual SLAM is advantageous
due to its cost-effectiveness, ability to provide rich environmental information, and versa-
tility in various environments and lighting conditions compared to other SLAM methods.
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Visual SLAM techniques vary based on sensor type (monocular, stereo, RGB-D), feature
extraction (feature-based, direct), optimization (keyframe-based, dense), and learning-based
approaches, each offering unique advantages and disadvantages in terms of cost, accuracy,
computational complexity, and adaptability. Monocular Visual SLAM is cost-effective but
less accurate, Stereo SLAM provides depth information but requires calibration, RGB-D
SLAM combines color and depth but has limited range, Feature-based SLAM is efficient but
struggles in textureless areas, Direct SLAM offers dense reconstruction but is computation-
ally intensive, and Learning-based SLAM adapts but requires significant data and resources.
Panoptic segmentation is an advanced computer vision technique that simultaneously iden-
tifies and delineates all objects in an image, providing a detailed understanding of both their
individual instances and semantic categories. It offers the potential to improve the robustness
and accuracy of SLAM systems in complex and dynamic environments. Among the recent
researches, Competitive Collaboration[14] is an unsupervised network framework. DROID-
SLAM[16] uses feature and context encoders similar to RAFT[15] to construct a frame graph
and applies dense bundle adjustment for drift error without explicit loop closure detection.
PVO[22] extends DROID-SLAM by integrating video panoptic segmentation (VPS) and vi-
sual odometry (VO) modules. PVO ignores the problem of loop closure. These methods
use offline bundle adjustment, which can lead to drift errors, highlighting the need for online
bundle adjustment. We introduce a novel architecture that integrates loop closure and online
bundle adjustment, expanding on the PVO model[22]. The results show that our model out-
performs state-of-the-art methods in visual odometry tasks. The ablation study shows that
our technique outperforms current state-of-the-art methods, exhibiting superior performance
across majority of sequences. Following are our contributions:

Comprehensive modeling of the scene: We have introduced a new Video Panoptic
Segmentation module to enhance Visual Odometry by incorporating panoptic segmentation
results, creating panoptic-aware dynamic masks for a better understanding of scene.

High Accuracy:We have introduced a vision transformer-based loop closure module
that corrects accumulated errors by recognizing and aligning revisited locations in the map.
Additionally, we have substituted the traditional bundle adjustment module with an innova-
tive online bundle adjustment to optimize camera trajectories in real-time, enhancing system
responsiveness and adaptability.

High Adaptability:We incorporated a novel panoptic update module that utilizes panop-
tic segmentation to improve confidence maps of 3D point clouds to handle dynamic objects.

High Robustness: We compared loop closure detection techniques, particularly evaluat-
ing the effectiveness of Deit-base and Deit-base-distilled methods by Touvron et al.[17]

Remaining part of the paper is arranged as follows:-Section 2 provides the background
and reviews related work, Section 3 presents the proposed scheme, Section 4 describes ex-
perimental setup, Section 5 presents the results, Section 6 shows the ablation study, and
Section 7 concludes the paper.

2 Related Work
Visual SLAM architecture consists of front-end, back-end, loop closure, and bundle adjust-
ment. Front-end processes sensor data, extracting features, tracking them across frames, and
estimating the camera’s motion and a local map. Back-end refines this information, optimiz-
ing the camera trajectory and map using bundle adjustment. Bundle adjustment is a nonlinear
optimization technique that refines 3D reconstruction models by minimizing differences be-
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tween predicted and observed feature positions in multiple images. Loop closure recognizes
previously visited locations, enabling the system to correct drift and enhance map accuracy.
These modules collaborate iteratively to enhance system’s accuracy and robustness, enabling
real-time map construction and maintenance.

Challenges in deep learning-based Visual SLAM include the demand for extensive la-
beled data, computational complexity, and ensuring robustness to diverse environmental
conditions and sensor noise. There are many SLAM algorithms, each with its own lim-
itations. ORB-SLAM[13] and ORB-SLAM2[12] classify dynamic object points as out-
liers. Kinectfusion[7], ORB-SLAM, and ORB-SLAM2 are designed under the assumption
of a stationary environment. ParticleSfM[24] focuses on camera pose estimation in SfM.
DynaSLAM[1] combines Mask-RCNN and multiview geometry to manage both known
and unknown moving objects, yet it is computationally intensive and best suited for of-
fline use. D3VO[20] is critiqued for its sensitivity to lighting changes. EffiScene[8] employs
regular 2D images as input and relies on photometric error as its primary loss function.
The competitive collaboration[14] scheme excels at separating independent moving objects
but struggles with static objects or objects moving at the same speed as the background.
DeFlowSLAM[21] introduces a dual-flow representation and a self-supervised method to en-
hance performance, yet it struggles with high computational demands. DROID-SLAM[16]
conducts recurrent iterative optimizations of camera poses and depth maps using a dense
bundle adjustment layer, but it incurs high computational costs. NeRF-based GO-SLAM[23]
tries to achieve real-time global optimization of poses and 3D reconstruction. VPSNet[9] in-
troduces a novel task and proposes an instance-level tracking-based approach, representing a
pioneering effort in the field. SiamTrack[19] builds on VPSNet by introducing a pixel-tube
matching loss and a contrast loss to enhance the distinguishing ability of instance embedding.
STEP[18] suggests segmenting and tracking each pixel for video panoptic segmentation.

Diverging from existing approaches, we present a VO-Enhanced VPS Module that in-
corporates camera pose, depth, and optical flow estimated from VO to track and integrate
information from the current frame to neighboring frames, effectively addressing occlusion
challenges. Our model includes loop closure, a critical component of SLAM that detects
revisited locations to correct localization errors and enhance map consistency. We have
implemented online Bundle adjustment which is essential to refine camera poses and 3D
structure, improving map accuracy by minimizing reprojection errors.

3 Proposed Scheme

3.1 Network Architecture

The figure 1 shows the overall network architecture. The notations used are listed in table 1
The algorithm 1 represents the overall algorithm. Key components are given below.

Initial Panoptic Segmentation: This module takes an image as input and produces
panoptic segmentation, which merges the semantic segmentation and instance segmentation
of the image. The output result is fed into the VO module and the VPS module. This mod-
ule uses PanopticFPN[10], which uses ResNet f θe as the backbone. It extracts multiscale
features of image It .

zt = fθe(It) (1)

The results are then produced using a decoder gθd with weights as θd .The panoptic results
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Not. Description Not. Description
V,E Frame Graph gθ feature vector
It Image Gt Camera pose
dt Inverse Depth τc Camera Parameters
∆εk Pose Update ∆dk Depth update
MSA Multihead Self-Attention MLP Multilayer Perceptron
Tk Processed embedded patch

Table 1: Notations.

Figure 1: Overall Architecture of the proposed model

for a pixel p can be written as the following:

Ps(p|zt) = gθd (p,zt) (2)

The VO and VPS modules further improve the panoptic segmentation results.
Visual Odometry Module: It has the following segments:

Feature Extraction: The feature extraction part adopts key components from the RAFT[15]
network. Two separate networks have been used for the feature extraction: the feature en-
coder and the context encoder. The feature vector creates 4D correlation volumes while the
context vector is embedded into the panoptic update module. The structure of the feature
encoder is similar to that of the panoptic segmentation network.

Correlation Volume. A graph (V,E) is created between the frames to specify the co-
visibility between frames, where an edge between two frames means that they share some
area in common. We then form a 4D correlation volume using feature vectors gθ Ii and gθ I j.
The correlation between 2 frames is defined as follows:

Ci j = ⟨gθ Ii,gθ I j⟩ (3)

Panoptic Update Module: This module is shown in pink color in figure 1. The update
module incorporates the results from the VPS module to adjust the weights. The update
module is a 3× 3 convolutional GRU unit. This module is similar to [22]. The GRU has
a flow encoder, context encoder and 4D correlation volume. The GRU unit then computes
optical flow delta ri j, confidence map of correlation wi j, dynamic mask Mdi j, flow updates,
∆ε and ∆d. For calculating panoptic aware confidence:

wpi j = sigmoid(wi j +(1−Mdi j) ·η) (4)
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Algorithm 1 Complete algorithm for our Panoptic Segmentation based Visual SLAM
Require: Frame: Images acquisition
/*Initial Panoptic Segmentation*/
while Frame Ii do

Pi← PanopticFPN(Ii)
end while
/*VO module*/
while Frame Ii do

gθ i← FeatureVector; cθ ←ContextVector; Pose,Flow,Depth← Backbone(Ii);
while j such that i, j share common areas do

Ci j← ⟨gθ Ii,gθ I j⟩
end while
Fi← Flow; Delta,Con f idence,DynamicMask← GRU(Ci,Fi,Pi);
PanopticAwareDynamicMask← Sigmoid(DynamicMask,Pi)
if LoopDetection(i) = True then

Add neighbour edges in the frame graph i,j-1
end if
BundleAd justment(Ii,PanopticAwareCon f idence); Gen f erate3DPointCloud(Ii);

end while
/*VPS module*/
while Frame t do

WarpedFeaturest← Fusion(Depth,Flow,Pose,FeatureMapt)
end while

Figure 2: Loop closure module(Refer Yellow coloured box in Fig 1 ).

where η=10. Then, updates are applied to the current depth and pose estimates.

G(n+1) = exp(∆ε
(n))◦G(n), (5)

∆ε(n) are pose residuals transformed using the SE3 manifold to update the current pose.

d(n+1) = ∆d(n)+d(n) ; M(n+1)
d = ∆M(n)

d +M(n)
d (6)

Correspondence. At each iteration, pose estimate and current depth are used to estimate
the correspondence of the grid of pixels pi in frame i. The correspondence is:

pi j = τc(Gi j ◦ τ
−1
c (pi,di)) (7)

Here, camera mode τc maps the corresponding 3D points to the image, and τ−1
c is the inverse

transformation that projects the pixel grid pi and depths d to the 3D point cloud.
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Loop Closure(LC): The loop closure module(fig 2) starts by first patching the image into
several parts. Then, each patch xk is fed into the transformer block. The transformer then
creates a feature vector out of it. Then, we can recognise loop closure when two frames have
a similarity score higher than a preset threshold. We adopt the same procedure described
in TT-LCD[5]. The similarity score of frames i and j is defined as where Pi represents the
feature vector obtained by the transformer block[5]:

Sim(i, j) =
Pi ·Pj

∥Pi∥∥Pj∥
(8)

Similar to[5], the feature extraction of the module can be illustrated as follows:

T0 = [xclass;x1Emb;x2Emb; . . . ;xmEmb]+Embpos (9)

T ′k = MSA(LN(Tk−1))+Tk−1,k = 1, . . . ,K (10)

Tk = MLP(LN(T ′k ))+T ′k ,k = 1, . . . ,K (11)

y = PCA(LN(T 0
K )) (12)

. The Multi-head Self-Attention module(MSA)[5] can be represented as:

MSA(h) = Linear(Concate(h1, ..,hk, ...,hn)) ; hk = so f tmax(
QkKT

k√
d

)Vk (13)

Here, LN is the layer norm, and Qk, Kk, and Vk denote the queries, keys and values gen-
erated by linear projections respectively, and d is the dimension of patch embedding. After
realising the loop closure event between i and j frames, we add edges i,j+1 and i,j-1 to the
frame graph to enrich the 3D point cloud. We currently use DEIT-based-distilled model[17]
by Facebook research to get feature vectors out of the images. These extracted features are
used for the loop closure detection using the cosine similarity score.

Online Bundle Adjustment We modified Bundle Adjustment(BA) as specified in [16].
DROID-SLAM[16] does bundle adjustment after the end of camera tracking, which may
result in accumulation of drift errors. So, we use an online version of bundle adjustment,
which applies bundle adjustment as soon as a new frame is encountered. We also apply a
loop bundle adjustment with relaxed parameters to realize a loop closure.

Figure 3: Virtual KITTI Dataset result Figure 4: KITTI Dataset result

Video Panoptic Segmentation Module: Similar to PVO, Video panoptic segmentation
tries to segment the incoming frames while maintaining the consistency of segmentation
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Figure 5: EuRoC Dataset result

among the images. The VPS module (as shown in fig 1 by green part) obtains the warped
feature of the frame t-1 and frame t by incorporating the flow, depth and pose information
obtained using the VO module. For the segmentation to be consistent, the warped features
of t-1 and fused feature map t are fed into the decoder to obtain the panoptic segmentation
of t-1 and t. An IOU(intersection over union) match is performed between the two frames to
obtain a consistent panoptic segmentation.

Algorithm1 processes each frame with segmentation, feature extraction, and depth com-
putation, refines dynamic masks for moving objects using a GRU-based module, and em-
ploys loop detection and bundle adjustment for accurate mapping.

3.2 Cost Functions
1. Loop Closure Module: We use cosine similarity score (eq 14) as loss function for

this module. In eq 14, Pi and Pj are feature vectors for the frames i and j respectively.
A high cosine similarity score indicates that the two keyframes are likely to be from
the same or nearby locations, which can be indicative of a loop closure.

2. Bundle Adjustment Module: We use following loss function [16] for this module.
Eqn 14 outlines the objective of determining an updated G’and depth d’to ensure that
reprojected points align with the updated correspondence pij*, following the predic-
tions of the update operator.

E(G′,d′) = ∑
(i, j)∈(V,E)

∥pi j ∗−τc(G′i j ◦ τ
−1
c (pi,d′i)∥2

Σi j
; Σi j = diagwpi j (14)

4 Experimental Details
Dataset: We used Virtual Kitti, Kitti and EuRoC datasets[11] for evaluating our model.

1. Virtual Kitti[3]: This valuable dataset consists of 5 sequences cloned from kitti. Its
synthetic nature allows for scalability and variability.

2. EuRoC[2]: This dataset consists of synchronised stereo images, IMU (Inertial Mea-
surement Unit) readings, and ground truth poses collected from a micro aerial vehicle
(MAV) flying indoor and outdoor scenarios. The dataset includes various challenging
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Model VK01 VK02 VK06 VK18 VK20
DROID-SLAM 1.091 0.025 0.113 1.156 8.285

Ours(VPS→VO x1) 0.366 0.048 0.111 1.034 3.264
Ours(VPS→VO x2) 0.366 0.047 0.111 1.026 3.151
Ours(VPS→VO x3) 0.366 0.047 0.111 1.025 3.057

Table 2: Ablation study of VO module: These results show how the recurrent update of VO
→ VPS module affect the results and its comparison with DROID-SLAM.

Model VK01 VK02 VK06 VK18 VK20
PVO(VPS→VO) 0.374 0.057 0.113 0.960 3.487

PVO(VPS→VO x2) 0.371 0.057 0.113 0.954 3.135
PVO(VPS→VO x3) 0.369 0.055 0.113 0.822 3.079
Ours(VPS→VO x1) 0.366 0.048 0.111 1.034 3.264
Ours(VPS→VO x2) 0.366 0.047 0.111 1.026 3.151
Ours(VPS→VO x3) 0.366 0.047 0.111 1.025 3.057

Table 3: Ablation study of VO module: These results show how the recurrent update of VO
→ VPS module affect the results and its comparison with PVO.

environments, such as offices, corridors, and urban areas, providing diverse conditions
for testing algorithms. It consists of 11 sequences in total.

Figure 6: Loop Closure Ablation Figure 7: LC and Online BA Ablation

3. KITTI[6]: This dataset captures real-world traffic scenarios with plenty of static and
dynamic objects. We have selected K03, K04 and K10 as these sequences are diverse
in terms of scene complexity, lighting conditions, and weather conditions.

Training Details:The training of the VO module and VPS module are done as specified in
PVO. We currently use a pre-trained image transformer named DEIT(Data Efficient Image
Transformers)[17] (base distilled variant) for loop closure detection.
Evaluation Metrics: Absolute Trajectory Error(ATE) is used as evaluation metric. ATE
quantifies the difference between the estimated and ground truth trajectories in SLAM sys-
tems, providing a measure of the overall accuracy of the estimated trajectory.
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5 Results
We have evaluated the proposed model with different datasets. The results are shown in Fig
3, Fig 4 and Fig 5. We have achieved better performance in majority of the sequences across
the datasets. Our trajectories(Fig 8) are very close to the ground truth. Plots for all virtual
Kitti sequences, K10 of the Kitti dataset, and MH02, V103, and V202 of EuRoC are shown.

1. Virtual Kitti: Our method exhibits competitive performance(Fig3.) across various
sequences of the KITTI dataset compared to PVO and DROID-SLAM. Our approach
achieves superior or comparable ATE scores in most cases. Our model under-performs
PVO only in VK18 and DROID-SLAM in VK02.

2. EuRoC: Our model outperforms or matches DROID-SLAM in 9 of the 11 sequences
in this dataset(Fig 5). However, it can’t beat DROID-SLAM in MH04 and V102 seq.

3. Kitti: We have evaluated on K03,K04 and K10 sequences (Fig 4). Here, our model
outperforms both models, DROID-SLAM and PVO, in 2 of the sequences. However,
it fails to do so in K03, but the results in this sequence are also close enough.

6 Ablation Study
1. Ablation Study for VO module We compare the performance (tables 2, 3) of a model

with another method across multiple iterations of VPS → VO cycles. It consistently
demonstrates the superiority of the discussed model over PVO from the first iteration.

2. Ablation study for loop closure models. Figure 6 summarizes the comparison of
loop closure performance between two models: Deit-base and Deit-base-distilled.

3. Ablation study for Impact of loop closure and bundle adjustment modules
Our analysis investigates the influence of our loop closure and online bundle adjust-
ment technique on the Virtual KITTI dataset. The results are consolidated in Table 7.
It is observed that while the incorporation of loop closure enhances performance in
certain sequences, the effect is notably augmented when coupled with online bundle
adjustment. This suggests a synergistic relationship between loop closure and online
bundle adjustment, further improving the dataset’s outcomes.

7 Conclusion
In this paper we have proposed a novel Visual SLAM architecture that fuses Panoptic Seg-
mentation with bundle adjustment and loop closure and presents a powerful framework for
constructing detailed and semantically meaningful maps of the environment, enabling ad-
vanced robotic perception and navigation capabilities. The experimental results reveals that
proposed PV-SLAM model outperforms SOTA schemes for three datasets namely Virtual
Kitti, EuroC and KITTI. The ablation study indicates that adding loop closure and online
bundle adjustment improves the results. However, our results did not exhibit improvement
in specific instances, such as VK18. This can be attributed to the fact that certain images,
despite lacking sufficient similarity, were erroneously matched as loop closure instances.



10 ASHOK BANDYOPADHYAY,PRANJAL BARANWAL, ARIJIT SUR, RAJEEV UP: PV-SLAM

Figure 8: Generated trajectories of Kitti, Virtual Kitti and EuRoC dataset various sequences.
The trajectories for Kitti and Virtual Kitti are taken in outdoor environments, while EuRoC
is in indoor environment. This plot shows how close our results are to the ground truth.

Consequently, this misidentification resulted in subpar outcomes, showing the importance
of ensuring accurate matching criteria. In the future, we plan to test the proposed model on
additional datasets to demonstrate its versatility.
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