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1 Training Parameters
In this supplementary material, we will go over the hyperparameters and their relevance to
our architecture. Each category will be introduced and explained in their respective sections.
We report the most important parameters to our training in in Table 1. We also separate
our synthetic experiments on the Replica [3] dataset, ran on clean inputs, and our real-world
experiments on the ScanNet [1] dataset.

2 Tracking Implementation
Starting with the tracking parameters, it is essential to recognize that this combination was
used without ground truth poses provided by the corresponding datasets. While tracking, a
random subset of pixels is sampled from the image. The number of pixels sampled and the
amount of iterations that are done on the respective frame are correlated with the accuracy
of the tracking. This setting can be tuned in a per-scene basis and per-domain basis as well,
where for noisier measurements we have to associate more computation on the pose tracking
module.

The Ignore Edge parameters, also lead to more precise tracking, since sampling near the
edges of the images is unreliable and contour bleeding is common, as a reason of the motion
blur, lens distortion and depth sensor resolution. As seen from the Table 1, we needed to
invest more resources during tracking while training on real-world scenes. It needs to be
mentioned that the ignore edge variables were set to lower numbers since we empirically
found out that it yielded better results if a higher number of pixels were sampled.

3 Segmentation Implementation
One of our main contributions, the segmentation algorithm is based on the Segment Any-
thing Model [2], and this part of the architecture included many design choices 1. Starting
with the flexibility our architecture provides, the choice of running in parallel, meaning as a
SLAM system, or running the segmentation part subsequently. This choice has no effect on
the generated segmentations and the resulting outputs. Additionally, we segment only every
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Nth frame to increase runtime speed and limit redundancy in heavily overlapping camera
frustrums. Additionally we introduce a simple, yet effective filtering for noise segmenta-
tions. The "Smallest Mask Size", the size of the segmented objects in pixels, was a crucial
choice. The choice for allowing smaller masks results in finer segmentations but leads to
relatively higher inconsistencies between the frames affecting our algorithm. As the scenes
from ScanNet include motion blur and depth inconsistencies [1], stabilizing segmentations
with smaller mask sizes is harder. Therefore, we opted for having higher confidence in seg-
mentations than having finer segmentations in real-world scenes.

The "Border", how far from the edges of the image we are sampling, "Object Contour
Farther", the margin between the neighbouring masks, and "Depth Condition", the depth
error that we expect from each sampled point, is again set for preventing undesired behaviour
during the creation of the self-consistent frames.

4 Other Variables
Two vital hyperparameters, concerning the mapping section of the architecture, are the fre-
quency of the mapping, and the selection of the frequency of the keyframes. The mapping
part has also an effect on how well the tracking performs, therefore, for real-world scenes
we opted again for higher frequency.

In our multi-stage training strategy we first optimize for a fine geometry and color rep-
resentation, and only in the final stage start to optimize for scene instances. Here during
the instance stage we deactivate the learning rates for the other stages and only train for the
object masks. This separation of learning tasks was shown to be successful to reduce the
effect of noisy gradients stemming from inconsistencies in the video masks.

For the camera parameters, we downsized the images in synthetic scenes to be able to
process the images faster, and the Segment Anything Model was trained also on similar
sized images. The meshing confidence threshold filters out the instance predictions where
occlusions or incomplete coverage limits the instance supervision amount.
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Category Key Synthetic Scene
Values

Real-World Scene
Values

Tracking

Ground Truth Camera False False
Ignore Edge Width (in Pixels) 50 20
Ignore Edge Height (in Pixels) 50 20
Pixels 400 2000
Iterations 25 300
Learning Rate 0.001 0.001

Segmenter

Full Slam Configuration True True
Every Frame Frequency 10 2
Border (in Pixels) 10 10
Normalize Point Number (in Px) 7 7
Object Contour Farther (in Px) 2 2 | 5
Depth Condition (in metres) 0.05 0.05 | 0.1
Smallest Mask Size (in Px) 600 1000 | 2000

Mapping

Every Frame Frequency 5 1
Keyframe Frequency 50 6
Weight Instance Loss 10 10
Instance Iteration Ratio 0.4 0.4

Instance

Decoders Learning Rate 0.005 0.005
Coarse Learning Rate 0.0 0.0
Middle Learning Rate 0.0 0.0
Fine Learning Rate 0.0 0.0
Color Learning Rate 0.0 0.0
Instance Learning Rate 0.4 0.4

Camera Crop size (in Pixels) [340, 600] -
Meshing Confidence Threshold 0.4 0.4

Table 1: We provide full parameter list for our SceneSam paper to aid reproducibility for the
community.


