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A Derivatives of Proto loss
The discussion in Sec. 2.3 holds for the Proto loss since the derivative of Proto loss is explic-
itly described as follows.

The Proto loss is formulated in
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where [[y j = yi]] produces 1 for y j = yi and otherwise 0. This shows that the derivative lies in
a subspace spanned by samples similarly to that of NCA loss.

B Projection onto classifier subspace

We validate the approximated form (8) of projection onto a classifier subspace W∈Rd×rank(WWW )

for the classifier weight WWW ∈Rd×C; while the classifier rank is C in most case, rank reduction
rank(WWW )<C could practically happen.
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Let the classifier WWW be decomposed by WWW = W̃diag(λλλ )V> via singular value decomposi-
tion, and then we have

WWW (WWW>WWW + εI)−1WWW> = W̃diag
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where λ

ε+λ
smoothly approximates a step function [[λ > 0]]. Thus, the parameter ε makes the

computation of inverse matrix stable as well as controls smoothness of the approximation.

C Spectral sum of losses
In the spectral-sum loss (Sec. 3.4), we constructed a pseudo complementary space by means
of soft weighting; it is described by the projection matrix W̃diag(111− λ̃λλ

p
)W̃>. We can measure

its overlapness with the classifier WWW = W̃diag(λλλ )V> (9) by using the the spectral norm of
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where � indicates Hadamard product, λmax = max j λ j, and λ̃ is a normalized weight, λ̃λλ =
λλλ

max j λ j
∈ [0,1]d (10). A function λ̃ (1− λ̃ p) for various p is depicted in Fig. A, demonstrating

that lower p contributes to reduce the overlap; especially, the overlap is reduced to 0 by p= 0.
For d ≤ C, however, p = 0 provides trivial projection of W̃diag(111− λ̃λλ

p
)W̃> = 000 since WWW

usually has d rank, being full column rank, with λ j > 0 ∀ j to render 111− λ̃λλ
p
= 000. Thus, there

is a trade-off between valid complementary space via larger 1− λ̃ p and overlap reduction by
smaller p; the experimental results in Table 6 imply that p = 0.3 provides a good trade-off.

On tht other hand, in case of d > C for the direct-sum loss (Sec. 2.4), p = 0 builds the
complementary classifier subspace as λλλ definitely contains zeros due to padding and 111− λ̃λλ

p

works as binary weighting to pick up the complementary bases W⊥ from W̃= [W,W⊥];
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which means
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D Experimental setting
For training a backbone model φθθθ , we can apply several types of sampling to construct a
mini-batch as detailed in the followings.

In a standard way, we randomly draw n mini-batch samples, e.g., n = 512, from M
training samples distributed over C classes; in this case, the number of intra-class samples
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Figure A: Function of λ (1−λ p) with various p.

Table A: Various N-way K-shot sampling strategies for mini-batch in training.
mini-ImageNet [5] tiered-ImageNet [4] CUB200 few-shot [2] Cifar100 few-shot [1]

Training classes 64 351 100 64
Mini-batch size 512 512 128 512
N-way K-shot 64-way 8-shot 64-way 8-shot 64-way 2-shot 64-way 8-shot

32-way 16-shot 32-way 16-shot 32-way 4-shot 32-way 16-shot
16-way 32-shot 16-way 32-shot 16-way 8-shot 16-way 32-shot

8-way 64-shot 8-way 64-shot 8-way 16-shot 8-way 64-shot
4-way 128-shot 4-way 128-shot 4-way 32-shot 4-way 128-shot

per class in a mini-batch is supposed to be roughly nM
C . The number of intra-class samples

in a mini-batch would affect the performance especially for a metric-based loss, and thus
we apply N-way K-shot strategy to the mini-batch sampling in a manner similar to episodic
learning [5]; we draw K samples for each of N classes to build a mini-batch of n = NK
samples. Under the same budget of mini-batch size, we can consider several configurations
for (N,K) as shown in Table A&Da. In Sec. 3, we report the best performance across those
sampling strategies for fair comparison of all the methods even including the classification
losses of SCE and BCE which are usually applied with randomly sampled mini-batches. The
detailed performances are shown in Table B,C&Db.
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Table B: Classification accuracies (%) using various mini-batch sampling strategies in train-
ing (Table A); in each cell, left/right number shows accuracy in 1/5-shot evaluation setting,
respectively. The right-most column shows the performance of random mini-batch sampling
while the others are those of N-way K-shot mini-batch sampling. In performance compari-
son of Sec. 3, we pick up the best performance on each method, indicated by a gray-colored
cell, that exhibits the best 1-shot accuracy across six types of sampling approaches.

mini-ImageNet

Method 64way - 8shot 32way - 16shot 16way - 32shot 8way - 64shot 4way - 128shot 512batch sample

Classification loss
SCE 63.85, 79.68 63.47, 80.61 63.35, 81.00 61.62, 79.63 53.47, 70.08 63.75, 80.52
BCE 62.91, 79.26 63.97, 80.74 63.86, 80.79 62.81, 80.07 54.50, 71.91 64.00, 80.20
Metric loss
NCA 62.39, 77.44 62.33, 78.08 63.07, 79.18 63.95, 79.47 62.13, 77.97 61.98, 76.78
Proto 60.43, 76.70 61.33, 77.95 61.40, 79.01 61.32, 78.38 60.87, 77.49 61.71, 77.56

Sum loss
SCE+NCA 61.63, 77.15 62.14, 78.65 64.20, 80.09 63.81, 80.98 61.06, 78.30 61.49, 77.55
SCE+Proto 61.16, 77.95 61.91, 79.64 62.84, 80.82 62.02, 80.69 60.08, 77.59 61.15, 77.91
BCE+NCA 60.46, 75.52 61.71, 78.03 63.72, 79.84 64.64, 81.06 61.33, 77.82 61.90, 77.74
BCE+Proto 61.93, 78.09 62.60, 79.59 61.88, 79.86 63.43, 80.74 60.79, 78.37 62.41, 78.77

Direct-Sum loss (Ours)
XE⊕⊕⊕NCA 63.08, 78.29 64.66, 80.08 64.53, 80.81 65.16, 81.89 61.37, 77.94 63.55, 78.51
XE⊕⊕⊕Proto 62.37, 77.94 63.11, 79.28 64.16, 81.19 64.05, 81.16 60.58, 77.08 63.65, 79.43
BCE⊕⊕⊕NCA 63.26, 78.17 63.86, 79.95 65.43, 80.92 65.61, 81.98 62.14, 78.31 62.59, 78.83
BCE⊕⊕⊕Proto 61.99, 77.86 63.46, 79.95 63.36, 80.51 64.27, 81.44 61.10, 77.77 63.19, 78.81

tiered-ImageNet

Method 64way - 8shot 32way - 16shot 16way - 32shot 8way - 64shot 4way - 128shot 512batch sample

Classification loss
SCE 71.67, 86.37 71.33, 86.52 71.02, 86.33 68.27, 84.12 64.51, 81.44 71.35, 85.69
BCE 71.79, 86.13 72.14, 86.14 70.93, 86.19 69.55, 85.26 64.86, 80.48 71.59, 85.68
Metric loss
NCA 69.90, 84.69 70.40, 84.95 70.19, 85.22 70.24, 84.75 68.31, 82.83 68.78, 83.60
Proto 70.23, 84.83 70.40, 85.39 69.91, 85.18 69.12, 84.89 67.20, 83.21 68.57, 82.69

Sum loss
SCE+NCA 69.34, 84.63 70.08, 84.87 69.68, 85.13 68.56, 84.29 65.71, 81.91 68.94, 83.78
SCE+Proto 70.95, 85.66 70.48, 86.81 69.43, 86.38 69.01, 85.95 66.22, 82.85 69.18, 82.95
BCE+NCA 69.59, 84.79 70.84, 85.48 70.09, 85.40 69.48, 84.46 66.36, 82.10 69.79, 84.20
BCE+Proto 71.36, 85.95 70.62, 86.38 71.13, 86.42 70.02, 85.82 66.09, 83.22 69.27, 82.93

Direct-Sum loss (Ours)
SCE ⊕⊕⊕NCA 71.79, 85.82 72.20, 86.50 71.57, 86.62 70.82, 85.87 66.87, 82.58 70.82, 84.63
SCE ⊕⊕⊕Proto 72.06, 85.87 72.27, 86.75 71.23, 86.26 70.52, 85.87 67.16, 82.85 71.03, 84.17
BCE⊕⊕⊕NCA 71.34, 85.85 71.32, 85.98 71.61, 86.69 70.66, 85.49 67.04, 83.16 70.67, 84.80
BCE⊕⊕⊕Proto 72.14, 85.74 72.14, 86.52 71.73, 86.44 70.43, 85.69 66.78, 82.46 70.48, 84.19
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Table C: Classification accuracies (%) across various sampling strategies. (cont.)
CUB200 few-shot

Method 64way - 2shot 32way - 4shot 16way - 8shot 8way - 16shot 4way - 32shot 128batch sample

Classification loss
SCE 72.57, 88.03 72.94, 88.06 73.37, 88.53 70.19, 86.54 53.75, 69.89 72.70, 87.87
BCE 74.83, 89.04 75.28, 89.47 75.80, 89.57 72.65, 87.81 58.35, 74.23 74.15, 88.64
Metric loss
NCA 70.42, 82.51 75.78, 87.74 75.26, 87.15 72.32, 85.32 64.81, 78.43 70.81, 84.72
Proto 53.42, 61.98 76.33, 88.53 75.82, 88.69 73.04, 87.44 67.03, 81.39 70.79, 84.03

Sum loss
SCE+NCA 78.06, 90.13 77.42, 90.05 78.47, 90.66 76.27, 89.82 67.63, 82.46 77.85, 90.20
SCE+Proto 76.13, 87.72 76.33, 89.64 76.43, 90.16 74.39, 89.90 67.09, 83.42 76.85, 89.77
BCE+NCA 78.61, 90.06 78.95, 90.26 78.57, 90.46 77.11, 89.77 69.31, 83.42 77.40, 89.58
BCE+Proto 77.70, 88.51 78.43, 90.44 77.12, 90.49 75.98, 90.07 68.63, 84.44 78.66, 90.36

Direct-Sum loss (Ours)
SCE⊕⊕⊕NCA 78.20, 89.92 78.91, 90.73 78.14, 90.76 75.39, 89.54 65.23, 80.72 77.67, 90.00
SCE⊕⊕⊕Proto 78.30, 90.10 78.14, 90.75 76.37, 90.35 75.21, 89.63 65.83, 81.48 77.62, 89.98
BCE⊕⊕⊕NCA 79.89, 90.49 79.62, 90.96 78.42, 90.86 76.46, 89.82 67.55, 82.13 78.62, 90.23
BCE⊕⊕⊕Proto 78.67, 89.99 78.09, 90.48 77.86, 90.49 76.50, 90.28 68.61, 83.19 78.48, 90.50

Cifar100 few-shot
Method 64way - 8shot 32way - 16shot 16way - 32shot 8way - 64shot 4way - 128shot 512batch sample

Classification loss
SCE 70.88, 84.84 68.40, 84.01 66.90, 84.14 63.25, 81.45 56.09, 73.77 70.04, 84.82
BCE 70.15, 83.91 69.33, 84.63 68.22, 83.72 65.97, 83.05 60.08, 77.67 69.80, 83.97
Metric loss
NCA 70.80, 82.80 70.53, 83.57 71.49, 84.49 70.45, 84.30 66.30, 81.59 69.44, 82.43
Proto 70.10, 83.97 69.60, 84.31 69.36, 83.95 68.56, 84.33 66.77, 82.47 69.51, 82.33

Sum loss
SCE+NCA 70.56, 83.59 70.80, 84.57 70.85, 85.39 70.25, 84.95 63.75, 80.76 69.83, 83.09
SCE+Proto 68.85, 83.51 68.89, 84.67 68.83, 85.13 67.33, 84.67 62.24, 80.98 69.42, 84.15
BCE+NCA 69.93, 82.32 71.00, 83.45 72.03, 85.17 69.56, 84.41 66.62, 81.91 69.67, 82.74
BCE+Proto 69.78, 83.28 69.72, 84.25 68.96, 84.31 67.93, 84.64 65.92, 82.49 69.31, 83.21

Direct-Sum loss (Ours)
SCE ⊕⊕⊕NCA 71.27, 83.47 71.71, 84.92 71.98, 85.69 69.74, 84.79 64.79, 80.29 70.85, 83.60
SCE ⊕⊕⊕Proto 71.68, 84.10 69.93, 84.94 70.04, 85.25 68.73, 84.69 66.88, 82.32 70.69, 84.34
BCE⊕⊕⊕NCA 70.65, 83.22 70.22, 84.18 72.06, 85.33 70.48, 84.93 66.30, 81.96 69.29, 82.54
BCE⊕⊕⊕Proto 70.41, 83.34 70.11, 84.27 70.38, 85.12 69.35, 84.65 65.77, 81.74 70.74, 83.95



6 TAKUMI KOBAYASHI: SUPP. DIRECT-SUM APPROACH TO INTEGRATE LOSSES

Table D: Classification accuracies (%) on iNaturalist2017 dataset [3]. The dataset is de-
tailed in (a) with various settings of mini-batch sampling. The detailed performance re-
sults over various sampling strategies are shown in (b). In Table 6, we report the perfor-
mances of our methods with the best setting at p = 0.5; that is, we apply 128-way 4-shot
mini-batch sampling to SCE⊕̃⊕⊕pNCA and random mini-batch sampling to SCE⊕̃⊕⊕pProto for
∀p ∈ {0.1,0.2,0.3,0.4,0.5}.

(a) Dataset

iNaturalist2017 few-shot [3]
training / test

Classes 908 / 227
Samples 197612 / 46374

Mini-batch size 512
N-way K-shot 256-way 2-shot

128-way 4-shot
64-way 8-shot

(b) Performance

Method 256way - 2shot 128way - 4shot 64way - 8shot 512batch sample

Classification loss
SCE 80.53, 91.96 80.12, 91.79 79.24, 91.64 81.76, 92.73
NCA 81.23, 90.82 82.09, 91.93 82.42, 92.22 75.72, 87.87
Proto 76.30, 85.28 82.95, 92.08 81.61, 92.52 76.32, 88.54

Sum loss
SCE+NCA 82.43, 92.16 82.43, 92.29 81.65, 92.25 81.17, 91.42
SCE+Proto 81.22, 89.88 81.91, 92.41 80.70, 92.39 82.02, 91.87

Spectral-Sum loss (Ours)
SCE⊕̃⊕⊕pNCA (p = 0.5) 83.09, 92.26 83.13, 92.57 82.94, 92.74 82.91, 92.45
SCE⊕̃⊕⊕pProto (p = 0.5) 82.82, 91.37 83.17, 92.57 81.85, 92.95 83.30, 92.77
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