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Abstract

Deep models are successfully applied to various visual recognition tasks through
end-to-end learning. A loss function is fundamental for the learning and various losses
could be combined via arithmetic summation to improve performance. The simple sum-
mation, however, can bring about interference between the losses in back-propagation,
deteriorating their synergy in the learning. In this paper, we propose a new approach to
effectively integrate losses by mitigating the interference; we focus on classification and
metric-based losses which are widely employed in discriminative supervised learning.
The method leverages a classifier subspace to separate whole feature space into disjoint
subspaces to which the two types of losses are respectively applied. Thereby, the losses
are integrated in a direct-sum manner beyond a simple arithmetic summation to collabo-
ratively work on learning feature representation without interference. In the experiments
on few-shot image classification tasks which demand generalizable feature representa-
tion to unseen-class samples, the proposed method favorably improves performance by
effectively combining the two types of losses.

1 Introduction
As deep models have been advanced in the last decade, end-to-end learning is arguably the
most successful approach to build an image recognition model of high performance [15]. It
optimizes lots of parameters of the deep model for a target task by utilizing training samples
which empirically describe the characteristics of the task with annotation (labels) in a super-
vised setting. While optimizers [8] play a vital role in the training, a loss is also fundamental
for the end-to-end learning to trigger back-propagation.

There are diverse types of loss functions useful for the back-propagation, i.e., being dif-
ferentiable. In supervised classification, we can directly leverage a class label to build a loss
function, such as a softmax cross-entropy loss which is widely applied to multi-class classi-
fication tasks with some theoretical analyses [1, 5], inspiring large-margin variants [10, 22].
Binary cross-entropy (BCE) intrinsically formulated for binary labels is also capable of
measuring a multi-class classification loss, especially in a multi-label setting through de-
composition into multiple binary classifications [2, 27]. While these losses are constructed
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to evaluate discrepancy between a sample (feature) and its class label, it is possible to ex-
plore relationships among samples in a way of metric learning [19] by indirectly utilizing
labels to annotate the relationships as intra-class and inter-class ones. Discriminative feature
representation is demanded to render high similarities to intra-class samples while distanc-
ing intra-class samples to exhibit low similarity. The sample relationships are effectively
exploited by contrastive [16], triplet [30] and quadruplet [7] losses. Neighborhood compo-
nent analysis (NCA) [14] describes those relationships by means of probabilistic models and
center loss [32] incorporates them into a form of class prototype (mean). Those losses are
frequently employed in the literature of few-shot learning [20, 25] that poses a challenge to
learn generalizable feature representation so as to discriminate novel classes with access to
only a few training samples [12]. The above-mentioned softmax cross-entropy loss is also
favorably applied to the few-shot learning [6, 11, 26].

For further improving feature representation, this work explores to combine those two
types of losses, classification-based and metric-based losses mentioned above. A naïve ap-
proach is to simply sum up those losses by means of algebraic addition. It, however, might
be less effective since the two types of losses work on a feature space in different updating
ways and thus could be interfered to each other, though sharing the same goal [4]. There-
fore, we propose a new approach to integrate those losses through feature space separation
by means of subspaces, which thereby results in a direct-sum formulation of losses. The
proposed method leverages a classifier subspace to enhance the synergy between the two
losses while reducing the interference.

2 Method

Suppose we train a backbone model φθθθ in a supervised manner using n training samples
{Ii,yi}n

i=1, pairs of an image I and its ground-truth class label y∈ {1, · · · ,C}; for simplicity,
we regard n as a size of mini-batch. The model encodes an image I to a d-dimensional
feature vector by xxx = φθθθ (I) ∈ Rd , which is fed into the following two types of losses based
on class labels and sample metrics to learn parameters of the backbone model θθθ .

2.1 Classification loss `cls

The classification is usually addressed by using a linear classifier ŷyy=WWW>xxx+bbb with trainable
parameters of classifier weights WWW ∈ Rd×C and biases bbb ∈ RC. In a supervised scenario, a
softmax cross-entropy (SCE) loss is commonly applied to train the classifier {WWW ,bbb} as well
as the feature representation xxx via φθθθ by exploiting discriminative characteristics among C
classes as

SCE: `cls(xxx,y;WWW ,bbb) =− log
exp(www>y xxx+by)

∑
C
c=1 exp(www>c xxx+bc)

, (1)

where wwwc is the c-th column vector of a classifier weight matrix WWW ∈Rd×C and bc is the c-th
component of bases bbb ∈ RC. The other popular classification loss is a binary cross-entropy
(BCE) which decomposes multi-class classification into C binary classification tasks by

BCE: `cls(xxx,y;WWW ,bbb) =− log
exp(www>y xxx+by)

1+ exp(www>y xxx+by)
−∑

c 6=y
log

1
1+ exp(www>c xxx+bc)

. (2)
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The BCE aggregates class-wise losses, thus being well applied to multi-label classifica-
tion [27], while the SCE pays attention to comparison among class categories. These classi-
fication losses are contributive to enhancing class-discriminative feature representation xxx by
directly utilizing class label y.

2.2 Metric-based loss `metric

We demand feature representation xxx to exhibit good metric that intra-class distances are
small while inter-class samples are separated. A metric-based loss [19] works on (pair-
wise) sample relationships without a classifier, while the classification losses (Sec. 2.1) rather
directly connect class labels with samples through the classifier. In the few-shot learning,
the following two metric losses are frequently applied to learn the feature representation xxx
generalizable for unseen classes.

Following the approach of center loss [32], each class can be represented by a proto-
type, the mean of intra-class samples. A prototypical loss [25] is formulated by evaluating
distances to respective class prototypes in a softmax fashion of

Proto: `metric({xxxi,yi}n
i=1)=−E

i
log

exp(−‖xxxi−µµµyi\i‖
2
2)

∑
C
c=1 exp(−‖xxxi−µµµc\i‖2

2)
, where µµµc\i = E

j 6=i|y j=c
xxx j, (3)

and we apply a leave-one-out scheme to compute prototypes in order to maximally utilize
available samples for the loss [20]. In the Proto loss, by minimizing distance to the target
class prototype while maximizing the others, sample metrics are effectively improved in a
similar way to discriminant analysis [13] that maximizes the ratio of between-class variance
to within-class variance.

A pair-wise relationships among samples is more directly exploited by neighborhood
component analysis (NCA) [14] which inspires an NCA loss [20, 28] as

NCA: `metric({xxxi,yi}n
i=1) =−E

i
log

∑ j 6=i|y j=yi exp(−‖xxxi− xxx j‖2
2)

∑ j 6=i exp(−‖xxxi− xxx j‖2
2)

. (4)

Instead of using class prototypes (3), it aggregates softmax probabilities of intra-class sam-
ples for directly reducing pair-wise distance within a class while enlarging inter-class dis-
tance; similarly to (3), the NCA loss is computed in a leave-one-out manner across samples.
These Proto and NCA losses perform metric learning in different ways akin to GMM [23]
and KDE [29], respectively.

2.3 Comparison of `cls and `metric

As analyzed in [4], the classification loss (Sec. 2.1) and metric-based loss (Sec. 2.2) share
the same goal to maximize mutual information between labels y and features xxx. From a
viewpoint of training via back-propagation, however, those two losses provide different types
of gradients as follows.

Derivatives of the losses w.r.t. the feature xxxi are given by

∂`cls

∂xxxi
=WWW

∂`cls

∂ (WWW>xxxi)
∈ span(WWW ),

∂`metric

∂xxxi
= 2 ∑

j 6=i

∂`metric

∂ (‖xxxi− xxx j‖2)
(xxxi−xxx j)∈ span(XXX), (5)
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Figure 1: Direct sum of two losses.

Table 1: Discriminant score [13] (0≤ σB/σT ≤ 1)
of test samples on mini-ImageNet. It is measured
in two subspaces by projecting xxx via W>xxx and W>⊥xxx.
Higher score indicates better discriminativity.

Feature space SCE
sum (6)

SCE+NCA
ours (7)

SCE⊕⊕⊕NCA

Classifier subspace W>xxx 0.28 0.32 0.31
Complementary W>⊥xxx 0.16 0.12 0.30

where span indicates a subspace spanned by column vectors of a matrix WWW and XXX = [xxx1, · · · ,xxxn]∈
Rd×n, and for `metric we show the derivative of the NCA loss (4) while the similar form of
loss gradient is produced by the Proto loss (3) as shown in the supplementary material. The
classification loss restricts gradient-based updates within the classifier subspace span(WWW ),
effectively enhancing discriminativity of feature representation as distinctive characteristics
among classes are encoded by the weight WWW . On the other hand, in the metric-based loss,
the updating direction lies in the sample subspace, paying broad attention to rather whole
feature space for effectively improving all feature components.

Thus, combining these two mechanism could boost discriminative learning. To that end,
it is a straightforward approach to sum up those two losses by

`+ = E
i
[`cls(xxxi,yi;WWW ,bbb)]+ `metric({xxxi,yi}n

i=1). (6)

In back-propagation, however, it results in a simple addition of the two different updating for-
mulas (5) which could be interfered due to the subspace overlapping, span(WWW )∩span(XXX) 6=
/0. Therefore, we can conjecture that the simple approach to sum up the two losses would be
less effective for enhancing feature representation; it is also empirically shown in Sec. 3.

2.4 Direct sum of losses

We propose an approach to effectively integrate those two losses by leveraging the classifier
subspace to reduce the interference; an overview of the method is depicted in Fig. 1. Here,
we assume that the feature dimensionality is greater than the number of classes, d >C, which
is frequently found in classification tasks.

Let an orthonormal basis matrix of the classifier subspace span(WWW ) be denoted by
W ∈ Rd×C such that W>W = I and WWW = WW>WWW . A linear classifier is thereby written in
WWW>xxx = WWW>(WW>xxx) where WW>xxx is a projection from xxx to the classifier subspace. Thus,
as shown in the gradient (5), the classification loss `cls elaborates the classifier subspace
feature WW>xxx without paying attention to its complementary subspace; we denote bases of
the complementary subspace as W⊥ ∈ Rd×(d−C) such that W>⊥W⊥ = I and W>W⊥ = 0. Pre-
liminary experimental results in Table 1 demonstrate that the features learnt by `cls of SCE
(1) exhibits less discriminativity on the complementary subspace W⊥. Even by combining
`cls with `metric of NCA (4) in the simple summation (6), the complementary feature repre-
sentation is not improved but rather degraded a bit due to the interference by the overlap of
gradient subspaces as discussed in Sec. 2.3. Therefore, it implies that there is a room in the
complementary subspace to further improve feature representation.
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Table 2: Datasets for few-shot learning. The number of classes and samples are shown
respectively for training/validation/test set which are disjoint in terms of class categories.

mini-ImageNet [28] tiered-ImageNet [24] CUB200 few-shot [6] Cifar100 few-shot [3]

Classes 64 / 16 / 20 351 / 97 / 160 100 / 50 / 50 64 / 16 / 20
Samples 38400 / 9600 / 12000 448695 / 124261 / 206209 5885 / 2950 / 2953 38400 / 9600 / 12000

We exploit the complementary subspace W⊥ ignored in `cls by using `metric. The pro-
posed method is formulated by decomposing feature xxx into the classifier subspace W and its
complementary one W⊥ to which the two types of losses are respectively applied as

`⊕ = E
i
[`cls(xxxi,yi;WWW ,bbb)]+ `metric({W⊥W>⊥xxxi,yi}n

i=1), (7)

where note that `cls(xxxi,yi) = `cls(WW
>xxxi,yi). Since this is the sum of two losses measured on

disjoint subspaces as shown in Fig. 1, our approach (7) is regarded as direct sum of those
losses in terms of the classifier subspace W and its complementary subspace W⊥. By splitting
the feature space, we can reduce interference between the two losses and effectively harness
the updating mechanisms (5) embedded in those losses to enhance feature representation. It
is noteworthy that the disentanglement is applied only to a loss without touching a backbone
architecture, making the proposed method applicable to various networks. The preliminary
result in Table 1 shows that our direct-sum approach improves discriminativity on both the
subspace representations W and W⊥.

We compute the projection to the complementary subspace without explicitly extracting
the basis W⊥ as

W⊥W
>
⊥xxx = xxx−WW>xxx≈ xxx−WWW (WWW>WWW + εI)−1WWW>xxx, (8)

where a small fraction ε is introduced to avoid rank reduction of WWW ; we set ε = 0.001. The
approximated form of projection is justified in the supplementary material.

3 Result
We apply the proposed direct-sum loss (Sec. 2.4) to train a model φθθθ on few-shot image
classification tasks by utilizing two types of losses (Sec. 2.1&2.2).

3.1 Experimental setting
Datasets: We evaluate image classification performance on few-shot scenarios using mini-
ImageNet [28], tiered-ImageNet [24], CUB200 [6] and Cifar100 [3], of which details are
shown in Table 2. In the few-shot learning, a dataset is split into training/validation/test sets
which are disjoint in terms of class categories; a model learned on a training set is deployed
to classify test samples drawn from novel classes which are unseen in the training.
Training: We construct a backbone model φθθθ by ResNet-12 [20, 21], a popular variant of
ResNet [17] in the literature, which produces d = 640-dimensional feature xxx. In training,
the model is equipped with a classification head parameterized by {WWW ,bbb} (Sec. 2.1) to dis-
tinguish training class categories so that both classification and metric-based losses join in
optimizing the parameters θθθ . The learning is performed in a standard supervised way using
training samples annotated by class labels; we apply SGD optimizer with momentum of 0.9,
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Table 3: Ablation study regarding subspace-based loss integration. The left table shows
classification accuracies (%) by 5-way 1-shot evaluation on mini-ImageNet; the top two
columns are the results of individual losses, SCE and NCA, without loss integration. The
right chart depicts approaches to leverage various subspaces for the integration.

projection in Acc. (%)
`cls `metric 1 shot

SCE W - 63.85
NCA - I 63.95
ours W W⊥ 65.16
i-1) W I 64.20
i-2) W W 63.93
ii-1) RC RC⊥ 64.25
ii-2) IC IC⊥ 63.93

Fe
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ur
e 
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 D
im

.

i-1) ii)i-2)ours

weight decay of 0.0005, initial learning rate of 0.1 which is dropped with a decay rate of
0.1 at the 80th and 120th epochs over 160 training epochs including 10-epoch warming up.
A mini-batch size n is set to 512 samples on all the datasets except for CUB200 where 128
samples constitute a mini-batch. As the metric-based loss (Sec. 2.2) is built on pair-wise
relationships among mini-batch samples, class distribution in the mini-batch would affect
performance. Thus, we construct a mini-batch by N-way K-shot samples to control the class
distribution under the same budget of mini-batch size, n = NK; we draw N class categories
each of which contains K training samples. We report the best performance across various
configurations of N and K for fair comparison of all the methods; the details are shown in
the supplementary material.
Few-shot classification: After training, the classification head is detached and the backbone
model φθθθ is transferred to classification of novel-class samples in a few-shot setting, referred
to as an N-way K-shot scenario; for evaluation, we repeatedly draw 10,000 sets of N = 5-
way K ∈ {1,5}-shot with 15 test query samples. We extract feature vectors by applying the
frozen backbone φθθθ to the N ·K samples and then construct a non-parametric classifier of
nearest class centroid [20, 25, 31] to categorize test query samples into N classes.

3.2 Ablation study
Our method (7) contains the key processes that (i) two losses are separated by disjoint sub-
spaces and (ii) the subspaces are built based on the trainable classifier weight WWW , i.e., clas-
sifier subspace. We analyze the method from these aspects in an ablation manner by using
SCE classification loss (1) and NCA metric loss (4); the performance comparison on mini-
ImageNet is shown in Table 3 including the results of individual losses, SCE and NCA.
i) Subspace separation: From a perspective to feed different feature spaces to the respective
losses in (7), we can compute `metric on various subspaces of different overlapness with the
classifier subspace W which is an intrinsic subspace of `cls as described in Sec. 2.4. The
most straightforward approach is to use whole feature space, Ixxx, using an identity projection
matrix I ∈Rd×d ; note that I= WW>+W⊥W

>
⊥. This leads to a simple summation approach (6)

which integrates two losses by directly computing `metric in an input feature space. It is also
conceivable to formulate the metric loss within the classifier subspace as `metric({WW>xxxi}n

i=1),
which is contrary to our approach (7) computing `metric in the complementary subspace W⊥.

As shown in Table 3i, the simple summation (Table 3i-1) is slightly superior to the
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loss only defined in the classifier subspace (Table 3i-2); the summation approach provides
marginal improvement over the individual losses. As the classifier-subspace loss (i-2) causes
heavy overlap between `cls and `metric, two loss gradients (5) are interfered in the classifier
subspace, failing to improve performance. On the other hand, the proposed method that
separates the two losses in (7) outperforms those variant approaches; specifically, it is supe-
rior to the simple summation (i-1). As discussed in Sec. 2.3, the two losses `cls and `metric
provide distinct updating approaches toward discriminative feature representation [4]. In
our method, separating those two updating mechanisms in terms of subspace increases their
synergy without interference by successfully enhancing the complementary feature repre-
sentation (Table 1).
ii) Classifier subspace: We then manipulate the prior structure of the classifier subspace
W which is gradually trained through the end-to-end learning via `cls. To that end, fixing
classifier [18] inspires us to fix the classifier subspace bases to a predefined orthonormal
matrix as follows. We can employ a random orthonormal matrix RC ∈ Rd×C for the bases.
While RC is a dense matrix composed of non-zero values, a naive approach is to use a sparse
matrix IC ∈ Rd×C, the first C-column sub-matrix of an identity matrix I ∈ Rd×d ; I>C xxx picks
up the first C feature elements of xxx. Though the two matrixes are coincident by rotation,
they work differently in back-propagation. That is, IC completely excludes the latter d−C
feature components in xxx while RC conveys back-propagation to all d feature components. In
the fixed subspace, trainable classifier weights are re-parameterized by WWW = RCωωω or ICωωω

where ωωω ∈ RC×C are trainable parameters; e.g., for the fixed random subspace, the direct-
sum loss (7) is given by Ei [`cls(R

>
C xxxi,yi;ωωω,bbb)]+ `metric({RC⊥R

>
C⊥xxxi,yi}n

i=1).
As shown in Table 3ii, the random subspace RC works slightly better than the sparse one

IC. This comparison clarifies that separating feature components is less effective and dense
subspace separation is important for direct-sum integration. Note that in the subspace sepa-

ration, two loss gradients are disjoint in terms of subspaces, ∂`cls
∂xxx
>

∂`metric
∂xxx = 0, but overlapped

at each feature element, ∂`cls
∂x j
· ∂`metric

∂x j
6= 0. The fixed random subspace (ii-1) is inferior to

our approach which adaptively optimizes a classifier subspace during training. These ex-
perimental results highlight efficacy of our adaptive subspace separation for integrating two
types of losses in an end-to-end framework.

3.3 Performance comparison
As described in Sec. 2, we have two options of SCE and BCE for a classification loss
(Sec. 2.1) while considering Proto and NCA losses as a metrics-based loss (Sec. 2.2). Ta-
ble 4 thoroughly compares performances of those losses on four datasets (Table 2); a simple
summation (6) of two losses (Table 3i-1) is denoted by ‘+’ while our direct-sum approach
(7) is indicated by ‘⊕⊕⊕’, such as in SCE+NCA and SCE⊕⊕⊕NCA.

In the simple summation of `cls and `metric, NCA compensates the classification losses;
SCE+NCA and BCE+NCA work relatively better than those with Proto loss. The NCA loss
(4) is directly built upon pair-wise relationships across samples to enhance discriminativity
in a complementary way to the classification losses, while the Proto loss (3) utilizes class-
wise representation via class prototypes similarly to classification losses using WWW ; such a
similarity regarding loss formulations could further induce interference. The simple summa-
tion approach, however, provides less evident improvement over the individual losses. On
the other hand, our direct-sum method improves performance by successfully exploiting the
synergy of two losses. While NCA works well as is the case with the simple summation,
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Table 4: Classification accuracies (%) on 5-way {1, 5}-shot evaluation; in each cell, left/right
number shows accuracy in 1/5-shot setting, respectively.

Method mini-ImageNet tiered-ImageNet CUB200 few-shot Cifar100 few-shot

Classification loss
SCE 63.85, 79.68 71.67, 86.37 73.37, 88.53 70.88, 84.84
BCE 64.00, 80.20 72.14, 86.14 75.80, 89.57 70.15, 83.91
Metric loss
NCA [20] 63.95, 79.47 70.40, 84.95 75.78, 87.74 71.49, 84.49
Proto [25] 61.71, 77.56 70.40, 85.39 76.33, 88.53 70.10, 83.97

Sum loss (6)
SCE+NCA 64.20, 80.09 70.08, 84.87 78.47, 90.66 70.85, 85.39
SCE+Proto 62.84, 80.82 70.95, 85.66 76.85, 89.77 68.83, 85.13
BCE+NCA 64.64, 81.06 70.84, 85.48 78.95, 90.26 72.03, 85.17
BCE+Proto 63.43, 80.74 71.36, 85.95 78.66, 90.36 69.78, 83.28

Direct-Sum loss (Ours) (7)
SCE⊕⊕⊕NCA 65.16, 81.89 72.20, 86.50 78.91, 90.73 71.98, 85.69
SCE⊕⊕⊕Proto 64.16, 81.19 72.27, 86.75 78.30, 90.10 71.68, 84.10
BCE⊕⊕⊕NCA 65.61, 81.98 71.61, 86.69 79.89, 90.49 72.06, 85.33
BCE⊕⊕⊕Proto 64.27, 81.44 72.14, 86.52 78.67, 89.99 70.74, 83.95

the proposed method also boosts performance of the Proto loss by means of the subspace
separation.

We further evaluate those methods in a transductive few-shot classification [11] making
use of 15 test query samples for inference, while we have so far applied an inductive classifier
of nearest class centroid built only on the 5-way {1,5}-shot training samples. To that end, we
replace the nearest mean classifier with LaplacianShot [33] to report performance results in
Table 5. Similarly to the inductive classification results in Table 4, the proposed direct-sum
method produces favorable performance improvement.

3.4 Spectral sum of losses
The direct-sum approach in Sec. 2.4 is built upon the assumption that the feature dimen-
sionality is greater than the number of classes, d > C, so as to exploit the complementary
subspace of d−C dimensions; in the above experiments, d = 640 of ResNet-12 satisfies
the requirement. To cope with the case of d ≤C, we can extend the direct-sum method by
introducing spectral decomposition of a classifier as follows.

The classifier weight WWW ∈Rd×C can be decomposed via singular value decomposition as

WWW = W̃diag(λλλ )V>, (9)

where W̃ ∈ Rd×d indicates the subspace basis matrix and λλλ ∈ Rd are singular values. In a
case of d >C (Sec. 2.4) where WWW has C singular values, we can pad d−C zeros to form λλλ =
[λ1, · · · ,λC,0, · · · ,0] ∈ Rd for general formulation. Then, the singular values are converted
into spectral weights of

λ̃λλ =
λλλ

max j λ j
∈ [0,1]d , (10)

which indicate normalized significance of the bases W̃; i.e., λ̃ j indicates how much the j-th
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Table 5: Transductive classification performance by applying LaplacianShot [33] classifier
to 5-way {1, 5}-shot evaluation.

Method mini-ImageNet tiered-ImageNet CUB200 few-shot Cifar100 few-shot

Classification loss
SCE 71.25, 82.34 79.35, 87.38 83.97, 91.44 78.66, 86.12
BCE 70.87, 82.26 78.85, 87.61 84.56, 91.78 77.37, 84.68
Metric loss
NCA [20] 71.13, 81.74 78.11, 86.43 82.68, 89.62 79.10, 85.49
Proto [25] 68.98, 80.30 79.11, 86.58 85.41, 90.47 77.47, 84.85

Sum loss (6)
SCE+NCA 71.60, 82.61 78.15, 86.49 87.60, 92.81 79.71, 86.70
SCE+Proto 72.60, 84.12 79.47, 87.76 86.70, 91.76 79.39, 87.50
BCE+NCA 72.69, 83.60 78.55, 86.68 87.40, 92.39 79.90, 86.20
BCE+Proto 72.39, 84.18 79.75, 87.84 87.95, 92.66 77.51, 84.04

Direct-Sum loss (Ours) (7)
SCE⊕⊕⊕NCA 73.39, 84.26 79.87, 87.98 87.58, 92.24 80.62, 86.71
SCE⊕⊕⊕Proto 72.93, 84.07 79.96, 88.04 87.65, 92.76 78.42, 84.88
BCE⊕⊕⊕NCA 72.95, 84.30 79.44, 87.11 88.11, 92.85 80.32, 87.18
BCE⊕⊕⊕Proto 73.02, 84.11 80.16, 87.96 87.85, 92.95 77.60, 85.08

Table 6: Classification performances on iNaturalist-2017 dataset [9]. As in Table 4, classifi-
cation accuracies are measured on 5-way {1, 5}-shot evaluation by an inductive classifier.

p 0.5 0.4 0.3 0.2 0.1

SCE⊕̃⊕⊕pNCA 83.13, 92.57 83.49, 92.79 83.73, 92.77 83.51, 92.99 83.50, 92.75
SCE⊕̃⊕⊕pProto 83.30, 92.77 83.13, 92.71 83.70, 92.68 83.58, 92.77 83.42, 93.00

Method SCE NCA Proto SCE+NCA SCE+Proto

Acc. (%) 81.76, 92.73 82.42, 92.22 82.95, 92.08 82.43, 92.29 82.02, 91.87

column of W̃ contributes to the classifier WWW . By using the spectral weights, we formulate the
spectral-sum method to integrate `cls and `metric in

`⊕̃p = E
i
[`cls(xxxi,yi;WWW ,bbb)]+ `metric({W̃diag(111− λ̃λλ

p
)W̃>xxxi}n

i=1), (11)

where λ̂λλ
p
= [λ̃ p

1 , · · · , λ̃
p
d ]
> with a hyper-parameter 0≤ p≤ 1 of power exponent. The 111− λ̃λλ

p

works as weighting for constructing a feature (sub)space complementary to the classifier WWW ;
it reduces overlap with WWW as much as possible, as shown in the supplementary material. It
should be noted that the direct-sum method (7) for d >C is reconstructed by p= 0 to produce
the binary weights of 1− λ̃ 0 ∈ {0,1} which pick up basis vectors of the complementary
classifier subspace of λ j = 0, C < ∀ j ≤ d. Thus, the spectral-sum loss (11) is regarded as a
natural extension of the direct sum (7) via soft weighting based on the singular values (10).

We applied the method to few-shot image classification on iNaturalist-2017 dataset [9]
which provides C = 908 classes on the training set, greater than d = 640 feature dimension-
ality. As shown in Table 6, we apply the method (11) with various exponent p and see that
the lower p, especially p = 0.3, produces favorable performance, outperforming the others.
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4 Conclusion
We have proposed an approach to integrate two types of losses, classification and metric-
based losses. As a simple summation of the two losses brings about interference in parameter
updating, the proposed method divides a feature space into subspaces based on a classifier
weight so that the two losses work on respective subspaces in a separated manner. The direct-
sum loss enhances feature representation in the complementary classifier space ignored in
the classification loss by exploiting the metric loss without interference. In the experiments
on few-shot image classification which demands generalizable feature representation, the
proposed method favorably improves performance by effectively combining the two losses.
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