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Figure 1: Pipelines of federated learning-based face recognition methods including our pro-
posed method. (a) The server collects class embedding of client ¢ (e.g. FedFace). (b)

Client ¢ continuously downloads public data from the server (e.g. FedFR). (¢) Our pro- L Client ¢ Y Adaptive soft label
posed method(FedFS), client ¢ performs intra-subject self-supervised learning without any (a) Intra-subject Self-supervised Learning (b) Intra-subject Loss
additional work.
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Figure 2: (a) is an overview of our proposed training process and (b) is the detailed process
of intra-subject loss. The global model outputs two vectors and the personalized model

I I H also outputs two vectors. Using each output, we calculate regularization loss and create a
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con- struction utilizing dot product and intra-subject
self-supervised learning employing cosine similarity
while protecting users’ data privacy.

Intra-subject loss
Total loss

_ N exp(cosci ;)
PtV e, 06) = A Fing (e, 60) + (1~ 1) Freg v, ) Fua (Vo0 0) = = B Gt MO8 T i)

- Regularization loss is proposed to prevent bias in

the performance of personalized models. Through
this, FedFS solves the problem of easily falling into
overfitting when training only with personal data, and
trains indirectly generalized facial features. Figure 3: Each graph represents the ROC curve against the pre-trained model @ benchmark

and the ROC curve against federated learning methods using the pre-trained model.
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