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Abstract

Categorization, a core cognitive ability in humans that organizes objects based on
common features, is essential to cognitive science as well as computer vision. To evalu-
ate the categorization ability of visual AI models, various proxy tasks on recognition from
datasets to open world scenarios have been proposed. Recent development of Large Mul-
timodal Models (LMMs) has demonstrated impressive results in high-level visual tasks,
such as visual question answering, video temporal reasoning, etc., utilizing the advanced
architectures and large-scale multimodal instruction tuning. Previous researchers have
developed holistic benchmarks to measure the high-level visual capability of LMMs, but
there is still a lack of pure and in-depth quantitative evaluation of the most fundamental
categorization ability. According to the research on human cognitive process, catego-
rization can be seen as including two parts: category learning and category use. Inspired
by this, we propose a novel, challenging, and efficient benchmark based on composite
blocks, called ComBo, which provides a disentangled evaluation framework and cov-
ers the entire categorization process from learning to use. By analyzing the results of
multiple evaluation tasks, we find that although LMMs exhibit acceptable generaliza-
tion ability in learning new categories, there are still gaps compared to humans in many
ways, such as fine-grained perception of spatial relationship and abstract category under-
standing. Through the study of categorization, we can provide inspiration for the further
development of LMMs in terms of interpretability and generalization.

1 Introduction
Categorization is one of the most fundamental cognitive abilities of humans. As shown in
Fig.1, visual categorization involves the process of organizing objects into categories based
on shared features or attributes (category learning), and using the mental representation to
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Figure 1: Human behavior in categorization. People can group objects together based on
common patterns, form mental representation of categories, and classify novel items.

complete cognitive tasks, such as classifying new objects (category use) [26]. The learning
and use of categories is not only a significant research topic in cognitive science but is also
considered a critical feature of artificial intelligence [11].

With the progressive enhancement of computer vision models, there should be an implicit
improvement in the capability for categorization, evaluated by the development of diverse
proxy tasks, such as object recognition. In recent years, multimodal models like CLIP [30]
align visual and textual modalities, thereby liberating categorization from the constraint of
datasets and advancing towards open-world scenarios. Moreover, Large Multimodal Models
(LMMs) have integrated modalities such as vision into language models with a large number
of parameters, displaying remarkable performance on numerous high-level visual tasks [34,
48] and holistic benchmarks [51, 52]. Excellent understanding shown in image captioning
[6] and visual question answering [13, 16, 25] implies that LMMs seem to possess sufficient
categorization ability [44]. However, there is a lack of direct, objective, and decoupled
evaluations of LMMs’ capabilities in the most fundamental tasks of visual perception.

To explore this question, a pure and in-depth benchmark is required to dissect categoriza-
tion ability of LMMs. We argue that an effective benchmark should have the following char-
acteristics: (1) Avoiding data leakage. Prevent not only data sample leakage [12, 24] but
also leakage of evaluation categories. Similar to using abstract reasoning to test human in-
telligence in Wechsler Adult Intelligence Scale [41], some abstract and novel categories that
are impossible to exist in the training set should be introduced. (2) Establishing quantitive
and discriminative tasks. Select diverse and quantifiable evaluation tasks and questions to
ensure objectivity and maximize dissection efficiency, allowing us to explore the boundaries
of their capability through failure case analysis [12]. (3) Performing unit tests and integra-
tion tests. Design a diverse set of evaluation tasks that cover the entire cognitive process of
category learning and use. These tasks should avoid unrestrained end-to-end questions to en-
sure a disentangled evaluation. To respond to these requirements, we will revisit the human
cognitive process of categorization [26, 32, 39], and attempt to decouple the key evaluation
points to probe the categorization process of LMMs, which will be detailed in Sec.2.

To meet the aforementioned requirements of categorization evaluation, we construct a
synthetic dataset consisting of Composite Blocks (ComBo), which will be elaborated in
Sec.3. The objects and categories in ComBo are entirely unseen to LMMs, meeting the need
of preventing data leakage. Since the synthetic data is completely controllable, we can easily
control the difficulty of the tasks and inexpensively generate a large number of questions
with ground truth for quantitative evaluation. Inspired by the analysis of the categorization
process, we design a series of tasks covering the entire cognitive process, aiming to compre-
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Figure 2: The cognitive processes of humans and LMMs in categorization. Categorization
can be modeled as a process of category learning and category use between concrete and
abstract spaces. The proposed evaluation tasks are shown in green blocks.

hensively evaluate the categorization capability of LMMs. First, we evaluate LMMs’ ability
to perceive low-level patterns that is critical for accurate object recognition. Next, we ex-
plore their capability to align abstract category representations with human mental concepts
by predefined semantic categories, which verifies the consistency of the learned concepts.
Finally, we challenge the models with unseen abstract categories to examine their generaliz-
ability of categorization ability. These experiments are designed to illuminate the strengths
and limitations of LMMs in replicating human-like category cognition, thereby pushing the
boundaries of LMMs in understanding and interacting with the real-world objects.

The experimental results and analyses in Sec.4 reveal that while LMMs demonstrate
enhanced categorization capability over traditional CV models, they continue to be stuck in
spatial detail recognition, abstract conceptual reasoning, and learning unseen categories in
some scenarios. The corresponding discussions and related work are presented in Sec.4.3
and Sec.5. Analyzing these failure cases allow us to explore LMMs’ shortcomings from
a more basic level and make effective promotions. We believe that studying the low-level
visual capability such as categorization of LMMs will contribute to the further development
of generalizability and interpretability in AI models.

2 Categorization Dissection
In this section, we will break down the design of categorization dissection, starting with an
introduction to the cognitive processes of categorization of humans and LMMs in Sec.2.1,
and based on this, we will introduce the design philosophy of our evaluation in Sec.2.2.

2.1 Overview of Categorization
As shown in Fig.2, the cognitive process of categorization involves information transmission
between concrete space and abstract space [26]. The concrete space consists of perceivable
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Figure 3: Three progressive tasks on categorization evaluation. (a) Pattern Perception:
Evaluating LMMs’ low-level pattern recognition ability. (b) Abstraction Alignment: Com-
paring the category abstract representations between humans and LMMs. (c) Category
Building: Examining LMMs’ categorization ability on abstract unseen categories.

visual entities in the real world, including various data forms of the object categories, such as
a photorealistic ice cream, an ice cream sketch, and toy blocks like an ice cream. The abstract
space is where both humans and LMMs store categorization rules about these categories
respectively, such as the shape of the category “ice cream” (typically consisting of a cone
and ice cream balls) and some attributes (a cold dessert). Humans use mental representations
to encode key aspects about category members [26], while LMMs store knowledge about
entities in their internal implicit representation spaces, such as feature vectors.

Thus, the cognitive process of categorization can be represented as follows. (1) category
learning: humans and LMMs perceive data in concrete space, gathering some items with
common features together. They then abstract and summarize the commonalities of these
items to form a concept representation of the category in abstract space. (2) category use:
humans and LMMs utilize the concepts in abstract space to construct various cognitive func-
tions. For example, classifying a newly encountered object as ice cream, inferring the cold
taste and other attributes a new ice cream should have, and even implicitly applying it to
tasks such as image captioning and visual question answering about a dessert shop.

2.2 Design Philosophy of Evaluation

Based on the cognitive process of object categorization described above, we design three
evaluation tasks (green blocks in Fig.2) corresponding to different stages of the categoriza-
tion process, in order to conduct a comprehensive evaluation of the categorization capability
of LMMs.

Pattern Perception: pre-CL evaluation. When perceiving entities in the concrete
space, patterns are the direct perceptual targets for humans and LMMs. The ability to accu-
rately identify low-level patterns is a prerequisite for category learning (pre-CL). As shown
in Fig.3 (a), we evaluate the ability of LMMs to recognize patterns in multiple dimensions,
such as shape, material, color, etc., in a fully disentangled manner.

Abstraction Alignment: post-CL evaluation. Alignment between the abstract spaces
is one of the important topics in eXplainability AI (XAI) research [7]. We further explore
whether LMMs’ learned representations of category learning (post-CL) are aligned with
human mental representations. As shown in Fig.3 (b), LMMs are asked to recognize abstract
visual stimuli agreed upon by humans and align them with the correct semantic labels.

Category Building: full-chain evaluation. As shown in Fig.3 (c), to examine the cat-
egorization capability of LMMs from learning to use, we define several groups of abstract
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Figure 4: Overview of Composite Blocks (ComBo) dataset: exemplar images and attributes.
Each object can be represented by four-dimension fully-disentangled attributes as shape,
color, material, and contact point between the primary primitive and the secondary primitive.

unseen categories in ComBo, requiring LMMs to observe exemplar objects, induce the defi-
nitions of two categories and classification boundaries, and finally classify new objects. This
task is considered complex as it involves both perception and cognition, closely resembling
many laboratory tasks designed for human participants.

3 The ComBo Benchmark

3.1 Overview of ComBo
We construct a large-scale repository of Composite Blocks for categorization (ComBo),
where each object within the dataset is composed of two geometric primitives, named pri-
mary primitive and secondary primitive according to the size of the primitives. The primary
and secondary primitives are contacted through a contact point on the primary primitive.
The optional shapes of the primitives and the optional contact points on the primary prim-
itive are all displayed in Fig.4. To enhance the visual diversity of ComBo, four different
materials are assigned to the primitives. Additionally, the rubber and metal materials are
further differentiated by five colors.

By enumerating all the values across the four disentangled dimensions of shape, material,
color, and contact point, a total of 9,504 objects can be obtained, with each pair of objects
differing in at least one dimension. We utilize a ray tracing based rendering engine [4] to
render each composite object from 20 random viewpoints, culminating in the 190,080 images
in ComBo, inspired by CLEVR [17]. More details are shown in supplementary materials.

The benchmark content and evaluation results are publicly available at: https://
fubin29.github.io/Blocks-as-Probes/.

3.2 Tasks
As mentioned in Sec.2.2, to evaluate LMMs’ categorization capability, we start with three
tasks: Pattern Perception, Abstraction Alignment, and Category Building. Examples
for three tasks and the corresponding answers by LMMs are illustrated in Fig.5, and some
statistics about the benchmark are shown in Tab.1.

Pattern Perception. We randomly select 5,000 objects from ComBo as evaluation sub-
jects, and sample one rendered image for each object. Participants are required to sequen-
tially answer seven questions about the low-level patterns present in the object, as shown in
Tab.2. All questions are multiple-choice, and a brief description of ComBo along with all
the options are provided.

Abstraction Alignment. In this task, we invite cognitive science experts to select ap-
propriate natural categories that can be abstracted by our ComBo objects. Following a fil-

Citation
Citation
{Blender Online Community} 2024

Citation
Citation
{Johnson, Hariharan, Van Derprotect unhbox voidb@x protect penalty @M  {}Maaten, Fei-Fei, Lawrenceprotect unhbox voidb@x protect penalty @M  {}Zitnick, and Girshick} 2017

https://fubin29.github.io/Blocks-as-Probes/
https://fubin29.github.io/Blocks-as-Probes/


6 FU, WAN, LI, WANG, CHEN: BLOCKS AS PROBES

Question: Which option that best 
matches the object in the image?
Options: A. Light bulb; B. Hourglass; C. 
Plumb bob; D. Fountain

GPT A
Gemini B

Question: What is the shape of the 
primary primitive?
Options: A. Cube; B. Sphere; C. Cylinder; 
D. Cone; E. Conical frustum
⋯
Question: What is the color of the 
secondary primitive?
Options: A. Red; B. Yellow; C. Blue; D. 
Green; E. Purple
⋯

The four objects in image 1 belong to Category A, and the four objects in image 2 
belong to Category B. The third image contains a single object that needs to be 
classified.
Question: Based on the characteristics you observe in the sample images for each 
category, which category does the object in the third image belong to?
Options: A or B (indicating category A and category B)
Please think step by step.

Abstraction 
Alignment

Pattern
Perception

GPT Shape of the primary primitive: E⋯
Color of the secondary primitive: D⋯

Gemini Shape of the primary primitive: E⋯
Color of the secondary primitive: D⋯

Category A
Query

Category B

Category
Building

GPT: Analyzing image 1: Objects consistently feature a primary primitive that is a consistent 
color (light purple). The secondary primitives are a different color. ⋯. Analyzing image 2: The 
secondary primitives' shapes vary as in Category A. ⋯ . Based on these observations: The green
primary primitive and light purple secondary primitive in the third image create a clear contrast, 
following the trend seen in Category A. The object's composition uses color contrast similarly to 
how all objects in Category A are structured. ⋯ . Conclusion: The object belongs to Category A.
Gemini: Reviewing Image 1: All objects have a pink cube as the primary primitive. ⋯ . Reviewing 
Image 2: The primary primitives vary in color and shape. ⋯ . All objects have a flat, circular 
secondary primitive with a consistent lavender material.⋯ . Classification: However, the 
secondary primitive is a cone, which is not observed in any of the Category B objects. the third 
image is more likely to belong to Category A.

Figure 5: Examples of the QA pairs for three evaluation tasks. Due to space constraints,
prompts and answers are abbreviated. Refer to supplementary materials for details.

Task Name Evaluation Goal # Questions Question Type Metric

Pattern Perception pre-CL 5000 multiple-choice accuracy

Abstraction Alignment post-CL 240 multiple-choice accuracy

Category Building full-chain
400 multiple-choice accuracy
400 CoT manual scoring

Table 1: Summary of three evaluation tasks. For multiple-choice questions, we use the
accuracy of correct options as evaluation metric. For answers by Chain-of-Thought (CoT),
they are manually scored by experts to obtain accuracy, process score, and error attribution.

tering and voting process, a consensus is reached on 24 categories, which include image
samples and category labels, for evaluation purposes. Subsequently, we generate two types
of multiple-choice questions, each comprising 120 questions, by incorporating distractors
among the matched abstract objects and category labels. Img2Text requires the participants
to choose the label that best matches the given image out of four category labels. Text2Img
asks the participants to select the image that most resembles the given category from four
image options. The detailed process of question generation is described in supplementary
materials, and the validity of the questions is verified by user study discussed in Sec.4.2.

Category Building. In this task, we require participants to simulate the category forma-
tion in human consensus by constructing abstract categories of different granularities, and
then classify the test samples. Abstract categories are groups of object clusters defined based
on rules, where all composite objects in an abstract category have the same constraint (e.g.,
“with a red cube as the primary primitive”). We present multiple samples from two abstract
categories to the participants, requiring them to observe and summarize the rules for build-
ing both abstract categories. Furthermore, we randomly show test samples belonging to the
two categories to the participants multiple times. Participants should be able to classify all
samples correctly when they understand the categories. We also design a similarity mea-
surement method to calculate the evaluation task difficulty for classifying composite objects
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Primary Primitive Secondary Primitive
Contact Point

Shape Material Color Shape Material Color

LLaVA 55.7 50.7 40.6 48.6 38.1 29.5 47.2
Qwen 70.7 70.2 65.8 37.2 43.1 25.4 43.8

GPT-4V 89.4 75.8 94.8 64.6 68.4 87.9 43.7
Gemini 95.9 96.0 99.5 79.6 86.6 94.8 64.9

Table 2: Pattern Perception Results (%). For GPT-4V and Gemini, all seven low-level pat-
terns are queried simultaneously in a single question, whereas each pattern is addressed in a
separate question for LLaVA and Qwen.

within abstract categories. See supplementary materials for more details.

4 Experiments

4.1 Evaluation Settings
In this study, we select the mainstream closed-source implementations of current LMMs
(GPT-4V [28, 47], Gemini-1.5-Pro [31]) and open-source implementations (LLaVA-v1.5-
13B [21], Qwen-VL-Chat [3]) as the subjects of our analyses. To evaluate GPT-4V and
Gemini, we utilize their official APIs. For LLaVA and Qwen, we conduct local tests using
a single NVIDIA A40 GPU. Additionally, we include other implementations as comparative
references in different experiments, such as representation classification based on CLIP [30]
pre-trained models, evaluations from human users, etc. More details and examples about
image input and prompt are presented in supplementary materials.

4.2 Evaluation Results
Pattern Perception. Tab.2 demonstrates the pattern perception capability of various LMMs,
without any fine-tuning or in-context prompting. Gemini and GPT-4V exhibit significantly
stronger low-level pattern recognition and instruction-following capability, compared to open-
source LMMs (even in simpler separate questions). Notably, Gemini and GPT-4V gener-
ally achieve the accuracy of larger than 90% in recognizing the primary primitive’s shape
and colors of both primitives. We also find that the recognition of patterns in smaller sec-
ondary primitives presents greater challenges, resulting in performance declines across all
the LMMs. Overall, Gemini achieves the best results in all metrics, and especially excels in
predicting the contact points, indicating its advanced spatial perception capability.

Considering the domain transfer challenges posed by the ComBo dataset, we conduct
additional in-context learning experiments [1, 5, 38] on GPT-4V and Gemini, focusing on
contact points and materials of both primitives. As shown in Fig.6, the results indicate that
GPT-4V can significantly improve its performance through in-context learning. We speculate
that Gemini’s performance advantage over GPT-4V might stem from Gemini’s exposure to
similar block data during training and specialized training on spatial relationships.

Abstraction Alignment. We invite 20 human participants to complete the user study to
validate the reasonableness of our questions. The results indicate that the abstract objects in
the images bear a good resemblance to the mental representation of natural categories held by
humans. Tab.3 presents the alignment between the category concepts learned by LMMs and
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Img2Text Text2Img Overall

CLIP 47.5 75.8 61.7

LLaVA 55.0 29.2 42.1
Qwen 48.3 32.5 40.4

GPT-4V 55.0 76.7 65.9
Gemini 52.5 74.2 63.4

Human 80.8 ± 9.5 94.4 ± 5.2 87.6 ± 10.2

Table 3: Abstraction Alignment Results (%).
Specifically, by calculating the similarity be-
tween CLIP features of the query and the op-
tions, we provide CLIP’s alignment results.

human mental representations for natural categories. For Img2Text, which involves match-
ing one image to four semantic labels, all the LMMs exhibit similar performance with an
accuracy rate of around 50%. For Text2Img, matching one semantic label to four images,
GPT-4V and Gemini outperform the open-source LMMs. However, considering both types
of questions, the abstract reasoning ability of LMMs still falls short of humans.

Additionally, two conclusions can be drawn from the experimental results: (1) The poor
performance of open-source LMMs on Text2Img stems from the need to reason based on
multiple input images, a relative weakness for these models compared to others like GPT-
4V. (2) Img2Text is harder than Text2Img. In the semantic space, a single image corresponds
to a relatively definite feature representation, while the feature representation for a label is
actually the centroid of a group of similar images’ features. Therefore, matching images to
multiple semantic labels in the question introduces greater uncertainty.

Category Building. In this task, we invite 8 human participants to assess whether the
proposed similarity measurement method correlates with human cognition and whether it
is applicable for evaluating the classification difficulty of abstract categories. Based on this
similarity measurement, we design four difficulty levels: easy, medium, hard, and expert. We
also invite another 23 human participants to complete this task, providing a human reference
score (the red line in Fig.7) for comparative analysis. Fig.7 illustrates the complete catego-
rization capability of different LMMs across varying difficulties.1 As the difficulty increases,
represented by the diminishing differences between two categories, the challenge for LMMs
to construct accurate category representations and classify query objects also escalates, and
all LMMs demonstrate varying degrees of performance decline. In contrast, human partic-
ipants maintain high classification accuracy across different difficulty levels. Even in the
expert level, human participants can perceive the increase in difficulty but still manage to
cope effortlessly. However, when the differences between two categories become minimal,
and they must rely on the shape of secondary primitives or the combination of two primitives
for distinction, the weaknesses of LMMs in pattern perception are further magnified in this
experiment.

We further employ the Chain-of-Thought (CoT) approach [5, 42]. Both GPT-4V and
Gemini possess robust reasoning ability; they can effectively perform category building and
application when objects are accurately perceived. The performance differences displayed by
the two models in more difficult questions primarily stem from Gemini’s advantage in low-
level pattern recognition. From Fig.7, requiring LMMs to explicitly output their decision-

1Qwen failed to produce a valid output in this task, hence there is no corresponding entry in Fig.7
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LMMs Using CoT Technology:
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LMMs’ decision-making pro-
cesses.

making processes in CoT format indeed enhances their performance in this task. Moreover,
CoT technology helps us understand the causes of misclassification, as shown in Fig.8.

4.3 Discussion
4.3.1 Prompt Design and Instruction Following

During the evaluation process, we find significant differences in the instruction following
[29] capability among different LMMs. GPT-4V and Gemini can understand the most com-
plete description of the questions, and can also receive multiple image inputs, allowing them
to handle more complex problems that require reasoning between multiple images. In pattern
perception evaluation, querying different patterns separately can improve the performance of
LLaVA. Qwen’s capability to follow complex instructions is slightly inferior to other LMMs,
requiring more adjustments to the form of the questions.

4.3.2 Task Difficulty

In this section, we discuss the difficulty of our benchmark. Although ComBo, as a dataset
rendered based on geometric primitives, defines problems that are formally similar to abstract
reasoning problems [12] in other benchmarks, it is much less difficult than those benchmarks
in terms of logical reasoning. To verify this, we use some smaller, commonly used computer
vision models to complete the same tasks. By retrieval, models pre-trained on ImageNet-1k
[33] can achieve similar performance to GPT-4V, and almost are able to completely solve the
task after fine-tuning. See supplementary materials for more details. The fine-tuned small
model is capable of completing the task, implying that it does not necessitate a complex
reasoning process. However, current LMMs still show a significant gap compared to humans
in such simple visual tasks, indicating that LMMs are far from being able to claim that the
fundamental tasks of visual categorization have been completely solved.

4.3.3 Limitation and Future Work

We believe that evaluating both the lower and upper bounds of LMMs’ capabilities is equally
important. Compared to other comprehensive evaluation benchmarks, our evaluation bench-
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mark leans more towards the in-depth evaluation of categorization capability, which is
considered one of the most fundamental visual cognitive abilities. Notably, we utilize brand
new synthetic data rather than real 2D images to completely prevent data leakage and facil-
itate decoupled, controllable evaluation. However, it is still necessary to use more complex,
even real images to further evaluate the capabilities of LMMs in real-world application sce-
narios. In future work, we will involve more complex composite objects and controllable
3D models, and incorporate a wider array of cognitive tasks to further explore the current
conclusion. Moreover, we are committed to developing new methodologies and datasets that
enhance LMMs’ performance in perceiving spatial details, reasoning about abstract con-
cepts, and learning new categories. We believe these efforts will enhance the applicability
and reliability of LMMs in various high-level tasks.

5 Related Work
Large Multimodal Models. LMMs [2, 9, 49] integrate visual [22] or other modalities
[15, 43] into Large Language Models (LLMs), enabling them to handle a variety of multi-
modal tasks. High-performance and closed-source LMMs like PaLM-E [10], GPT-4V [47],
and Gemini [35] represent a critical branch of development. These models benefit from
substantial investments in proprietary datasets and computing resources, achieving supe-
rior performance across a range of complex tasks. Another branch consists of open-source
models such as LLaMA-Adapter [53], LLaVA [22], MiniGPT-4 [54], Otter [18], and Qwen
[3]. These LMMs are typically developed by modularly integrating other modalities into
open-source LLMs [37]. Both branches have demonstrated strong capability in various ap-
plications, such as medical image understanding [20, 27] and embodied agents [40, 46].
Consequently, we select two models from each branch for evaluation in our study.
LMM Benchmarks. Due to the more generalized multimodal perception and reasoning ca-
pability of LMMs, traditional vision-language benchmarks are inadequate for providing a
comprehensive and sufficient evaluation. Consequently, recent developments in the evalu-
ation of LMMs have primarily focused on several key aspects [49]: (1) addressing specific
common issues such as visual shortcomings [36] and hallucinations [8, 14]; (2) comprehen-
sive benchmarks that entail complex tasks and diverse capability [19, 23, 45, 50, 51]; (3)
expert-level domain knowledge and advanced reasoning [52]. In contrast to these evaluation
efforts, our study concentrates on assessing the fundamental categorization ability of LMMs.

6 Conclusion
In this work, we introduce the ComBo benchmark, focusing on evaluating the categorization
capability of Large Multimodal Models (LMMs). Inspired by research on categorization
in cognitive science, we design three evaluation tasks from different perspectives, compre-
hensively assessing the LMMs’ ability in pattern perception, abstract concept alignment,
and generalization of categorization. The evaluation results reveal that LMMs still exhibit
deficiencies in spatial detail perception, abstract concept reasoning, and learning of new cat-
egories. Although in-context learning or Chain-of-Thought (CoT) techniques can further
improve the performance of LMMs, there remains a gap compared to human categorization
capability, providing recommendations for future improvements in LMMs.
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