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1 Content
• Additional images and results 2.

• TSNE visualization in the latent space in section 3.

• Proposition justifying the KLD loss to separate the Gaussians in the latent space in
section 4.

• Convergence of the fixed point iteration in section 5.

• Positive definiteness for the covariances, as well as NFGD variant in section 6.

• Extra training details for the NF models in section 7.

2 Additional Images and results

2.1 ImageNet
2.1.1 ImageNet training details

As NFs are computationally very expensive due to the bijection, in order to train them on Im-
ageNet, we use the latent space of a pretrained VAE [12], which downsamples RGB images
x0 2 R256⇥ 256⇥3 into images of shape x 2 R32⇥32⇥4.

2.1.2 ImageNet transformers accuracy

We further evaluate the performance of our NF based augmentations on ImageNet dataset
[3], by fine-tuning very powerful, pretrained transformers from the well known timm [16]
library. We select the most performant transformer with less than 100M parameters for this
experiment, and refer to this page for comparison. It is an EVA02 [5, 6] transformer orig-
inally ranked 9 (in the list), with 87.12M parameters, that was pretrained on ImageNet21k
[11], and then fine-tuned on ImageNet. It takes images of size 448⇥448 pixels, and is called
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"eva02_base_patch14_448. mim_in22k_ft_in22k_in1k" in timm. In accordance with the re-
sults shown in the web link, we use ImagetNet Real [2] labels for the validation, as they fix
labeling mistakes present in the original validation set.
In table 1, we compare our transformer fine-tuned using NFp against the best ones from
timm. It can be noted that it reaches the second highest top 1 and top 5 accuracy score, and
outperforms models with 1B parameters. It also outperforms models with the same number
of parameters by more than 1 accuracy point.

model name top1-acc top5-acc #of Parameters
in Millions

image size expressed
in X x X pixels

EVA02 LARGE [5, 13] 91.129 98.713 305.08 448
EVA02 base [5, 13]

NFp augmentations (ours) 91.082 98.854 87.12 448

EVA[6] 90.969 98.672 1,014.45 560
EVA02 base [5, 13] 90.896 98.802 87.12 448

CAFormer [17] 90.781 98.860 98.75 384
Beit [1, 4] 90.687 98.753 305.67 512

VOLO [18] 90.614 98.698 296.09 512
Swinv2 [9] 90.407 98.734 87.92 384

ViT [4] 90.211 98.702 86.86 384
CaiT [14] 90.051 98.495 271.22 384
DeiT [15] 89.891 98.602 86.88 384

Table 1: Comparison of NF based augmentations with the best models from timm. It can be
noted the NFp based augmentation (blue) achieve the second highest rank, in term of top1
accuracy and top5 accuracy.
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2.1.3 Augmented Images on ImageNet

In this section, we show augmented images obtained with NFp on ImageNet. The Image on
the left is the original one, and the 3 images on the right are augmented using the proposed
latent space, learned using NFp . For the mixup, we follow the principal modes of the data.

Figure 1: Augmentation on class 21.

Figure 2: Augmentation on class 36.

Figure 3: Augmentation on class 52.

Figure 4: Augmentation on class 70.

Figure 5: Augmentation on class 89.
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Figure 6: Augmentation on class 107.

Figure 7: Augmentation on class 117.

Figure 8: Augmentation on class 236.

Figure 9: Augmentation on class 258.

Figure 10: Augmentation on class 330.
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2.1.4 Interpolated Images on ImageNet

In this section, we do linear interpolations between images from identical or different classes.
We can observe a smooth transition, indicating a continuum in the latent space.

Figure 11: Linear interpolation on class 1.

Figure 12: Linear interpolation on class 24.

Figure 13: Linear interpolation on class 510.

Figure 14: Linear interpolation on class 511.

Figure 15: Linear interpolation on class 562.

Figure 16: Linear interpolation on class 930.
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Figure 17: Linear interpolation between random classes.

Figure 18: Linear interpolation between random classes.

Figure 19: Linear interpolation between random classes.

Figure 20: Linear interpolation between random classes.

Figure 21: Linear interpolation between random classes.

Figure 22: Linear interpolation between random classes.
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2.1.5 Sampled Images on ImageNet

In this section, we show class conditional samples from ImageNet, filtered with a classifier.

Figure 23: Samples from class 980 (Volcano).

Figure 24: Samples from class 414 (Backpack).
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2.2 CIFAR
For CIFAR datasets, we wish to remind that image dimensions are smaller than for Ima-
geNet, so the quality/resolution is not limited by the trained NFs, but by the image dimen-
sions. Figure 25 and 26 show sampled images on respectively CIFAR10 and CIFAR100, and
figure 27 shows augmented images on CIFAR10.

Figure 25: Samples on CIFAR10. From top to bottom, the classes are, airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, truck.

Figure 26: Samples on CIFAR100. From top to bottom, the classes are bottle, chair, lion,
maple tree, mountain, orange, rocket, rose, skyscraper, television.
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Figure 27: Example of augmented images on CIFAR10. The first row shows the original
images, and the 3 below show 3 augmented versions obtained with the NF.

2.2.1 BPD results

In Table 2, we provide conditional bits per dimensions (BPD) results for different l values
on CIFAR10 and CIFAR100.

Dataset CIFAR10 CIFAR100
Lambda 100 1000 3000 10 100 750
BPD 3.38 3.54 3.73 3.47 3.72 5.29
NF-Acc 91.00 92.11 93.63 32.75 66.70 71.65

Table 2: Bits per dimensions (BPD) along with NF-Acc for different l values on CIFAR10
and CIFAR100.
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3 Latent space
Figures 28 29 30 show the TSNE latent spaces for different l values on CIFAR100, as well
as the variances of a single Gaussian. It can be noted that Gaussians are gradually separated
as l increases, and that variances decrease.

Figure 28: TSNE (left) and sorted variances of an arbitrary Gaussian taken from the dataset
(right) for l = 10 on CIFAR100. The x axis represents the dimension and the y axis the
value of the variance.

Figure 29: TSNE (left) and sorted variances of an arbitrary Gaussian taken from the dataset
(right) for l = 25 on CIFAR100. The x axis represents the dimension and the y axis the
value of the variance.

Figure 30: TSNE (left) and sorted variances of an arbitrary Gaussian taken from the dataset
(right) for l = 75 on CIFAR100. The x axis represents the dimension and the y axis the
value of the variance.
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Figure 31: Figure showing the TSNE latent space for l = 75 on CIFAR100. Some similar
classes were circled to show the continuum in the latent space.
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4 Proposition cited in section 4.2 of the paper
Let Eq. 11 be the negative log-likelihood of Eq. 2.

LNF (Q,Y) = Â
(x,y)2D

� logN ( f (x); µy,Sy)� log
���detJ f (x)

��� . (11)

Proposition 2 Let PX(.|y1), PX(.|y2) be two probability distributions defined on a compact X ✓ Bd .
The optimization of Eq.11 leads to

E
⇥
(PZ(Z|y1)�PZ(Z|y2))

2⇤ B, (12)

with
B = E

⇥
(PX(X|y1)�PX(X|y2))

2⇤⇥ exp(1)
det(Sy⇤)

, (13)

being y⇤ = argmin
y2Y

det(Sy) and Bd a zero centered unit ball enclosing data1 in X .

Details of the proof are given below. More importantly, the bound in Eq. 13 shows that when
optimizing Eq.11 a good continuum is achieved, but that may result into highly confounded
Gaussians, that can make label conditioning erroneous.

Proof 2 Using Eq.2, one may write

E
⇥
(PX(X|y1)�PX(X|y2))2⇤= E

⇥
(PX( f (X)|y1)�PX( f (X)|y2))2.det(J f (X))

2⇤, (14)

here the expectation is w.r.t. the marginal distribution of X. The class of widely used
flows2 can be written using quasi-linear mapping as Z = f (X) = WXX+ cX, with (Z|Y)⇠
N (µY,SY). With this quasi-linear form, det(J f (X))) = det(WX), and 9x0 2 X s.t.

E
⇥
(PZ(Z|y1)�PZ(Z|y2))2⇤

E
⇥
(PX(X|y1)�PX(X|y2))2

⇤  1
det(Wx0)

2 , (15)

by plugging f (X) in Eq.11, LNF becomes

E


1
2
(WXX+ cX �µY)

0S�1
Y (WXX+ cX �µY)+

1
2

log(det(SY))� log |det(WX)|
�
. (16)

For X ' x0, the stationary solution of LNF w.r.t. Wx0 leads to

S�1
y0
(cx0 +Wx0x0 �µy0)x

0
0 �

sign(det(Wx0))

|det(Wx0)|
.adj(Wx0)

0 = 0 (17)

since
sign(det(Wx0))

|det(Wx0)|
.adj(Wx0) = W�1

x0
, (18)

and using Eq. 17
Wx0(x0x00 +W�1

x0
(cx0 �µy0)x

0
0)W0

x0
= Sy0 , (19)

1This is easily obtainable by rescaling the data in X .
2including linear mapping, affine and additive coupling layers as well as their composition.
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being x0x00 the autocorrelation matrix of x0. Let I 2 Rd⇥d be the identity matrix, since

det((x0x00 +W�1
x0
(cx0 �µy0)x

0
0) det(x0x00 + I), (20)

Eq. 19 leads to

1
det(Wx0)

2  det(I +x0x00)det(Sy0)
�1


✓

tr(x0x00 + I)
d

◆d

det(Sy0)
�1

=

✓
tr(x0x00)+ tr(I))

d

◆d

det(Sy0)
�1

=

✓
kx0k2

2 +d)
d

◆d

det(Sy0)
�1


✓

1
d
+1

◆d

det(Sy0)
�1

 lim
d!•

✓
1
d
+1

◆d

det(Sy0)
�1

 exp(1)det(Sy⇤)
�1,

which also results from x0 2 Bd. By plugging this upper bound in Eq. 15, we complete the
proof.

⌅
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5 Convergence of fixed point iteration
Proposition 3 Let k.k1 denote the entrywise L1-norm. Provided that S(t)

y = S(t)
y0 , 8y,y0 2 {1, . . . ,K},

8t 2 {1, . . . ,T}, and provided that the following inequality holds,

l < K(K �1)
✓

Â
y,y0 6=y

(Kyy0 +Ky0y)

◆�1
, (21)

the optimization problem (4) admits a solution µ̃ as the limit of µ(t) = {µ(t)
y }y with

µ(t)
y =

1
Ny

Ny

Â
i=1

f (xi)+
l

K(K �1)

K

Â
y0 6=y

G(t�1)
yy0

�
µ(t�1)

y �µ(t�1)
y0

�
, (22)

being
G(t�1)

yy0 = S(t�1)
y

�
Kyy0

�
S(t�1)

y0
��1

+Ky0y
�
S(t�1)

y
��1�

.

Furthermore, µ(t) — with t 2 {1, . . .T} — satisfy the convergence property

kµ(t)� µ̃k1  Ltkµ(0)� µ̃k1,

with
��µ(t)�µ(t�1)��

1 = Â
y

��µ(t)
y �µ(t�1)

y
��

1 and L = l
K(K�1) Ây,y0 6=y(Kyy0 +Ky0y).

Proof 3 (Sketch of the Proof) The necessary condition of the fixed-point relation in Eq. 22 results
from ∂L

∂ µ = 0 (details about derivatives are omitted in the proof). We will now prove that the function

in Eq. 22 is L-Lipschitzian, with L = l
K(K�1) Ây,y0 6=y(Kyy0 +Ky0y). Given two vectors µ(t)

y , µ(t�1)
y , we

have
��µ(t)

y �µ(t�1)
y

��
1 = (⇤), with

(⇤) =
l

K(K �1)
�� Â

y0 6=y
G(t�1)

yy0
�
µ(t�1)

y �µ(t�1)
y0

�
�G(t�2)

yy0
�
µ(t�2)

y �µ(t�2)
y0

���
1

=
l

K(K �1)
�� Â

y0 6=y
G(t�1)

yy0
�
µ(t�1)

y �µ(t�1)
y0

�
� (G(t�1)

yy0 �G(t�1)
yy0 +G(t�2)

yy0 )
�
µ(t�2)

y �µ(t�2)
y0

���
1

 l
K(K �1) Â

y0 6=y

��G(t�1)
yy0

��
1

��µ(t�1)
y �µ(t�2)

y
��

1 + Â
y0 6=y

��G(t�1)
yy0

��
1

��µ(t�1)
y0 �µ(t�2)

y0
��

1

 l
K(K �1)

⇥
Â

y0 6=y

��G(t�1)
yy0

��
1
⇤
⇥Â

y0

��µ(t�1)
y0 �µ(t�2)

y0
��

1,

(23)
hence, ��µ(t)�µ(t�1)��

1  L
��µ(t�1)�µ(t�2)��

1 (24)

with L =
l

K(K �1) Â
y,y0 6=y

(Kyy0 +Ky0y).

Eq. 21 shows that when the KLD loss is used (i.e., l 6= 0), different values of l lead to stable
(convergent) training.

⌅



ENESCU, SAHBI: NFPI 15

6 Positive Definiteness of the Covariances
NF GD baseline In order to constrain the covariance matrix to remain positive definite in
the original implementation based on gradient descent (NFGD), we consider a reparametriza-
tion in Eq. 4 — particularly the covariance matrices — as Sy = y(Ŝy) for some Ŝy 2 Rd⇥d

with y applied entrywise, and this allows free settings of {Ŝy}y during optimization while
guaranteeing the positive definiteness of Sy. During backpropagation, the gradient of the
loss L (now w.r.t. Ŝy) is updated using the chain rule as

∂L
∂vec(Ŝy)

= Jy .
∂L

∂vec(Sy)
, (25)

here vec(Sy) is a columnwise vectorization of Sy and Jy is a diagonal Jacobian whose ith di-
agonal element equates y 0([Ŝy]ii). In practice, y(.)= a(1+exp{�b (.)})�1+c with a, b and
c being positive values that respectively control the amplitude (scale) and the slope (smooth-
ness) as well as the shift of the reparametrization y . Besides, a+c

c controls the conditioning
of the trained covariance matrices and thereby the shape of the underlying Gaussians in the
latent space.

NFp (ours) concerning the fixed point iteration contribution (NFp ), starting from equa-
tions 6 and 7, it can be shown that the term A (see equation 26) is symmetric positive definite
(simply noted as PD), since (i) the initial covariances S(0)

y are initialized to be PD, (ii) the
inverses of PD matrices are PD, (iii) vector outer products

�
f (xi)�µ(t�1)

y
��

f (xi)�µ(t�1)
y

�>

are PD, (iv) the left and right product around a PD matrix with another PD matrix is also PD,
and (v) the sum of PD matrices is PD. It should also be noted that the term

�
S(t�1)

y
��1�1+

l
K(K�1) Ây0 6=y(Kyy0 �Ky0y)

�
is PD despite the subtraction, as l never reached values that were

too high in the experiments.

Similarly for B, the expression is PD since: (i) the initial covariances are initialized to be
PD, (ii) the inverses of PD matrices are PD, (iii) vector outer products are PD, (iv) the left
and right product around a PD matrix with another PD matrix is also PD, and (v) the sum of
PD matrices is PD.

A =
�
S(t�1)

y
��1�1+

l
K(K �1) Â

y0 6=y
(Kyy0 �Ky0y)

�

+
l

K(K �1)
�
S(t�1)

y
��1 Â

y0 6=y
Ky0y

h
(µ(t�1)

y �µ(t�1)
y0 )(µ(t�1)

y �µ(t�1)
y0 )>+S(t�1)

y0
i�

S(t�1)
y

��1

B =
1

Ny

Ny

Â
i=1

�
f (xi)�µ(t�1)

y
��

f (xi)�µ(t�1)
y

�>
+

l
K(K �1) Â

y0 6=y
Kyy0S

(t�1)
y

�
S(t�1)

y0
��1S(t�1)

y .

(26)
Finally, it can be shown the solution in equation 6 rewritten below, is positive definite, since
the matrices A and B are positive definite, and the geometric mean of PD matrices is also PD
[7, 10].

S(t)
y = A�1/2 (A1/2 B A1/2)1/2 A�1/2, (27)

Citation
Citation
{Gan and Kim} 2024

Citation
Citation
{Pusz and Woronowicz} 1975



16 ENESCU, SAHBI: NFPI

7 Training Details

Dataset bits L F RBs per Level Batch Size Epochs GPU hours Params (M)
CIFAR10 8 3 8 [8, 4, 2] 512 500 14 42.9

CIFAR100 8 3 8 [8, 4, 2] 512 500 16 43.7
ImageNet VAE latent space [12] 3 8 [8, 4, 2] 1792 80 350 47

Table 3: NF models are built using L levels, where each contains F steps of flows. Each
step of flow is made of Ni residual blocks (RBs) [8] with 128 hidden channels, where i = 1
corresponds to the level index. Experiments were run on a single NVIDIA A100 gpu for
CIFAR datasets and 7 for ImageNet, the GPU hours are the summed total hours.

7.1 Learning rate policies for NFGD

Concerning the learning rate policies used for the baselines (NFGD) in table 1, we have:

Linear : The learning rate linearly decreases from 3 ·10�2 to 1 ·10�3 over 100 epochs.

Sublinear v1 The learning rate geometrically decreases from 10�1 to 10�2 over 10 epochs,
and then decreases from 10�2 to 10�3 over 90 epochs, for a total of 100 epochs.

Sublinear v2 Follows a schedule of the form
gcurrent = g f inal +(ginitial � g f inal)⇤ (1�exp(�a +(epochtotal �epochcurrent))) where ginitial
and g f inal are the initial and final learning rates, respectively equal to 5 · 10�2 and ·10�3,
a = 0.03 and the total number of epochs epochstotal is equal to 100.

Superlinear v1 The learning rate geometrically decreases from 2 ·10�2 to 1.7 ·10�2 over
90 epochs, and then geometrically decreases to 10�2 over 10 epochs, for a total of 100
epochs.

Superlinear v2 Follows a schedule of the form
gcurrent = ginitial +(g f inal � ginitial) ⇤ (1� exp(�a · epochcurrent)) where ginitial and g f inal are
the initial and final learning rates, respectively equal to 3 ·10�2 and 3 ·10�3, a = 0.03, and
the total number of epochs epochstotal is equal to 100.
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