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Abstract

Normalizing flows (NFs) are powerful generative models that map arbitrary complex
(ambient) distributions to simple (latent) ones such as the monomodal gaussian. Despite
their ability in modeling and sampling highly nonlinear manifolds, NFs are less effective
in assigning labels to the generated data. This stems from the insufficient expressivity of
monomodal gaussians, and also the difficulty in learning multimodal distributions in the
latent spaces.
In this paper, we devise a multimodal NF-based approach suitable both for image gen-
eration and classification. The particularity of our method resides in its ability to design
multimodal gaussian distributions as a part of NF training using an objective function that
mixes a likelihood term and a Kullback-Leibler Divergence (KLD) criterion. The param-
eters of the trained gaussians (namely means and covariance matrices) are obtained as
an interpretable fixed-point solution of this objective function. Besides, our proposed
method avoids the overwhelming and sensitive process of tuning the learning rates as
required by gradient descent. Extensive experiments conducted on different datasets,
including CIFAR10, CIFAR100 and ImageNet, show competitive performances of our
method against different baselines as well as the related work. Code is available in this
link https://github.com/vic-ene/NFPI.

1 Introduction
Deep generative models have attracted unprecedented attention in computer vision [45], by
training models capable of mapping complex ambient spaces into simpler latent ones (and
vice-versa). Ambient spaces refer to input data drawn from existing but unknown probability
distributions (possibly sitting on top of complex nonlinear manifolds) whereas latent spaces
correspond to learned representations, lying on notoriously more tractable distributions such
as the gaussian. Generative modeling has also been accelerated thanks to the improvement
of computational resources that allow training larger and increasingly more accurate gener-
ative models, most notably Normalizing Flows (NFs) [12, 13, 29]. The latter are unique in
their ability to learn bijective (invertible) transformations, useful for exact density estimation
and image generation. Nonetheless, in their standard form, NFs coerce the data to follow a
single monomodal gaussian in the latent space, which makes them relatively unsuitable for
class-dependent image generation. Existing variants built upon gaussian mixture models
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(GMMs) for label conditioning are more expressive, and allow enhancing not only the gen-
erative properties of NFs, but also their discrimination power. Furthermore, in order to in-
crease their expressiveness, gaussian components can also be learned using backpropagation
and gradient descent. However, training covariance matrices with gradient descent does not
guarantee the inherent properties of these matrices, namely their positive-definiteness and
their symmetry; besides, the obtained solutions are not necessarily interpretable. As a result,
most of the existing NF frameworks fix (or handcraft) the means and the covariance matrices
resulting into suboptimal models. In this context, recent work [2, 3, 18, 38] addresses these
issues by training gaussian components using a plain likelihood loss, and this may result in
overlapping components, detrimental to image generation and classification.

In order to circumvent these limitations, we propose a new method that learns expres-
sive gaussian components (namely means and covariance matrices). Our solution is based
on the optimization of an objective function mixing a data term, that maximizes the likeli-
hood of training samples conditional to their class-labels, and a Kullback-Leibler Divergence
(KLD) criterion which maximizes the separability of the gaussian components. This sepa-
ration process is achieved while preserving the continuum of data through different classes;
in other words, visually similar (resp. dissimilar) classes are mapped to separate but nearby
(resp. distant) gaussians in the latent space. The solution of this objective function is ob-
tained using a fixed-point iteration (FPI) framework that allows obtaining more accurate and
interpretable analytic solutions compared to black box gradient descent, which requires a
cumbersome tuning of learning rate policies among other hyperparameters. Indeed, the pro-
posed FPI framework has a unique step-size hyperparameter which also controls the KLD
criterion, and its setting is more intuitive and conditioned, in practice, by the convergence,
the discriminative and the generative properties of the trained NFs. To the best of our knowl-
edge, this work is the first FPI framework that learns multimodal gaussian distributions as a
part of NF design.
Considering all the aforementioned issues, the main contributions of this work include

(i) A novel method that accurately learns non-overlapping multimodal gaussians using a
fixed-point iteration framework that overcomes the cumbersome “learning-rate policy
design” which is crucial for the success of gradient descent.

(ii) The first NF-based framework that learns anisotropic multimodal gaussians (their
means and covariances) in the latent space using an objective function mixing a max-
imum likelihood term and a KLD criterion. The solution of this objective function,
obtained with FPI, is interpretable and guarantees the properties of the trained covari-
ance matrices (mainly their symmetry and positive-definiteness).

(iii) Extensive experiments involving NF models, on different datasets, show high discrimi-
nation and generation performances of the proposed method against different baselines
as well as the related work.

2 Related Work
Conditioning in NFs [13, 29] has been extensively studied using GMMs [2, 3, 7, 18, 23, 27,
30, 38, 48, 50, 53, 54] where labels are associated to unique gaussian components, and this
allows achieving simultaneous conditional image generation and classification while increas-
ing the expressiveness of NFs. In all these existing approaches, GMM training is achieved
with standard gradient descent; for instance, [3, 18] learn portions of discriminative features,
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and [2, 38, 50, 54] learn only the means and use fixed isotropic identity covariance matri-
ces whereas [7, 23, 27, 30, 50] proceed differently by randomly initializing the means, and
keeping them fixed during training. As gradient descent cannot guarantee the positive def-
initeness of the trained covariance matrices, most of the existing approaches consider these
matrices as fixed and isotropic, and only very few works [18, 29] train these covariances. In
contrast, our NF training is achieved on top of anisotropic gaussians which are more expres-
sive compared to the isotropic ones. Besides, similarly to information bottleneck [2, 38], our
approach relies on a Kullback-Leibler Divergence (KLD) criterion that separates gaussians,
but differs in the way this criterion is defined; our criterion is based on exponentially decay-
ing KLD terms that provide more stable and convergent solutions.
To the best of our knowledge, most of the existing NF models are reliant on gradient descent
and our proposed method is the first to learn multimodal gaussians in the latent space (as a
part of NF training) using a Fixed-Point Iteration (FPI) framework. FPI-based methods have
received less attention in the literature compared to gradient-based methods when optimiz-
ing generative models in general. For instance, [25] uses FPI to speedup very long sampling
processes based on gaussian noise prediction [39], and [4, 21] rely on single fixed-point it-
eration that greatly reduces model size and computational requirements. FPI has also been
incorporated in the loss of GANs [22], with the work of [40, 41] in an effort to speedup
convergence and diversity as well as image quality.

3 A Glimpse on Normalizing Flows
Let X be a random variable standing for all possible images taken from an existing but
unknown probability distribution PX in an ambient space X ⊆ Rd . Considering Z as a latent
representation associated to X drawn from a known probability distribution PZ in a latent
space Z ⊆ Rd ; normalizing flows aim at learning a diffeomorphism f from X to Z together
with its inverse g, where f (resp. g) is used for classification (resp. generation) and is referred
to as normalizing (resp. generative) direction. Given x ∈ X , one may write

PX(x) = PZ( f (x))
∣∣∣∣det

∂ f (x)
∂x

∣∣∣∣= PZ( f (x))
∣∣detJ f (x)

∣∣ , (1)

where J f (x) ∈Rd×d is the Jacobian of f w.r.t. x and |det(.)| stands for determinant magnitude.
In practice, f is a neural network composed of several smaller invertible flows chosen to
make J f (x) computationally efficient. As defined in [12, 29], each flow is usually made of
an actnorm layer, an invertible 1×1 convolution, and a coupling Layer stacked together. By
rewriting the d-dimensional vector x as x1:d , a coupling Layer maps x1:d to two subvectors
x̃1:d/2 and x̃d/2+1:d being x̃1:d/2 = x1:d/2 and x̃d/2+1:d = xd/2+1:d ⊙exp(s(x1:d/2))+b(x1:d/2),
s(.), b(.) are two neural networks, ⊙ the Hadamard product and exp(.) is applied entrywise.
Invertible 1×1 convolutions are generalized permutation layers that enhance expressivity by
allowing permutations between image channels to be learned [29]. An actnorm layer is an
invertible equivalent of batch normalization [26] that increases stability and performance.
NFs are usually trained to minimize the negative log-likelihood of Eq. 1. From transport
theory point of view [49], NFs pushforward a complex ambient distribution into a simpler
latent one as the monomodal normal. Subsequently, we take a step further to make the latent
distribution multimodal while also being able to model the continuum between different
classes, and this balances the generation and the discrimination power of the resulting NFs
as also shown in experiments.
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4 Proposed Method
Let’s consider a collection D = {(xi,yi)}N

i=1 ⊂X ×Y of labeled images originating from an
ambient space X , and the underlying class labels taken from a discrete set Y = {1, . . . ,K}.
Given a pair (x,y) ∈ X ×Y , one may write the conditional form of Eq. 1 as

PX(x|y) = PZ( f (x)|y)
∣∣∣detJ f (x)

∣∣∣ , (2)

where PZ(.|y) is set a priori to a given distribution, namely a gaussian mixture. The purpose
here is to train the parameters of the NF (denoted as Θ) together with the hyperparameters
of the underlying gaussians (referred to as Ψ = {(µy,Σy)}y∈Y ) while ensuring better dis-
criminative and generative performances of the resulting NF. As previous works [2, 18, 27]
have noted that gaussians separated using only a likelihood loss produce rich continuum,
but highly overlapping gaussians (that are unfit for controlled image generation), we add
a repulsing criterion based on Kullblack-Leibler Divergence (KLD) in order to control the
tradeoff between separability and continuity of the gaussians as defined in Eq. 3

LKLD(Ψ) = ∑
y,y′∈Y :y̸=y′

exp
(
−

KLD(Ny ||Ny′)

πKLD(.) ·α

)
, (3)

here πKLD(.) is a customizable function which returns a scalar depending on all the pairwise
KLD terms (set as shown later), and α is a scalar that regulates the impact of the KLD,
chosen in practice between 0.1 and 10. The double sum of forward and reverse KLD is
similar to the negative of the symmetrized Kullback-Leibler Divergence 1 [42], but differs
in the way the exponential and negative sign are applied individually to each pair (y,y′).
This is a major distinction which ensures that the repulsing force, associated to all gaussian
pairs, is lower bounded and thereby vanishes once a certain degree of separation has been
reached. In contrast, the negative of the standard symmetrized Kullback-Leibler Divergence
[42] is not lower bounded and decreases continuously even when gaussians are well sep-
arated, eventually yielding unstable (non-convergent) solution. Besides, LKLD(Ψ) ensures
that all non-separated classes {(y,y′)} are evenly impactful compared to other KLD variants
that commute the exponential and the sum in Eq. 3; these variants are dominated by distant
classes leading to large KLD values and small LKLD(Ψ) even when some gaussian pairs are
not sufficiently well separated.

4.1 Fixed-Point Iteration (FPI)
Considering the definition of the KLD loss in Eq. 3, we define the global loss used to opti-
mize the NF and gaussian parameters as following

L(Θ,Ψ) = LNF (Θ,Ψ)+λLKLD(Ψ), (4)

being LNF(Θ,Ψ) the standard negative log-likelihood loss (see for instance [27]) and λ is
a scalar balancing the impact of the KLD loss. Unlike gradient based methods, that heavily
rely on learning-rate-update-policy to reach an optimal solution, our proposed method in
this paper is more effective, and it is based on a fixed-point iteration (FPI) framework whose
behavior is controlled with λ . This framework iteratively updates the hyperparameters Ψ,
rewritten with a superscript t as Ψ(t) at a given timestep (t), by taking into account Ψ(t−1)

1the symmetrized KLD is known as Jensen–Shannon Divergence.
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at the previous timestep (t − 1), till reaching convergence. Equations used to obtain these
hyperparameters correspond to the stationary solution of Eq. 4 as the limit of the fixed-point
iterations as shown in the following proposition.

Proposition 1 Let Ny denote the number of training samples belonging to class y and define

a kernel between classes {(y,y′)} as Kyy′ =
1

πKLD(.)·α ·exp
(
−KLD(Ny || Ny′ )

πKLD(.)·α

)
. The optimality

conditions of Eq. 4 lead to the solution

µ
(t)
y =

1
Ny

Ny

∑
i=1

f (xi)+
λ

K(K −1)
Σ
(t−1)
y

K

∑
y′ ̸=y

(
Kyy′

(
Σ
(t−1)
y′

)−1
+Ky′y

(
Σ
(t−1)
y

)−1)(
µ
(t−1)
y −µ

(t−1)
y′

)
(5)

Σ
(t)
y = A−1/2 (A1/2 B A1/2)1/2 A−1/2, (6)

being

A =
(
Σ
(t−1)
y

)−1(1+
λ

K(K −1) ∑
y′ ̸=y

(Kyy′ −Ky′y)
)

+
λ

K(K −1)
(
Σ
(t−1)
y

)−1
∑

y′ ̸=y
Ky′y

[
(µ

(t−1)
y −µ

(t−1)
y′ )(µ

(t−1)
y −µ

(t−1)
y′ )⊤+Σ

(t−1)
y′

](
Σ
(t−1)
y

)−1

B =
1

Ny

Ny

∑
i=1

(
f (xi)−µ

(t−1)
y

)(
f (xi)−µ

(t−1)
y

)⊤
+

λ

K(K −1) ∑
y′ ̸=y

Kyy′Σ
(t−1)
y

(
Σ
(t−1)
y′

)−1
Σ
(t−1)
y .

(7)

Details of the proof are omitted and result from the gradient’s optimality conditions of Eq. 4.
Considering the above proposition, the optimal solution is obtained iteratively as a fixed point
of Eqs. 5 and 6 with µ

(0)
y and Σ

(0)
y initially set to the mean and the covariance of training data

in Z belonging to class y. Note that convergence is observed in practice in few iterations,
and the underlying fixed points, denoted as {(µ̃y, Σ̃y)}y, correspond to the parameters of
well separated gaussians with a better modeling of the underlying continuum (i.e., a better
generative and discriminative properties) as shown later in the experiments.

4.2 Model Analysis & Settings
It can be noted that both expressions in Eqs. 5 and 6 rely on the initial means and covari-
ances of data mapped by the NF. These terms originate from the likelihood loss, and are the
exact solution when λ = 0. Optimizing this loss puts emphasis on relevant data continuum,
and acts as an attracting force between gaussian pairs (see supplementary material). When
λ > 0, the KLD term avoids overlapping class distributions leading (not only) to continuum
modeling but also to class distribution separability. Its effect on the learned gaussians leads
to (1) a repulsion of their centroids directed by the mean difference at the previous timestep
(see Eq. 5), and also leads to (2) the deformation and shrinkage of the covariances in order
to make classes well separated (as shown later in the experiments; see Fig. 1).
By balancing both these antagonist terms using FPI, enhanced discriminative and generative
properties — and analytically more interpretable compared to gradient-based solutions —
have been observed in our experiments. Additionally, one may show that covariance matri-
ces in Eq. 6 remain symmetric positive definite (PD) provided that the initialization is also
symmetric PD since the geometric mean of two PD matrices is PD [19], and this has also
been observed experimentally for all the chosen λ values (see again the supplementary ma-
terial for more details).
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Asymptotic Behavior & Convergence. As the impact of the KLD term decays exponen-
tially, viz. tends to zero as gaussians become well separated, the asymptotic behavior of Eq. 5
and 6 can further be analyzed. Indeed, the fixed point of µ

(t)
y becomes equivalent to class-

wise means of training data mapped by the NF from the ambient to the latent space. As for
the covariance, the expression becomes equivalent to Eq. 8 which is the identity Σ

(t)
y = Σ

(t−1)
y

provided that the covariance of data mapped by the NF to the latent space equates the co-
variance of the gaussian at timestep t − 1. This asymptotic property is very interesting as
it shows that the balance of both losses has been directly learned by the generative model,
which then follows a more stable and convergent training process (see more details about
convergence in the supplementary material).

Σ
(t)
y =

(
1

Ny

Ny

∑
i=1

( f (xi)−µ
(t−1)
y )( f (xi)−µ

(t−1)
y )⊤ ·

(
Σ
(t−1)
y

)−1
)−1/2

Σ
(t−1)
y . (8)

Control on πKLD. As noted previously, the function πKLD(.) is customizable, and can have
a different impact on the overall KLD term. Most notably, by setting its value to the forward
KLD of each pair (y,y′) as shown in Eq. 9

πKLD(.) = KLD(Ny ||Ny′), (9)

the loss in Eq. 3 becomes equivalent to the negative log-likelihood of the pairwise KLD
(instead of the exponential). We experimentally found that this variant converges with a
much higher λ than its averaged counterpart defined in Eq. 10 (which uses the mean of all
pairwise KLDs), and leads to a better gaussian separation in the latent space, thus benefiting
from better discriminative properties.

πKLD(.) =
1

K(K −1) ∑
y,y′∈Y :y ̸=y′

KLD(Ny ||Ny′). (10)

Furthermore, using only a single fixed point iteration at early training stages of the NF, a flex-
ible and high quality latent space can be learned. This helps the NF converge much faster
(because gaussian parameters no longer need to be trained at the subsequent iterations), and
preserves a relevant continuum in the latent space as shown in experiments.

Anisotropic Diagonal Covariances. It is widely admitted that training fully dense covari-
ance matrices in high dimensional spaces without enough data samples results in high insta-
bilities and may also lead to overfitting [10, 14, 47]. Hence, we only consider anisotropic
diagonal covariances as the best tradeoff between highly expressive (but overparametrized)
dense covariances, and less expressive (underparametrized) isotropic ones.

5 Experiments
In this section, we study the performance of our proposed fixed-point iteration framework,
by training NFs on the FPI based latent spaces, that are referred to as NFπ (NFPI). We also
compare it against other multimodal baselines described in section 5.2. Additionally, we
train ConvNets and Transformers for classification using images generated with our model
and also image augmentation. Finally, we show ablation study and closely related work
comparisons.
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5.1 Datasets and Evaluation Metrics
Experiments have been conducted using three standard image datasets: CIFAR10 [31], CI-
FAR100 [31] and ImageNet [11]. CIFAR10-100 include 50k images for training and 10k
for testing while ImageNet includes 1281k for training and 50k for testing. The NF back-
bone used in our experiments is taken from the Generative Matrix Exponential Flow [52]
which is a matrix exponential variant of affine coupling layers and invertible 1x1 convolu-
tions built on top of Glow [29]. For image classification, we use a ResNet18 [24], a vision
transformer adapted to mid-scale datasets from [20], and a very large pretrained transformer
[15] from the timm [51] library. Classification performances are measured using accuracy
as the percentage of correctly classified images. In the case of the NF, the classification ac-
curacy (referred to as NF-Acc) is calculated with the labels obtained using argmaxyPZ(z|y)
which corresponds to the gaussian with the highest likelihood, for a given sample in the
latent space.

5.2 Baselines & Settings
Baseline 1 (Exact Likelihood). For the first baseline, gaussians are initialized with their
classwise data mean and covariance, which is equivalent to the direct solution of the fixed
point iteration without the KLD term in Eq. 4 (i.e., λ = 0). This baseline corresponds to
Fig. 1(b), and it leverages the inductive bias in NFs in order to obtain an accurate initializa-
tion in the latent space.
Baseline 2 (Gradient Descent). For this baseline, we use gradient descent (GD) when
optimizing Eq. 4: as gradient descent does not guarantee that the obtained anisotropic co-
variances are symmetric positive-definite, we guarantee this property by constraining the
trained covariance eigenvalues to follow a sigmoid reparametrization, and the gradient of the
loss 4 is rewritten as the product of the original gradient and the Jacobian of the sigmoid
reparametrization. In this baseline, different learning rate policies are also investigated for
comparison: sublinear, linear, and superlinear. In what follows, this baseline is dubbed as
NFGD. In view of space, more details about the settings of this baseline are reported in the
supplementary material.
Implementation Details. The optimizer used to train the NFs is Adamax [28] with a learn-
ing rate of 10−2 linearly warmed up for the first 1000 iterations, and trained for 500 epochs
using an exponential moving average2. The augmentations used are the same as in [2], i.e.,
horizontal flip, padding, cropping, rotation, and color jitter. The ResNet18 has 11.2M param-
eters, and it is trained with an SGD optimizer with a learning rate of 10−3, a momentum of
0.9, a weight decay of 5 ·10−4, and a one cycle scheduler [46] with a maximum learning rate
of 0.1. The batch size is 100, and the models are respectively trained for 30 and 50 epochs
on CIFAR10 and CIFAR100, using cropping and horizontal flip as augmentations. For the
mid-scale transformer, we use a Swin [35] architecture optimized for mid-scale datasets [20],
with an Adam optimizer and a learning rate of 2 ·10−3, a weight decay of 5 ·10−2, and a co-
sine scheduler [36]. Besides horizontal flip and random cropping for image augmentation,
we also use cutmix [56], mixup [57], auto-augment [8] and random augment [9] as well as
random erasing [58]. The transformer has 7M parameters and is trained for 1000 epochs with
a batch size of 256. The large pretrained transformer corresponds to EVA02 [15, 16] with
87.12M parameters pretrained on ImageNet21k [44] and then fine-tuned on ImageNet. SGD
is used to train this transformer with a global gradient clipping at norm 1, a learning rate of
1 ·10−5, and a batch size of 64 for a total of 3 epochs. Standard augmentations (SA) (com-

2implemented using the following github repository https://github.com/lucidrains/ema-pytorch
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monly used in the state-of-the-art attention based models [34]) are also considered, including
random augment and random erasing.

Table 1: Accuracy of different NF models where
NF-Acc stand for the classification accuracy. It can
be noted that NFπ achieves the highest score, outper-
forming similar methods by up to 3 accuracy points
on CIFAR100. More details concerning the learning
rate policies can be found in the supplementary mate-
rial.

Model CIFAR10 CIFAR100
NF-Acc NF-Acc

Baseline 1 (Data Initialization) 77.31 39.16
Baseline 2 (GD + Sublinear v1) 92.34 68.28
Baseline 2 (GD + Sublinear v2) 91.94 60.68
Baseline 2 (GD + Linear) 93.1 60.58
Baseline 2 (GD + Superlinear v1) 92.41 57.21
Baseline 2 (GD + Superlinear v2) 93.25 58.56
Our (NFπ ) 93.63 71.65

5.3 Results
Model Analysis: Visualization. Fig. 1 illustrates the behavior of FPI using TSNE visu-
alization. Fig 1(a) shows all the embeddings obtained by projecting CIFAR10 images to a
2D space, whilst Fig. 1(b) shows samples from those gaussians (classwise estimated) which
are highly overlapping. Figs. 1(c) and 1(d) show samples from gaussians obtained with FPI
(following Proposition 1) using different λ values. Small λ values (see Fig. 1(c)) lead to
smooth continuum whereas larger λ (see Fig. 1(d)) result in well separated clusters in the
latent space. For FPI, gaussians are initialized with the data means and covariances corre-
sponding to Fig. 1(b). Note that upon convergence of FPI, the obtained gaussians are much
more distinguishable than the initial ones.

(a) (b) (c) (d)

Figure 1: Fig. 1(a) shows 2D embeddings obtained by projecting CIFAR10 images to a lower dimensional space
using TSNE. Fig. 1(b) shows samples from the classwise gaussians estimated from the embeddings in Fig. 1(a),
and corresponds to the Baseline 1. Figs. 1(c) and 1(d) show samples from gaussians obtained using the proposed
FPI, for small λ values (Fig. 1(c)) and large λ values (Fig. 1(d)). Although the FPI gaussians were initialized as in
Fig. 1(b), they are much more dinstinguishable upon convergence of the FPI.

Performances. According to Table 1, NFπ clearly outperforms NFGD for different learning
rate policies considered (namely linear, two sublinear and superlinear variants – v1 and v2
– with different learning rate update policies; see more details in the supplementary mate-
rial). On CIFAR100, the accuracy reaches 71.65% outperforming NFGD by more than 3
accuracy points. Additionally on CIFAR10, it reaches a high accuracy of 93.63%. Table 2
shows the accuracy of the NF together with the accuracy of the underlying CNNs (trained
on top of the NF-generated images) for increasing values of λ ; it’s worth noticing that NF-
acc measures the discriminative properties of our trained NF while CNN-acc measures their
generative performances (i.e., to what extent the generated images by the NF, together with
their conditioned labels, are fine for CNN training). When λ is small, neither generative
nor discriminative properties reach high values, and as λ grows, a good balance is reached.
Finally, as λ keeps increasing, the generative properties are traded for discriminative ones,

Citation
Citation
{Liu, Tian, Zhao, Yu, Xie, Wang, Ye, and Liu} 2024



ENESCU, SAHBI: NFPI 9

λ 10 50 100 200 300 500
NF-Acc 39.48 63.58 66.87 69.29 70.42 70.08
CNN-Acc 31.37 44.57 46.38 43.72 42.65 37.27

Table 2: Results for different values of λ on CI-
FAR100.

CIFAR10 CIFAR100
Setting NF-A CNN-A NF-A CNN-A
#1: w/o KLD (λ = 0) 77.31 62.1 39.16 23.03
#2: w/ KLD on µ only 93.2 74.76 71.65 37.02
#3: w/ KLD on Σ only 88.75 61.94 57.76 30.58
#4: w/ KLD on µ and Σ 93.63 73.03 70.42 42.65

Table 3: Ablation study of NFπ when learning
different KLD components (means, covariances, and
both). All configurations initialize means and co-
variances using data in the latent space, excepting #2
which considers an identity covariance instead.

which eventually no longer increase.
Ablations. Table 3 shows an ablation study when means and covariances are trained sep-
arately and jointly. All means and covariances are initialized on data in the latent space
excepting setting # 2 which uses isotropic identity covariances instead. Setting #2 confirms
that it is indeed more important to learn the means. Learning the covariances only (setting
#3) does not provide enough benefit to the CNN accuracy on CIFAR10. The rational resides
in the fact that data means (at initialization) could be overlapping and gaussian separability
cannot be achieved simply by shrinking the covariances, and this leads to erroneous labels
when sampling images. On the other hand, learning the means provides enough flexibility to
the learned gaussians in the latent space. When learning both means and covariances simul-
taneously (setting # 4), the highest accuracy is reached on CIFAR10, but not on CIFAR100,
which is behind setting #2 that learns only the means. This could be explained by the larger
number of classes and the reduced amount of training data per class on CIFAR100.
SOTA Comparison. We compare the results of NFπ with other generative models used
for classification (see Table 4). The proposed method is better than equivalent NFs using
GMMs in the latent space (blue rows). It also matches the accuracy of Invertible ResNets
[1, 5, 6, 37, 43] that constrain ResNet architectures to be invertible classifiers, and closes the
gap with other generative models that do not preserve bijection (JEM++, SHOT-VAE), and
are notoriously easier to train.
Extra Comparison (Image Augmentation). Finally, we further investigate the use of our
NFs to train larger models, namely transformers [20], which suffer more from the lack of
labeled data. In order to enhance the generalization performances of these transformers, we
enrich training data by mapping the underlying images from the ambient to the latent space,
and by disrupting the latent coordinates before mapping them back in the ambient space.
This process implements linear (resp. nonlinear) data augmentation in the latent (resp. am-
bient) space. Results for CIFAR10-100 are available in Table 5, and results for ImageNet are

AccuracyMethod CIFAR10 CIFAR100 Model GOA

NFπ (ours) 93.63 71.65 NF FPI
NFGD 93.25 68.28 NF GD

IB-INN [2] 91.28 66.22 NF GD
IB-INN + KLJ [47] 88.6 NF GD
FLOWGMM [27] 88.44 NF None

ULCGM [18] 84.0
✗

NF GD
Monotone Flow [1] 93.4

✗
NF None

i-DenseNets [43] 92.40 NF None
Residual NF [6] 91.78 NF None

Invertible ResNets [5] 93.22 75.42 NF None
Implicit NF [37] 92.71 70.94 NF Non

JEM++ [55] 94.1 74.5 EBM GD
SHOT-VAE [17] 93.89 74.70 VAE None

Table 4: Comparison of NFπ against closely
related works. Blue rows shows gaussian based
multimodal NFs. Excepting our method that uses
fixed point iteration, other methods either use gradi-
ent descent, or fixed random initialization of gaus-
sians. It can be noted that our method outper-
forms closest related works by more than 3 accuracy
points on CIFAR100. The lower part of the table
(white rows) shows other generative models used
for classification. It should be noted that those NFs
[1, 5, 6, 37, 43] are classifiers trained to be invert-
ible, and not fit for conditional image generation.
GOA stands for gaussian optimization algorithm.
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available in Table 6. In both cases, the proposed NF augmentations outperform the baseline,
and show benefits when jointly used with other augmentations. Concerning the perturbation,
we achieve a mixup on image pairs with identical labels, in the span of the PCA axes of
their classwise gaussians, estimated on the underlying training data, in the latent space. We
found this produces more visually diverse and realistic images, than simply adding noise in
the latent space, since it takes into account their principal axes (i.e., modes with the high-
est variances). This is confirmed by the augmented images in Figure 2. Further results,
visualizations and implementations details are available in the supplementary material.

Table 5: This table shows the im-
pact of NF-based image augmenta-
tion on the accuracy of a trained
transformer in [20]. When no data
augmentation is used, accuracy in-
crease of up to 1% is observed.
When it is used jointly with other
data augmentations, a small increase
in accuracy is still observed.

Model Used P#(M) CIFAR-10 CIFAR-100
Swin (scratch) 7.1 93.37 77.32
SL-Swin [32] 10.2 94.93 79.99

Swin-Drloc [33] 7.7 86.07 65.32
Swin Baseline [20] - w/o Augmentations 7.1 93.06 72.84
Swin Baseline [20] - w/o Augmentations

+ NF Augmentations (ours) 7.1 94.06 73.50

Swin Baseline [20] - w/ Augmentation 7.1 96.89 80.38
Swin Baseline [20] - w Augmentations

+ NF Augmentations (ours) 7.1 96.96 80.45

Top1 Acc Top5 Acc

Baseline SA
NFA
(ours)

NFA + SA
(ours) Baseline SA

NFA
(ours)

NFA + SA
(ours)

90.896 90.986 91.031 91.082 98.802 98.834 98.849 98.854

Table 6: Comparison of our NF augmentations (NFA) against Standard Augmentations (SA), when fine-tuning a
pretrained EVA02 transformer Baseline on ImageNet. We also combine NFA + SA, and this combination achieves
the best results.

(a) Class 89 from ImageNet. (b) Class 258 from ImageNet.

Figure 2: Original Image from ImageNet (left), and 3 augmented variants (right), using the latent space of NFπ

when doing perturbations, for class 89 (a) and 258 (b) from ImageNet.

6 Conclusion
In this paper, we propose a novel method that learns multimodal gaussians as a part of NF
training. The strength of the proposed method resides in its ability to learn more flexible and
expressive distributions, well suited for conditional image generation which also balances
between the discriminative and the generative properties of the resulting NFs. Our proposed
solution relies on a fixed point iteration framework that (i) overcomes the tedious and sensi-
tive process of tuning the learning rate policy, (ii) allows obtaining interpretable means and
covariance matrices, and also (iii) preserves their symmetry and positive-definiteness. Ex-
tensive experiments conducted on different datasets show the positive impact of our method
when training NF models for different classification and augmentation tasks involving con-
volutional networks and transformers.
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