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In this supplemental material, we offer additional details to complement our proposed
anatomy-aware pre-training model. First, the implementation details and network archi-
tecture are elaborated upon in Section A. Subsequently, we delve into the noising pipeline
in Section B, elucidating the integration of image-based datasets into our sequence-based
model. In Section C, we conduct an ablation study on various noise addition strategies to
simulate sequence variations. Lastly, we present additional quantitative and qualitative eval-
uation results in Sections D and E, respectively.

A Detailed of implementation and Model Architecture

A.1 Implementation Details

We implement our proposed APTPose with PyTorch and conduct experiments using a com-
puter equipped with two NVIDIA Tesla V100 GPUs. The standard data augmentations, such
as horizontal flipping of poses, are applied to both 2D and 3D pose data. For model training,
we utilize Adam optimizer [7] with a batch size of 160. The initial learning rates are set to
1e−4 and 9e−3 for pre-training and fine-tuning, respectively. The training process lasts for
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80 epochs. Moreover, we also employ an exponential learning rate decay schedule with a
decay factor of 0.97 to aid the training procedure.

Additionally, we set λ3D=1 and λ2D=0.3 to balance the effects of the 3D pose loss and
the 2D reprojection loss during the pre-training stage. During the fine-tuning stage, the
weighting factors are set to λmp=1, λmb=0.5, λsp=1 and λsb=0.5 to balance the effects of pose
loss and bone vector loss for both multi-frame and single-frame scenarios.

A.2 Model Architecture

To validate the effectiveness of our training scheme, we conduct experiments using a model
backbone similar to the previous pre-training approach P-STMO [10]. However, it is worth
noting that our lifting model is flexible and can be replaced by any existing architecture
commonly used in human pose estimation literature.

Figure A: The detailed architecture of AaE, consisting of four SEMs and a TEM. (a)
Spatial Encoding Modules (SEM), (b) Temporal Encoding Module (TEM).

Anatomy-aware Encoder (AaE). The APTPose framework comprises an Anatomy-aware
Encoder (AaE), that incorporates four Spatial Encoding Modules (SEMs), and a Temporal
Encoding Module (TEM). Each SEM is designed to capture a specific body component of
the human structure. For computational efficiency, SEM is constructed using a simple MLP
block with residual connections, as illustrated in Figure A(a). TEM, shown in A(b), is con-
structed using a vanilla Transformer, consisting of multi-head self-attention and MLP block,
allowing our model to capture long-range temporal dependencies. Note that in our approach,
we employ an asymmetric encoder decoder design, where the depth of the decoder is lower
than that of the encoder.

Reprojection Module (RM). The Reprojection Module (RM) is similar in structure to the
SEM, using MLP blocks with residual connections as in Figure A(a). The difference is that
the RM takes 3D poses as input and maps them to 2D poses.

Many-to-One Frame Aggregator (MOFA). Figure B illustrates the Many-to-One Frame
Aggregator (MOFA), which is embedded before the final pose estimation at Stage II. MOFA
follows a structure similar to the vanilla Transformer but replaces the MLP block with strided
1D convolution. This substitution facilitates the utilization of a full-to-single scheme, which
aims to enhance temporal smoothness across the entire sequence scale and refine the repre-
sentation at the single-frame level.
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Figure B: The detailed architecture of MOFA.

COCO+N(0, 0.0005) COCO+N(0, 0.005) COCO+N(0, 0.05)

31.89 31.76 31.25

Table A: Ablation study on the effectiveness of adding different levels (std=0.5, 0.005 and
0.0005) of Gaussian noise to the annotations of COCO dataset to simulate sequence varia-
tions.

B Detailed of Noising pipeline

The limited availability and variability of public datasets with 2D-3D pose pairs present a
common challenge, as these datasets are typically collected in controlled laboratory environ-
ments. To address this issue, utilizing existing in-the-wild 2D datasets is a viable option due
to their closer approximation to real-world scenarios. Based on this rationale, we selected
the well-known 2D image-based in-the-wild dataset, COCO [8]. Although COCO contains
fewer data than H36M or 3DHP, its diverse range of human activities and variable image
sizes make it a particularly challenging dataset for pose estimation models.

To bridge the gap between the image-based format and our sequence-based framework,
we introduce a noising pipeline. This pipeline involves duplicating images into the required
frames (e.g., 81 frames for 3DHP and 243 frames for H36M) and adding random Gaussian
noise and jitter to pose annotations for sequence simulation. The extent of noise augmen-
tation will be discussed in subsequent sections. Additionally, we leverage the 3D pseudo
labels of the 2D dataset provided by [3], whose model also adopts an MLP as a backbone,
similar to our reprojection module. This enables the creation of 2D-3D pairs of data to be
fed into our model, thereby enhancing generalization through augmented training scenarios.

We conduct experiments on incorporating existing in-the-wild 2D dataset (e.g., COCO)
and 3D dataset (e.g., H36M) for pre-training and seen it brings robust performance in in-
the-wild 3DHP dataset. The quantitative result on corss dataset experiment also shown in
D.2.

C Ablation Study for MixCOCO

Table A presents the results of our ablation experiments on the 3DHP dataset, aimed at
determining the optimal amount of noise to include. In these experiments, we used 2D
ground truth keypoints as input and evaluated performance under MPJPE.
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MPJPE (GT) Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg
VideoPose [9] CVPR’19 (N=243) 35.2 40.2 32.7 35.7 38.2 45.2 40.6 36.1 48.8 47.3 37.8 39.7 38.7 27.8 29.5 37.8
Anatomy3D [1] TCSVT’21 (N=243) - - - - - - - - - - - - - - - 32.8
MixSTE [12] CVPR’22 (N=243) 21.6 22.0 20.4 21.0 20.8 24.3 24.7 21.9 26.9 24.9 21.2 21.5 20.8 14.7 15.7 21.6
P-STMO [10] ECCV’22 (N=243) 28.5 30.1 28.6 27.9 29.8 33.2 31.3 27.8 36.0 37.4 29.7 29.5 28.1 21.0 21.0 29.3
GLA-GCN [11] ICCV’23 (N=243) 26.5 27.2 29.2 25.4 28.2 31.7 29.5 26.9 37.8 39.9 29.9 27.0 27.3 20.5 20.8 28.5
APTPose (N=243) 25.3 26.7 27.8 25.3 28.0 29.7 29.0 25.3 35.3 34.4 27.9 26.2 25.3 18.0 18.5 26.8

MPJPE (CPN) Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg
VideoPose [9] CVPR’19 (N=243) 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Anatomy3D [1] TCSVT’21 (N=243) 41.4 43.5 40.1 42.9 46.6 51.9 41.7 42.3 53.9 60.2 45.4 41.7 46.0 31.5 32.7 44.1
MixSTE [12] CVPR’22 (N=243) 37.6 40.9 37.3 39.7 42.3 49.9 40.1 39.8 51.7 55.0 42.1 39.8 41.0 27.9 27.9 40.9
P-STMO [10] ECCV’22 (N=243) 38.9 42.7 40.4 41.1 45.6 49.7 40.9 39.9 55.5 59.4 44.9 42.2 42.7 29.4 29.4 42.8
GLA-GCN [11] ICCV’23 (N=243) 41.3 44.3 40.8 41.8 45.9 54.1 42.1 41.5 57.8 62.9 45.0 42.8 45.9 29.4 29.9 44.4
APTPose (N=243) 38.4 41.3 39.7 39.7 44.9 50.6 40.3 40.3 56.1 60.0 43.7 41.8 42.3 29.7 29.6 42.6
APTPose+(Extra2D) (N=243) 38.4 41.2 40.4 40.0 45.2 50.7 40.0 40.8 55.2 60.3 43.7 40.9 42.9 29.2 29.4 42.5
P-MPJPE (CPN) Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg
VideoPose [9] CVPR’19 (N=243) 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Anatomy3D [1] TCSVT’21 (N=243) 33.1 35.3 33.4 35.9 36.1 41.7 32.8 33.3 42.6 49.4 37.0 32.7 36.5 25.5 27.9 35.6
MixSTE [12] CVPR’22 (N=243) 30.8 33.1 30.3 31.8 33.1 39.1 31.1 30.5 42.5 44.5 34.0 30.8 32.7 22.1 22.9 32.6
P-STMO [10] ECCV’22 (N=243) 31.3 35.2 32.9 33.9 35.4 39.3 32.5 31.5 44.6 48.2 36.3 32.9 34.4 23.8 23.9 34.4
GLA-GCN [11] ICCV’23 (N=243) 32.4 35.3 32.6 34.2 35.0 42.1 32.1 31.9 45.5 49.5 36.1 32.4 35.6 23.5 24.7 34.8
APTPose (N=243) 30.5 33.9 32.4 33.0 34.4 39.6 31.7 31.3 44.6 49.1 35.4 32.9 33.8 23.5 24.1 34.0
APTPose+(Extra2D) (N=243) 30.5 33.6 33.0 32.9 34.2 39.5 31.4 31.6 44.2 48.1 35.6 32.0 34.0 23.3 23.7 33.8

Table B: Results on Human 3.6M in millimeters (mm) under MPJPE and P-MPJPE (rigid
alignment). Top table: result under MPJPE using 2D GT keypoints as input. Middle &
Bottom table: results under MPJPE and P-MPJPE using CPN as 2D detector. The best
results are highlighted in Red. The second-best are highlighted in Blue.

D Quantitative Result

D.1 Action-wise evaluation Result on H36M

Table B presents a detailed evaluation of APTPose’s performance, providing action-wise
results compared to state-of-the-art methods on the Human3.6M dataset. In the upper part of
Table B, we used 2D ground truth keypoints as input and evaluated performance in terms of
MPJPE for the 2D-to-3D lifting task, assuming optimal 2D detector performance. The results
show that APTPose surpasses the previous pre-training method [10] (26.8mm vs. 29.3mm)
as well as other notable methods. To ensure a fair comparison, we also used the widely-
used CPN as the 2D detector and evaluated APTPose under both MPJPE and P-MPJPE
metrics, as shown in the middle and bottom sections of Table B, respectively. The results
further confirm APTPose’s superior performance compared to [10] (42.6mm vs. 42.8mm in
MPJPE, and 34.0mm vs. 34.4mm in P-MPJPE), as well as other promising methods.

As discussed in Section 4.2, while MixSTE demonstrates the lowest reconstruction error
on the Human3.6M dataset, it incurs a significant computational overhead, exceeding other
methods by over 200 times. APTPose achieves competitive accuracy with significantly re-
duced computational demands (1.367 vs. 277.24 GFLOPs), as shown in Table 1a and Figure
3a. Additionally, APTPose surpasses GLA-GCN when using both ground truth and CPN 2D
keypoints under the MPJPE metric, with lower complexity (1.367 vs. 1.558 GFLOPs).

Overall, APTPose demonstrates competitive performance across various scenarios while
maintaining an appropriate level of complexity, underscoring its superior stability and gen-
eralization capabilities.

D.2 Cross-dataset experiment on 3DHP

To evaluate how APTPose facilitates model generalization to cross-scenario datasets, addi-
tional experiments are conducted as shown in Table C. The model is trained on the H36M
dataset and tested on the 3DHP dataset, where it is compared against various state-of-the-
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Method PCK↑ AUC↑ MPJPE↓ P-MPJPE↓

InterAug [2] ICASSP’22 81.6 48.2 93.4 -
PoseAug [5] CVPR’21 88.6 57.3 73.0 -
AdaptPose [4] CVPR’22 88.4 54.2 77.2 -
DynaBOA [6] T-PAMI’22 79.5 43.1 101.5 66.1
P-STMO [10] ECCV’22 86.9 51.9 86.9 58.1

APTPose 89.0 57.5 76.8 57.7

Table C: Cross-dataset evaluation on 3DHP dataset. The best results are highlighted in Red.
The second-best are highlighted in Blue.

art methods. Extensive experiments show that APTPose achieves significant improvements
over [10] in PCK, AUC, MPJPE, and P-MPJPE metrics by 2.4%, 10.7%, 11.6%, and 0.7%,
respectively. The result highlights the effectiveness of APTPose’s hierarchical masking strat-
egy, emphasizing the learning of the human skeletal structure, for application across diverse
scenarios compared to previous approaches that focus on learning individual joint nodes.

Notably, our approach even outperforms data augmentation-based methods [2, 5], as
well as adaptation approaches [4, 6], achieving state-of-the-art performance on PCK, AUC,
P-MPJPE metrics without utilizing data from the test set of the target domain.

E Qualitative Result
As shown in Figures C-G, we present more qualitative comparisons between our proposed
APTPose and P-STMO [10] on five challenging in-the-wild videos, including skating, bas-
ketball, dancing, rollerskate, and ski. The results demonstrate that our approach significantly
outperforms P-STMO in capturing realistic actions in real-world scenarios and predicting
human proportions more reasonably.
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Figure C: Qualitative results on in-the-wild videos - skating videos. We compared our
approach with the state-of-the-art method P-STMO [10].
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Figure D: Qualitative results on in-the-wild videos - basketball videos. We compared our
approach with the state-of-the-art method P-STMO [10].
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Figure E: Qualitative results on in-the-wild videos - dancing videos. We compared our
approach with the state-of-the-art method P-STMO [10].
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Figure F: Qualitative results on in-the-wild videos - rollerskate videos. We compared our
approach with the state-of-the-art method P-STMO [10].
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Figure G: Qualitative results on in-the-wild videos - ski videos. We compared our approach
with the state-of-the-art method P-STMO [10].
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