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Abstract

This paper presents a novel anatomy-aware pre-training method for accurate 3D hu-
man pose estimation, named APTPose. We propose a Hierarchical Masked Pose Mod-
eling (HMPM) subtask that decouples the body skeleton into several distinct body com-
ponents for hierarchical modeling. It surpasses the limitations of earlier joint coordinate
masking techniques by better capturing the dependencies of the human skeletal struc-
ture. Unlike previous methods focusing on 2D pose reconstruction in their pre-training
task, we leverage a large number of 3D pseudo labels from existing datasets for pre-
training. This allows us to better model the skeletal system in 3D space and improve
the accuracy and robustness of 3D human pose estimation. Additionally, we introduce
a geometric loss into the optimization process to boost correlations within the human
skeleton. Experimental results show its superior robustness and generalization capabili-
ties across challenging benchmarks, offering a favorable balance between accuracy and
computational complexity, thus making it an appealing option for practical applications.
Code is available at https://github.com/wenwenl2321/APTPose.

1 Introduction

Monocular 3D human pose estimation (3DHPE) is a fundamental task that involves es-
timating 3D poses and reconstructing body representation, such as the skeleton position,
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(a) Previous method (b) Our method

Figure 1: Illustration of the main difference between the masking strategies in APTPose and
previous approach [20]. In addition to the Keypoint-level masking strategy, our proposed
APTPose also aggregates the Bone, Limb, and Body level information into pre-training. De-
tailed definitions are provided in Sec. 3.1.

from a single camera. This task has a wide range of applications, including action recog-
nition, augmented/virtual reality, and human-robot interaction, where it is instrumental in
capturing complex body geometry and motion expressions. Moreover, the current trend in
3DHPE is revolved around the 2D-to-3D lifting pipeline, which uses 2D keypoints from off-
the-shelf detectors [2, 7] as input and focusing on lifting 3D pose. To enhance accuracy,
many sequence-based methods [1, 18, 31, 33] leverage temporal information from videos to
achieve notable improvements over single-frame methods.

Later, with the superior performance of the Transformer [25], recent works [15, 16, 31,
32, 33] have incorporated the Transformer architecture for further advancements in pose
fields. Shan et al. [20] proposed a pre-training model for 2D-to-3D human pose estima-
tion, leading to significant advancements in performance. The model effectively captures
spatial and temporal dependencies by randomly masking both spatial and temporal domains
from input 2D sequences and recovering corrupted 2D poses using a denoising auto-encoder.
However, we note that there are still several limitations in their approach: (i) Masking strat-
egy employed in previous approach only considers Keypoint-level masking in the spatial
domain, overlooking the rich human skeleton structural information and oversimplifying
the pose estimation task. (if) Our second concern is that it predominantly concentrates on
2D pose reconstruction in pre-training, disregarding the significance of depth and motion
information in 2D-to-3D lifting task. (iii) In addition, the method lacks sufficient geomet-
ric knowledge to enable models to comprehend the relationships between human skeleton.
Consequently, these reasons highlight the limitations of the previous pre-training method.

Driven by these observations and analysis, we present a novel Anatomy-aware Pre-
Training approach, dubbed APTPose, that leverages anatomical knowledge for human pose
estimation. To address the first issue, we introduce a Hierarchical Masked Pose Modeling
(HMPM), which decouples the body skeleton into several distinct body components, includ-
ing Keypoint-level, Bone-level, Limb-level and Body-level as shown in Figure 1 for effective
hierarchical pose representation learning. To address the second issue, APTPose effectively
combines 2D and 3D supervision by a simple auxiliary reprojection module. This module
seamlessly integrates an extensive set of 3D pseudo-labels derived from widely available
in-the-wild 2D data, enabling the precision and robustness of the human skeletal structure
representation. Furthermore, APTPose tackles the third issue by introducing geometric loss
constraint into the optimization process. This loss function inherently carries the essential
geometric knowledge, enabling our model to estimate plausible poses by considering the
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bone orientation and bone length characteristics of the human pose.
In summary, we make the following contributions:

* We present an anatomy-aware pre-training framework to discern human skeletal struc-
ture across distinct body components effectively.

* We utilize a reprojection module to combine 2D and 3D supervision in pre-training,
enabling the precision and robustness of the human skeletal structure representation.

* We introduce a geometric loss into the optimization process to further improve the
consistency and plausibility of pose predictions.

2 Related Works

In the interest of space, we limit our discussion to prior work on video-based 2D-to-3D lifting
approaches in single-person and single-view settings. Some of the early studies [1, 4, 18, 34]
leveraged temporal information from the adjacent frames to mitigate depth ambiguity. [18]
proposed a temporal convolutional network (TCN) that integrates spatial-temporal depen-
dencies across sequences. [1] decomposed the estimation task into bone length and bone
direction prediction subtasks, effectively capturing information from both local and distant
frames. However, these works rely on simple operations to map local joints coordinate to
a latent space, neglecting the long-range dependencies with temporal connectivity. To ad-
dress this problem, [33] employed the Transformer architecture to more effectively model
spatial-temporal information.[15] further explored incorporating stride 1D convolution into
the Transformer architecture to aggregate the full sequence into a central frame.

Although existing 2D-to-3D models achieve impressive performance under controlled
laboratory settings, their effectiveness on real-world is frequently hindered by the scarcity
and lack of diversity in publicly available training data. Researchers [3, 8, 14] have tried
using data augmentation strategy to generate diverse 2D-3D pose pairs. [14] adopted evolu-
tionary operators to generate variations of 3D poses. [8] designed an end-to-end generative
model to create plausible new poses. However, these methods are still limited to the com-
binations derived from "seen"” indoor source data, making it challenging to infer accurate
results in real-world "unseen” scenarios.

To further enhance generalization to in-the-wild scenarios, some studies [12, 26, 27, 29]
have explored self-supervised learning methods to train models with unlabeled data. Mean-
while, extensive works [9, 23, 29, 34] have incorporated mixed 2D in-the-wild data in the
training process using weakly-supervised learning or transfer learning techniques. Inspired
by these studies, we explore the utilization of existing in-the-wild 2D annotations datasets to
align with real-world scenarios, leading to marginal boost to the model generalization.

In recent years, transformer-based pre-training methods have emerged as crucial solu-
tions in various fields to cope with limited data availability, significantly enhancing model
robustness and generalization. In natural language processing, [6, 19, 24] proposed masked
language modeling (MLM), randomly masking words and predicting masked words based
on context. Shifting to computer vision, [10] delves into masked image modeling (MIM),
involving the random masking of pixels or visual tokens and subsequent reconstruction of
missing regions. Moreover, the influence of pre-training techniques has expanded to areas
like video processing [22, 28] and video-language tasks [21]. Along this line, [20] pio-
neered the application of pre-training techniques to 3DHPE, introducing masked pose mod-
eling (MPM). The task involves inpainting masked joints in the spatial domain and filling
in masked frames in the temporal domain. In contrast to existing MPM [20] task, our pro-
posed hierarchical masked pose modeling (HMPM) considers deeper dependencies within
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Figure 2: Overview of our proposed APTPose. (a) Pre-training stage: Hierarchical MPM
masks the given 2D pose sequence at different anatomy levels, which is then fed to the
Encoder. Decoder reconstructs 3D pose sequence from encoded unmasked embeddings and
temporal padding embedding. Reprojection module projects 3D pose sequence onto 2D
plane. (b) Fine-tuning stage. The 2D pose sequence is fed to the pre-trained Encoder and
Aggregator for estimating full sequence and single frame of 3D pose, respectively.

the human skeletal structure, leading to improved accuracy and generalization of prediction.

3 Proposed Method

Figure 2 depicts an overview of the APTPose. Our proposed method has a two-stage pipeline,
consisting of pre-training and fine-tuning. The goal of the pre-training phase is to enable our
encoder to capture human pose representation across spatial-temporal relationships with the
help of HMPM. Subsequently, fine-tuning is dedicated to lifting 2D poses to their corre-
sponding 3D pose. This approach facilitates optimization and achieves strong performance.

During the pre-training stage, our model tends to effectively learn hierarchical pose
representations at each anatomy level by solving the proposed Hierarchical Masked Pose
Modeling (HMPM) subtask. We utilize an Anatomy-aware Encoder (AaE) and Decoder to
reconstruct both 2D and 3D pose sequences. The AaE consists of four Spatial Encoding
Modules (SEMs) and a Temporal Encoding Module (TEM), designed to capture the specific
level of anatomy-aware human skeletal structure and long-range temporal dependencies, re-
spectively. For computational efficiency, SEM is constructed using an MLP block instead of
Transformer architecture as in TEM. Additionally, we enhance the learning process by inte-
grating both 2D and 3D supervision through a straightforward auxiliary reprojection mod-
ule. It significantly improves the precision and robustness of pose estimation by enabling the
model to learn spatial and temporal relationships across both 2D and 3D domains, as well as
their complex mapping relationships. More details of the model architecture can be found in
the supplementary. After pre-training, we fine-tune the pre-trained AaE and Aggregator to
estimate a 3D pose. In addition to the typical optimization process, we introduce geometric
loss constraints, enhancing the consistency and plausibility of pose estimations.
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3.1 Hierarchical MPM

Definition. We decouple the human skeleton into several distinct body components for hi-
erarchical modeling. These levels start from local to global representations, including (1)
Keypoint level, (2) Bone level, (3) Limb level, and (4) Body level as illustrated in Figure 1.
Firstly, we denote Keypoint level as each individual joint J as defined in previous work [20].
We define Bone level as any two neighboring joints where they essentially formed J — 1 bone
(e.g., Thorax-Spine). Limb level representes the four limbs of the human body, which are
represented by three consecutive joints on arms and legs (e.g., Shoulder-Elbow-Wrist and
Hip-Knee-Foot). Lastly, Body level represents either the right side or the left side of the body
(e.g., RShoulder-REIbow-RWrist, RHip-RKnee-RFoot). These four masking variations aim
to exploit the relations of sets of keypoints, prompting the encoder to effectively learn from
representation of human anatomy.

Process of Hierarchical MPM. The implementation details of our HMPM are shown in
Figure 2 (a). We adopt the HMPM approach by randomly masking a fixed set of 2D joints in
each frame and filling the masked joints with learnable shared parameters for each masking

level strategy in parallel. Specifically, we require each masking level to output a correspond-
Keypoint XBone XLimb XBody c RNXZ]
7 3 -

ing spatial encoder input, ie., X As these masking
strategies share the same implementation, we present the Bone level masking as an example
to illustrate our approach. The procedure can be formulated as Equation 1:

)

Bone Bone Bone Bone
X ={X1 » X2 yerey XN }7

(1)
xgone ={P,'2D - ¢ Mfone}lLl U {eBone Lie Mrll?one}lLl

Bone |

where M2 € RY*|m represents the masked joints at the bone level in frame n, and

Bone
m"”™ € N denotes the number of masked joints at the bone level, ¢°” € R”  contains

shared learnable parameters for padding the masked joints at the bone level, and xf(m
2D pose with bone masking. Note that x2”* is formed by replacing the 2D pose p2” for the
joints with bone masking by padding.

As aresult, each SEM learns distinct body components representation by feeding X 7™
XBone"XLimb’XBody as input and outputting FKeypaint’FBone FLimb’FBody c RJ><d
tively, where d denotes the dimension of latent representation.

e .
1S a

, , respec-

Subsequently, we obtain the hierarchical spatial features F Hepr/ by a simple yet ef-
fective hierarchical feature fusion module, which performs element-wise multiplication to
fuse the representations learned from different levels.

3.2 Reprojection Module and Noising Pipeline

In image-based pose estimation, 2D/3D mixed data [23, 29] and 3D pseudo annotations
[5, 13] are commonly used to enhance data diversity. For image inputs, performance gains
primarily result from a diversity of appearances, whereas for 2D-to-3D lifting, they arise
from incorporating various mapping relationships between 2D and 3D poses. In this section,
our key insight is to achieve two objectives using a simple Reprojection Module and Nois-
ing Pipeline: (i) extending the optimization process from 2D-only to both 2D and 3D, (ii)
enabling the integration of easily accessible image-based 2D in-the-wild datasets into our
frame-input framework. Details of these performance improvements are reported in Table 2.
Reprojection Module. To combine 2D and 3D supervision during pre-training, our pro-
posed reprojection module projects the predicted 3D poses from the decoder into 2D space,
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using a combination of MLP and residual networks. Moreover, this module also allows our
framework to seamlessly integrate an extensive set of 3D pseudo-labels derived from widely
available in-the-wild 2D data. Experimental results demonstrate that integrating 3D supervi-
sion during pre-training positively impacts the learned representations.

Noising Pipeline. We also conduct experiments on incorporating existing in-the-wild 2D
dataset (COCO) and 3D dataset (H36M) for pre-training. To address the discrepancy be-
tween the image-based format and our sequence-based framework, we introduce a nosing
pipeline. This involves duplicating images into the required frames and adding random noise
and jitter to pose annotations for sequence simulation, thereby enhancing generalization by
augmenting training scenarios. It is worth noting that we use the 3D pseudo labels of 2D
dataset provided by [5]. For further details on the noising pipeline, please refer to the sup-
plementary material.

3.3 Geometric Knowledge Constraints

Rather than arbitrarily predicting coordinates, we aim to incorporate the geometric con-
straints of the correlations in the human skeleton to improve our training process. To achieve
this purpose, we explore previous geometric constraint methods [8, 14, 26] and note that
bone vectors can potentially convey more comprehensive geometric information (e.g., bone
orientation and bone length) than individual joint locations. We define Pelvis as the root joint
of 3D coordinate, and represent our 3D pose as the root-relative human skeleton consisting
of joints (as nodes) and bone lengths (as edges), shown in the Figure 1, where each yellow
arrow pointing from parent joints to child joints can be viewed as a single bone vector. Note
that each joint j has only one corresponding parent joint, denoted by parent( J). Given a set
3D (J)- 3
e R
U-1)-3

of 3D joint locations that contains J joints in i-th frame xl = { p Yooy p i }

we can acquire (J — 1) corresponding bone vectors B; = {b1,...,b;_1}, Bi ER by sub—
stracting the parent joint corresponding to joint j. For example, the jth bone vector b; can

be defined as follows: o
b =Pj ~ Pparent(j)- @)

3.4 Loss Functions

Our proposed model is trained by using a two-stage pipeline, consisting of pre-training and
fine-tuning. We detail the loss functions used in each stage below.

Stage 1. Pre-training: The pre-training objective of our model, denoted as Le—;rqgin, cOM-
prises two supervised loss components: the 3D pose loss and the 2D reprojection loss. We
employ standard L2 loss to minimize the difference between the predicted and ground truth
poses:

Lpre—train = MpLap + AapLop, 3

where Ls;p and Lp are 3D pose and 2D pose losses, respectively. We use weighting factors
Asp and A,p to balance the effect of these two loss functions.

Stage I1. Fine-tuning: Similar to [15, 20], our fine-tuning stage adopts a full-to-single pre-
diction scheme. The multi-frame loss first guides the TEM in leveraging temporal relation-
ships across the full sequence to enforce temporal smoothness. Subsequently, the single-
frame loss refines the representation by aggregating these 3D features from the sequence
to estimate the more accurate 3D pose of the center frame. As mentioned in Sec. 3.3, we
incorporate bone vector into the loss function along with the loss for both multi-frame and
single-frame training. Therefore, there are four types of supervision in this stage. For all of
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these cases, L, norm is employed as the loss function for the prediction error with respect
to the ground truth. The multi-frame pose and bone vector supervision losses, denoted by
Lyuiti_pose ad Lyyiti_pone> T€Spectively, are defined as:

N J-1
multt _pose — Z Z || & Lmultl _bone — Z Z ||b_] n j,n||27 (4)
n=1j=1 n=1 j=1

where p?ﬁ and ﬁiD,, denote the j-th predicted and ground truth 3D joint locations in the n-th
frame, respectively, b; , and b ;,n denote the j-th predicted and ground truth 3D bone vectors
in the n-th frame, respectively, N denotes the total number of frames, and J denotes the total
number of joints. The single-frame pose and bone vector supervision losses, denoted by
Lyingie_pose a0 Lgingre_pone» TeSpectively, are defined as:

J J—1
3D ~3D ~
Lsingle_pose = Z ||pj —Dj ||2 & Lsingle_bone = Z ||bj _bj||27 )
= =1

where p;Dand ﬁ;D denote the j-th predicted and ground truth 3D joint locations, respectively,

and b; and b ; denote the j-th predicted and ground truth 3D bone vectors, respectively.
Overall the total loss function L, for model fine-tuning can be written as follows:

Lmtal = lmmeulti_pose + )*mbLmulti_b(me + ﬂvspLSingle_pose + }stLsingle_bone (6)

where A’s are the weighting factors to balance the above loss functions.

4 Experimental Results

4.1 Datasets and Evaluation Metrics

Human 3.6M (H36M) [11] is the largest indoor 3DHPE benchmark with 3.6 million video
frames covering 15 activities by 11 subjects. We train on subjects S1, S5, S6, S7, S8, and
evaluate on S9 and S11. Evaluation metrics include Mean Per-Joint Position Error (MPJPE)
and Procrustes analysis MPJPE (P-MPJPE) in millimeters.

MPI-INF-3DHP (3DHP) [17] is another substantial benchmark for 3DHPE, encompassing
both indoor and outdoor scenes with 1.3 million frames. It presents more diverse and chal-
lenging motions than H36M. The Percentage of Correct Keypoints (PCK), Area Under the
Curve (AUC), and MPJPE are reported as evaluation metrics.

4.2 Comparison with State-of-the-Art Methods

We compare our proposed APTPose against state-of-the-art methods using the H36M and
3DHP datasets, with results detailed in Table la and Table Ib, respectively. Employing
a similar model architecture design, our method surpasses the previous pre-trained base-
line, P-STMO [20], by incorporating the enhancements outlined in our introduction. On
H36M, our method achieves improvements of 0.46% in MPJPE and 1.16% in P-MPJPE. On
3DHP, our method outperforms [20] by 4.3% in MPJPE, 1.3% in AUC, and 0.1% in PCK.
In addition, A key observation is APTPose’s exceptional performance in handling shorter
sequence lengths (with frames f < 27) as illustrated in Table 1b. This advantage is mainly
due to the integration of geometric constraints in our model, which ensures plausible pose
estimation even with limited observational data. Such an approach is effective in scenar-
ios typical of online and daily life videos, which are often characterized by their fast-paced
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Method | / FLOPSG)L PCKT AUCT MPIPEL
P Poseformer [33] ICCV'21 | 9 0.15 886 564 771
Method | / FLOPSG)! MPIPEL P-MPIPEL MHFormer [I6]CVPR'22 | 9 0342 938 633 580
VideoPose [18] CVPR’19 | 243 0.033 46.8 36.5 APTPose 9 0.056 97.1 738 35.5
Anatomy3D [I] TCSVT'21 | 243 0.116 4.1 35.6 MixSTE [31] CVPR'22 27 30.8 944 665 549
MixSTE [31] CVPR’22 243 27724 409 326 APTPose 57 0151 974 752 331
P-STMO [20] ECCV’22 243 0.868 428 34.4 VideoPose [15] CVPR'TS | 81 005 w0 519 0
GLA-GCN [30] ICCV*23 | 243 1.558 44.4 34.8 1deobose - - : :
11 Anatomy3D [1] TCSVT21 | 81 0.088 879 540 788
APTPose 243 1.367 42.6 34.0 P-STMO [20] ECCV’22 81 0246 979 758 322
APTPose (+Extra2D) 243 1.367 425 33.8 GLA-GCN [30]ICCV'23 | 81 0520 985  79.1 27.7
APTPose 81 0455 980 768 30.8
(a) Results on H36M. APTPose (+Extra2D) 81 0455 977 712 30.5

(b) Results on 3DHP.

Table 1: (a) Results on H36M dataset. 2D poses detected by CPN are used as inputs.
(b) Results on 3DHP dataset. 2D GT keypoints are used as inputs. The best results are
highlighted in red. The second-best are highlighted in blue.

3651 @ @® VideoPose 80 ® @ VideoPose
36.0 Anatomy3D (] Anatomy3D
@® MixSTE @® MixSTE
355 ® rsT™MO o ® r-sT™MO
350 ® GLA-GCN ® GLA-GCN
,E_, ! [ ] % APTPose(f243) @ 60 @ Poscformer
%. 345 () g MHFormer
a APTPbsbiAl 50 Y APTPose(f9)
340 SRR APTPose(f27)
335 401 APTPose(f9) | ARTEose(fB1)
* APTPose(f27)
33.0 o APTPose(f81)
30 *6
325 > o 2 3
10" 10’ 10' 10° 10" 10" 10' 10° 10°
FLOPs (Log-scale) FLOPs (Log-scale)
(a) H36M dataset (b) 3DHP dataset

Figure 3: Comparison of computational cost between APTPose and other SOTA methods
on two benchmark datasets.

and brief nature. However, while MixSTE demonstrates the lowest reconstruction error on
H36M, it incurs a significant computational overhead that exceeds other methods by over
200 times. Moreover, its performance in the in-the-wild scenarios of 3DHP is suboptimal,
leading us to characterize it as overfitted. On the other hand, GLA-GCN exhibits strong
generalization capabilities on challenging 3DHP datasets when supplied with high-quality
2D data (i.e., ground truth poses). Nonetheless, its performance deteriorates considerably
when low-quality 2D data is used (i.e., 2D poses detected by the CPN detector), even on
relatively simpler datasets like H36M. In contrast, APTPose achieves competitive accuracy
with significantly reduced computational demands. This efficiency is attributed to our pro-
posed pre-training strategy, which enables the lightweight Anatomy-aware Encoder (AaE)
to effectively capture human skeletal structures. Additionally, our masking strategy during
pre-training enhances robustness against noise, making APTPose less sensitive to variations
in 2D pose quality. Building on these observations, APTPose demonstrates competitive per-
formance across various scenarios by effectively balancing complexity, noise robustness,
stability, and generalization capabilities. These characteristics highlight its suitability for
real-world applications.

Qualitative Results. As shown in Figure 4a, we present a qualitative comparison between
our proposed method and [20] on 3DHP dataset. By leveraging anatomy-aware knowledge,
our method yields greater consistency between the estimated bone lengths and the GT. This
improvement contributes to more accurate pose estimation, particularly in complex outdoor
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Figure 4: Qualitative Results on challenging outdoor scenarios.

scenes compared to [20]. We will discuss this further in the upcoming ablation study. To
evaluate the generalization capabilities of our model, we employ the model weights trained
on the H36M dataset for conducting in-the-wild video inference. As illustrated in Figure
4b, our proposed hierarchical masking strategy demonstrates superior performance in real-
world scenarios compared to [20]. The results distinctly reveal that APTPose can better
model the human skeletal structure, facilitating enhanced generalization to challenging and
uncontrolled environments. Please refer to the supplementary material for additional quan-
titative and qualitative evaluation results.

4.3 Ablation Studies

Effectiveness of Individual Components. In Table 2a, we progressively integrate our pro-
posed components into the primitive backbone on the H36M dataset. Initially, we incor-
porate geometric loss to enhance the model’s ability of capturing correlations within the
human skeleton, leading to a 5.6% improvement in accuracy compared to the baseline. Sub-
sequently, we evaluate the impact of HMPM strategy under two pre-training supervision
settings: (i) 2D only, and (ii) combined 2D and 3D supervision. The addition of HMPM
during pre-training reduces MPJPE from 43.5 mm to 42.9 mm. Furthermore, the integra-
tion of 3D supervision during pre-training yields even more pronounced benefits, reducing
MPJPE to 42.6 mm. The results emphasize the critical role of 3D supervision in pre-training,
highlighting the limitations of [20] focused on 2D representations.

Effectiveness of Geometric Constraints. We assess the impact of our geometric constraints
by examining bone length errors between predicted and ground truth skeletons on the 3DHP
test set (TS1 to TS6). Table 2b demonstrates the efficacy of our geometric loss, leading
to reduced bone length errors across TS2, 3, 4, and 5, thus yielding a lower average error
compared to prior works [20].

Effectiveness of Pre-Training. In Table 2c and Table 2d, we examine the performance gains
achieved by transitioning from a fundamental (keypoint-level) masking strategy to a hierar-
chical masking strategy on the H36M dataset, utilizing CPN as the 2D detector. To ensure
a fair comparison with prior work [20], which employs only 2D loss during the pre-training
stage, our results also focus on the 2D loss (MPJPE) during pre-training. Additionally, to
simplify model complexity, all experiments are conducted using a 9-frame setting. Table 2¢
presents an ablation study that evaluates the effectiveness of different spatial masking levels
in HMPM. Starting with a keypoint-level masking approach (as used in [20]), the method
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Backbone Geo. loss HMPM  3Dloss MPJPE

7 6.1 TSI TS2 TS3 TS4 TS5 TS6 Ave
v v 435 P-STMO[20] 6.68 4.90 456 529 256 175 4.29
v v v 429 Ours 674 473 442 517 213 177 416
v v v v 42.6

(b) Bone length error
(a) Effectiveness of each component

Keygoint Bone Limb Body l\gzPJ‘ll;E M FT on 3DHP MPIPE

s e Add 23.23 = ™

v 2130 Avg. 23.19 PT on H36M (2D loss) 313

v 2171 Cat. 22.81 PT on H36M+COCO (2D loss) 31.6

v v v v 20.28 (Ours) Mul. 20.28 PT on H36M+COCO (2D+3D loss) 30.5
(c) Different Masking Levels (d) Different Fusions (e) Pre-training with Different Data

Table 2: (a) Ablation study on the effectiveness of each component (measured by MPJPE).
(b) Ablation study on the effectiveness of geometric constraints. The unit of the bone length
error is milimeter (mm). (c¢)-(d) Ablation studies on the effectiveness of our HMPM pre-
training strategy, focusing on the 2D loss (MPJPE) during the pre-training stage. (e) Ablation
study on the effectiveness of incorporating 3D supervision and additional 2D data in the pre-
training stage. (PT denotes pre-training, FT denotes fine-tuning).

achieves an MPJPE of 22.46 mm. Incremental improvements in reconstruction error are ob-
served with the implementation of bone-level, limb-level, and body-level masking strategies,
resulting in MPJPE reductions of 0.17 mm, 1.16 mm, and 0.75 mm, respectively. When all
masking levels are integrated, the MPJPE is further reduced to 20.28 mm. Table 2d shows
a comparison of different hierarchical feature fusion mechanisms employed in our HMPM
pre-training approach. Our results demonstrate that element-wise multiplication effectively
incorporates human skeleton prior knowledge of different levels, whereas other mechanisms
such as addition, averaging, and concatenation do not achieve comparable improvements.
Table 2e presents a comprehensive analysis of the effect of incorporating 3D supervision
and additional 2D data in the pre-training stage. We consider four scenarios: (i) no pre-
training, (i) pre-trained on H36M (using 2D loss only), (iii) pre-trained on both H36M and
COCO (using 2D loss only), and (iv) pre-trained on both H36M and COCO (using both 2D
and 3D losses). Notably, we do not include the 3DHP dataset in the pre-training stage, but
only fine-tune our model on it. The last two rows in Table 2e demonstrate that our proposed
strategy for handling image data and pseudo-labels allows existing 2D image datasets to be
compatible with our sequence model and leads to a significant improvement.

5 Conclusion

We present a novel anatomy-aware pre-training framework to model comprehensive repre-
sentation of the human skeletal structure by leveraging the distinct body component features.
Moreover, by integrating 3D supervision and geometric knowledge constraints into the op-
timization process, our model significantly improves accuracy and enables more plausible
3D pose estimation. Extensive experimental results show that the proposed method has a
fundamental advantage over Keypoint-level pre-training model, not only demonstrating its
superior robustness and generalization capabilities to challenging benchmark and also pro-
viding a favorable trade-off between accuracy and computational complexity, making it a
compelling choice for practical applications.
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