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A Additional Field Overview

A.1 Efficient Learning

Augmentations. Augmentation techniques are crucial in advancing deep learning mod-
els [50], providing strategies that enhance training efficiency, improve generalisation, and
bolster model robustness. One of the recent groundworks includes batch augmentation
[22], which is a powerful strategy that utilises large batches comprising multiple transfor-
mations for each sample. This not only accelerates training by reducing the number of
stochastic gradient descent (SGD) updates but also acts as a regulariser, leading to improved
generalisation. Another popular approach is RandAugment [10], designed for automated
data augmentation by narrowing the search space and providing parameterisation. This
method consistently outperforms previous automated augmentation techniques, demonstrat-
ing its efficiency across various tasks and datasets. Recent advances in contrastive learn-
ing also demonstrate that the so-called Stronger Augmentations [49] significantly enhance
contrastive learning by enforcing distributional divergence between images augmented with
such "strong" permutations as random cropping and flipping. Addressing limitations asso-
ciated with regional dropout strategies, CutMix [54] involves cutting and pasting patches
among training images. This ensures information preservation, promotes object localisation
capabilities and improves the model’s resilience against input corruption.

B Experimental Details

B.1 Datasets

Table 3: The details of three fine-grained visual classification datasets used for the experi-
ments.

Dataset Categories Classes Images

CUB-200-2011 [47] Birds 200 11,788
Stanford Cars [28] Cars 196 16,185
FGVC-Aircraft [33] Airplanes 102 10,200

B.2 Implementation Details

For our self-distillation part, after performing random sampling from the input image, we
resize both target and source sampled regions to 224×224 pixels. The motivation is to pro-
vide more different scales for input images so that the model can learn more scale-invariant
representations, which are usually assumed to be already present in standard-sized datasets.
Our training setup includes the standard SGD optimiser with a momentum equal to 0.9, a
learning rate of 0.03, and a training batch size of 24 for all datasets. All experiments have
been conducted on a single NVIDIA RTX 6000 GPU using the PyTorch framework and the
APEX utility for mixed precision training.
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C Additional Analysis

C.1 Qualitative Analysis
In order to analyse the motivation behind the significant performance improvement with
our approach, we provide a direct comparison of training behaviour for a fine-tuned vanilla
ResNet-50 and our self-distilled AD-Net with the same backbone. It can be observed from
Figure 4 (left) that the model trained with standard fine-tuning procedure tends to overfit the
limited data samples quickly and does not allow further refinement, while our framework
is able to avoid overfitting more effectively. This can be explained by the effect of the
additional distillation objective, which introduces an independent and more detailed source
of information by enforcing feature space alignment for augmented views of the same image.

Figure 4: Left: Comparison of test accuracy evolution for our approach and traditionally
fine-tuned vanilla ResNet-50 (CUB 10 % dataset). Right: Training loss evolution for both
classification and distillation objectives in our AD-Net (ResNet-50, CUB 10 % dataset).

This specific effect is demonstrated in Figure 4 (right), where we provide the evolution
of both classification and distillation objectives separately. Specifically, categorisation loss
gets saturated quickly and becomes insignificant after the first 10% of training time, while
our self-distillation component provides a noticeable effect throughout the whole training
process. This is especially useful in low-data regimes, where models tend to quickly overfit
to the main classification loss and do not obtain significant update signals, which is not the
case for our proposed multi-component objective function.

C.2 Ablation Study
Distillation Loss. To rigorously evaluate the impact of distillation loss within our frame-
work, a series of experiments were conducted on the CUB 10% dataset. First, in order to find
the most effective type of distillation loss, we explore various objective functions applied at
different type of outputs. In Table 4 we illustrate the variance in performance among different
loss functions when applied to measure the disparity between features or logits coming from
the target and source distillation branches in our architecture. Notably, Cross Entropy and
Focal Loss functions, when applied to the output logits of both branches, demonstrate infe-
rior performance. While computing the loss on the output features (converted to normalised
distributions with softmax) is more effective, with KL divergence showing best results com-
pared to the L1 and L2 objectives. One plausible explanation for the superior efficacy of
KL divergence over other loss functions could be its ability to compare more sophisticated
abstractions coming from differently augmented views.
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Table 4: Effects caused by the type of distillation loss on the final metric. KL divergence
computed between feature outputs of distillation branches shows the best performance.

Loss Features Logits

Cross Entropy - 39.09
Focal Loss - 39.32
L1 (MAE) 43.96 -
L2 (MSE) 41.67 -
Kullback–Leibler (KL) 47.51 -

Following the identification of the most effective loss function for our distillation branch,
we proceeded to investigate its influence on the aggregated loss, denoted as Lagg in Eq. 3,
by varying the weight coefficient α . In order to find the most optimal value, we experiment
with both constant and variable α values, and summarise the results in Table 5. Our heuristic
findings revealed that the model achieves its peak performance with the value of α set to 0.1.

Table 5: Study of the effect of α coefficient in the aggregated loss Lagg from Eq. 3. The α

decay is a linear decay from 1.0 to 0.01 .

α 1 0.5 0.1 0.01 α decay

Acc, % 45.98 46.13 47.51 44.08 45.6

C.3 Limitations
Although our approach demonstrates a significant performance gain in the low-data setting,
we also analyse and acknowledge its current limitations. First, due to the extra forward
passes for each of the separate branches, the training time is increased by approximately 35-
90 % compared to the vanilla fine-tuning (depending on the architecture type, see Tab. 2).
However, this matter is not presented at inference time since our solution brings zero com-
pute and time cost after training. Second, our approach has an inversely proportional per-
formance gain to the size and diversity of a dataset (refer to Table 1), which theoretically
may lead to less significant accuracy improvement when the data is abundant. Lastly, our
solution requires a hyper-parameter α in Eq. 3 for controlling the influence of the distilla-
tion objective function on the overall loss, which unadapted value may sometimes lead to
unstable training results (due to the nature of the KL divergence loss). We suggest that our
current heuristic choice can be potentially replaced by an independent learnable parameter.

C.4 Quantitative Analysis
C.4.1 State-of-the-art comparison

Main Results. In Table 6 we provide the full comparison of different approaches on all data
percentages including full datasets.
Other Results. Additionally, in Table 7, we also compare other methods potentially suitable
for the low-data setting. Namely, SwAV [3], pre-trained in a self-supervised way and fine-
tuned, and CLIP [36], a self-supervised vision-language model, used for zero-shot inference.
As can be seen, compared to our AD-Net, they demonstrate promising but unstable results.
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Table 6: Comparison of different approaches using various percentages of the data on three
popular FGIC datasets. Our proposed solution achieves consistent improvement in perfor-
mance over other methods across low data settings. Best results are highlighted in bold.

Dataset Method Training data percentage

10% 15% 30% 50% 100%

CUB-200-2011
ResNet-50 36.99 48.88 62.60 73.23 81.34
FBP 37.88 49.12 63.27 73.70 82.52
CBP-TS 37.12 47.82 62.24 72.37 81.48
HBP 38.57 50.12 63.86 74.18 86.12
DBTNet-50 37.67 49.52 63.16 73.28 86.04
SAM (ResNet-50) 40.24 52.05 64.07 73.92 81.62
SAM (FBP) 41.83 52.35 65.19 74.54 81.86
Ours (ResNet-50) 47.51 60.08 71.11 77.67 82.06

Stanford Cars
ResNet-50 37.45 53.01 75.26 83.56 91.02
FBP 40.13 55.07 76.42 85.10 91.63
CBP-TS 37.77 54.87 75.51 84.80 89.52
HBP 40.02 55.82 76.81 85.31 92.73
DBTNet-50 39.48 55.24 76.52 86.52 94.32
SAM (ResNet-50) 39.96 55.02 76.69 84.85 91.06
SAM (FBP) 43.19 57.42 77.63 85.71 91.48
Ours (ResNet-50) 55.09 67.42 81.53 87.41 91.96

FGVC-Aircraft
ResNet-50 43.52 53.17 71.32 78.61 87.13
FBP 45.16 55.06 72.12 79.93 87.32
CBP-TS 44.63 54.79 71.32 79.60 84.58
HBP 45.28 56.12 72.58 81.47 89.74
DBTNet-50 45.35 56.36 73.06 81.26 90.86
SAM (ResNet-50) 46.73 56.02 72.59 79.21 86.74
SAM (FBP) 47.97 57.47 73.43 80.86 87.46
Ours (ResNet-50) 55.81 62.59 74.44 81.73 88.64

Table 7: Experiments with other models on datasets with 10% of training data. Results for
CLIP are obtained using zero-shot classification. Vanilla and Our results are for comparison.

Type Method CUB Cars Air

CNN

ResNet-50 (vanilla) [21] 36.99 37.45 43.52
SwAV (ResNet-50) [3] 16.91 36.19 49.49
CLIP (ResNet-50, zero-shot) [36] - 55.80 19.30
Ours (ResNet-50) 47.51 55.09 55.81

ViT

ViT-B/32 (vanilla) [15] 65.60 28.21 33.84
TransFG (ViT-B/32) [20] 64.91 - -
CLIP (ViT-B/32, zero-shot) [36] - 59.40 21.20
Ours (ViT-B/32) 69.27 33.34 36.01
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C.4.2 Transferability

Additionally, in Table 8 we demonstrate the high transferability of our approach by utilising
it on top of most of the popular CNN- and ViT-based backbones. The absolute improvement
varies between 3-10 % showcasing that distilling local augmentations of input images indeed
promotes feature refinement and is practically an architecture-independed technique.

Table 8: Transferability study of AD-Net on the CUB dataset with 10% of training data.
Column ∆ shows the absolute performance increase with our approach compared to a vanilla
backbone.

Type Backbone Vanilla Ours ∆

CNN

ResNet-18 34.79 41.39 +6.60
ResNet-34 36.83 45.81 +8.98
ResNet-50 36.99 47.51 +10.52
ResNet-101 40.19 49.44 +9.25
GoogleNet 33.32 39.11 +5.79
Inception v3 40.16 44.88 +4.72
DenseNet-169 41.42 49.13 +7.71

ViT ViT-B/32 65.60 69.27 +3.67
FFVT B/32 65.79 68.13 +2.34

C.5 Augmentations with Naive Fine-tuning

Additionally, we conduct experiments with some advanced augmentation techniques, such
as as ScaleMix [50], MultiCrop [2], and AsymAug [50] applied in a naive way with stan-
dard fine-tuning. As can be observed in Table 9, without our distillation technique, the
ResNet-50 performance with the advanced augmentations is below the baseline with basic
augmentations. Where by the basic augmentations we assume the classical list of augmenta-
tions recommended in the literature for each dataset. This includes random cropping, colour
jittering, random horizontal flip, and further normalisation.

Table 9: The results with existing augmentation techniques, such as ScaleMix, MultiCrop,
and AsymAug applied in a naive way with standard fine-tuning. Advanced augmentations
include more geometrical and colour-related perturbations from the popular AutoAugs ap-
proach. As can be observed, without our distillation technique, the performance is below the
baseline ResNet-50 with basic augmentations. The results were obtained with 10% low-data
regime on the CUB training set.

Augmentation Standard
procedure

Our
procedure

Basic augmentations 36.99 40.05
Advanced augmentations 27.82 30.68
ScaleMix [50] 28.54 26.99
MultiCrop [2] 28.06 28.90
AsymAugs [50] 30.29 30.96
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We assume that more advanced and complex types of augmentations harm the learning
process under low-data regimes, since the model may be unable to catch the locally important
patterns due to harsh image perturbations.

C.6 Activation Maps Visualisation

In order to investigate the reason behind the significant performance improvement with our
approach on the lowest data settings, we provide the difference in feature activation maps
between the vanilla ResNet-50 and our AD-Net based on the same backbone. In Figures 5
and 6 we can clearly observe higher quality of the activation area from our method (more
attention to the distinctive foreground regions), which explains its noticeable performance
gain.

Figure 5: The visualisation of difference in feature activation maps between the vanilla
ResNet-50 and our AD-Net on the CUB dataset. Red colour - higher activation, blue -
lower activation.
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Figure 6: The visualisation of difference in feature activation maps between the vanilla
ResNet-50 and our AD-Net on the Stanford Cars dataset. Red colour - higher activation,
blue - lower activation.
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D Application Guidelines

D.1 Answers for Potential Questions
1. "How to decide whether should AD-Net be used for a given scenario?

A: Our method is supposed to be used in the scenarious where the standard fine-tuning
procedure shows poor performance due to a small amount of available labelled images.
2. “How many images should be collected at least?”

A: After a thorough investigation, we have concluded that the exact answer depends on
multiple factors, such as the number of classes, the number of images per class, and the size
and capacity of a chosen baseline.

Therefore, we believe some small prior experiments are needed to make the final de-
cision. Specifically, we recommend starting with at least 5 images per class, and further
increasing the amount until the minimum desired performance is achieved.

Although the general rule is “the more data - the better”, our solution was designed
specifically for the cases where obtaining a lot of labelled data may be impractical.
3. “When should AD-Net be switched to a different method as more training data are
obtained?”

A: We suggest tracking the overall performance increase compared to an initially chosen
baseline along with the data increase. Once the performance gain reaches neglectable values
a different method can be used instead.

However, our solution is targeting the cases where the total amount of labelled data is
highly limited and obtaining more samples may be too difficult.


