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Abstract

In the medical domain, the integration of multimodal data—specifically radiology
images paired with corresponding reports—presents a valuable opportunity for enhanced
diagnostics. Recently, there has been growing interest in using Multimodal Large Lan-
guage Models (MLLMs) for this purpose, due to their proficiency in learning effectively
from the limited examples typical in specialized fields like radiology. Traditionally, radi-
ologists generate reports by scrutinizing specific regions of an x-ray for changes, which
are then systematically described with references to anatomical structures in the report’s
text. Existing methodologies, however, often process the radiographic image as a whole,
which requires the fine-grained alignment to be learnt during the training phase through
predominantly global optimization objectives. During pretraining this approach over-
looks the subtleties of local image-to-text correspondences which results in automatically
generated reports that are deficient in critical grounding elements, subsequently imped-
ing the explanation of model predictions. In this paper, we introduce a novel dataset
of interleaved radiology images with locally aligned phrase grounding annotations pro-
vided by radiologists. Drawing on grounding techniques employed in general-domain
MLLMs, our methodology introduces learnable location tokens to enhance understand-
ing of spatial relationships for model. We structure our training samples as sequences
that encompass entire x-ray images, corresponding report texts, and region anchors. The
region anchors are defined as sequences composed of the aforementioned location to-
kens to denote specific anatomical areas of interest. Combined with a grounding prompt-
tuning strategy, this dataset fosters a direct connection between the radiology report’s text
and specific regions of the x-ray image. Our evaluation, conducted on large-scale public
datasets, demonstrates that our proposed approach significantly refines the capabilities of
existing MLLMs for radiology report generation.
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Figure 1: Comparison of Radiology Report Generation Pipelines: The left panel depicts the
global alignment method, generating reports without localized detail in the X-ray image,
while the right panel showcases the locally grounded approach, highlighting corresponding
areas for specific findings in the report, enhancing detail and localization.

1 Introduction
Radiology Report Generation (RRG) is a critical task in the medical field, involving the cre-
ation of written reports based on diagnostic radiographic images, particularly X-ray images.
These reports are essential for documenting patient care and assisting clinicians in under-
standing medical images to make informed decisions about the patient treatment. In recent
years, pretrained Multimodal Large Language Models (MLLMs) have gained attention in the
medical community [7, 14, 24]. Pretrained MLLMs are powerful neural networks known for
their ability to learn from limited examples, a common challenge in specialized fields like ra-
diology. These models are designed to handle both images and text prompts during training,
offering an opportunity to improve RRG by leveraging both visual content and textual de-
scriptions. However, existing MLLM-based approaches often struggle to accurately capture
the nuances of RRG. Radiologists meticulously examine specific regions within an X-ray im-
age and reference these regions in their textual descriptions [4]. This precision in referencing
image regions enhances the interpretability of the generated reports. The majority of current
RRG approaches do not exploit the training of locally grounded descriptions (Figure 1).

To address these challenges, we propose a new approach to enhance RRG using grounded
MLLMs. We introduce a novel fine-grained interleaved dataset by combining existing large-
scale X-ray datasets, including well-known sources like MIMIC-CXR [4], with detailed
region-text annotations. This dataset explicitly captures the crucial relationship between lo-
calized image regions and textual phrases, enabling our model to generate precise radiology
reports, akin to radiologists’ practices. We incorporate location tokens into our methodol-
ogy, improving the model’s ability to connect specific regions within X-ray images with their
corresponding textual descriptions. This feature aligns the model more closely with radiol-
ogists’ workflows, establishing a direct link between the radiology report’s text and specific
regions of interest within the X-ray image.

Recognizing the importance of temporal context in interpreting radiographic images, we
leverage previous X-ray images, alongside the current one, providing the model with valu-
able historical information. This temporal context enriches the model’s capacity to generate
coherent and context-aware radiology reports, a crucial aspect of clinical decision-making.
Our proposed method not only significantly enhances the performance of state-of-the-art
MLLMs for RRG but also results in the production of higher quality reports. These improved
reports incorporate essential grounding information, ultimately enhancing the interpretabil-
ity of the model-generated reports and their clinical utility in patient care.
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Moreover, our approach is designed to be generic and extendable, making it applicable
to a wide range of Multimodal Large Language Models for RRG. This generality under-
scores the potential impact of our approach in advancing the field of medical image anal-
ysis and report generation. In this paper, we provide a comprehensive exposition of our
methodology, detailing our dataset creation process, training strategies, and evaluation re-
sults. Through rigorous experiments, we demonstrate the significant advancements achieved
in refining RRG with grounded MLLMs, offering a promising avenue for improved health-
care decision-making. In summary, our main contributions are:

1. We introduce a unique fine-grained interleaved dataset, created by combining large-
scale X-ray datasets with region-text annotations, providing a valuable resource for
training and evaluation.

2. Our method incorporates location tokens to MLLMs for radiology, facilitating the
model’s ability to associate specific image regions with corresponding textual phrases,
mirroring the practice of radiologists.

3. We leverage temporal context through the inclusion of previous X-ray images along-
side the current one. This enhances the model’s capacity to generate coherent and
context-aware radiology reports by reducing hallucinations.

4. We demonstrate that our proposed approach significantly improves the performance of
state-of-the-art MLLMs for RRG, resulting in higher quality reports that incorporate
essential grounding information.

2 Related work

Foundation models. In recent times, there has been a notable proliferation of generative
Large Language Models (LLMs), exemplified by commercial models like GPT-4 [17], and
PaLM-2 [20], as well as open-source alternatives like Llama2 [22]. This surge in interest
has extended to the domain of multimodal foundation models, where significant progress
has been made in various applications involving natural images. Notable examples in this
context include BLIP-2 [8], Flamingo [1], LlaVa [13], and Vila [10].

In the medical domain, the development of relevant LLMs and Very Large Language
Models (VLLMs) has also garnered attention. Models like LLava-Med [7], Medflamingo [14],
and RadFM [24] have been tailored to address specific medical applications, including RRG.
Despite these advancements, a persistent challenge in these models lies in their susceptibility
to hallucinations and the introduction of errors in the generated radiology reports.

Interleaved datasets. In contrast to the natural scenery domain, which has abundant re-
sources like MMC4 [27], Visual Genome [5], and LION-5B [21], the medical domain lacks
extensive multimodal datasets. The most widely used multimodal medical dataset is MIMIC-
CXR [4], which contains only chest X-ray images with captions, totaling 224,000 samples.
PMC-OA [11] provides a dataset of 1.6 million image-caption pairs, but many 3D medical
scans are presented as 2D slices. Medical Visual Question Answering (VQA) datasets, like
VQA-RAD [6], SLAKE [12], and PMC-VQA [25], also exist but are limited to 2D images.
Med-Flamingo [15] offers a dataset called MTB with approximately 800,000 image-text
pairs, but it is not open-source. RadFM [24] combines various existing medical datasets, in-
cluding MIMIC-CXR [4] and PMC-OA [11], to create MedMD, which contains 16 million
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Figure 2: A: Top row illustrates MS-CXR dataset examples, featuring heatmaps of la-
tent vector similarities over dashed, radiologist-provided ground-truth annotations; bottom
row displays VinDr-CXR images with radiologist-marked local labels, figures from [4, 16].
B: Shows the distribution of annotation pairs by clinical findings in the small dataset of
grounded image-text pairs.

2D image-text pairs, including 15.5 million 2D images and 500,000 3D scans with captions
or diagnosis labels.

These datasets primarily feature complete radiology images paired with radiology report
text, using a global pairing approach. This approach poses challenges for models in learning
detailed alignments between text references and specific image regions. Additionally, it
hampers the generation of visually grounded reports, which our research aims to address.

3 Dataset curation

We introduce a Small Dataset of Grounded Image-Text Pairs, which is created based on
image-text pairs from MS-CXR [4] VinDr-CXR [16]. The MS-CXR dataset offers 1,153
image-sentence pairs, each including a bounding box and a radiology text description, veri-
fied by two board-certified radiologists, and equally distributed across eight cardiopulmonary
conditions. The VinDr-CXR dataset comprises 18,000 images annotated by 17 experienced
radiologists, featuring 22 local and 6 global labels identifying suspected radiological abnor-
malities and diseases. See Figure 2 for examples.

We construct a pipeline to extract and link phrases referring to abnormalities in the
caption to their corresponding image regions. The pipeline mainly consists of three steps:
1) generating abnormality-bounding-box pairs, 2) producing referring-expression-bounding-
box pairs and 3) adding historical images from MIMIC-CXR when they are available. We
describe these steps in detail below:
Step-1: Generating abnormality-bounding-box pairs: Given an image-text pair, we turn
phrase annotations into sentences resembling how findings are reported in usual radiology
reports. We use a large language model to automatically do this for all instances that require
it.
Step-2: Producing referring-expression-bounding-box pairs: In order to endow the model
with the ability to ground abnormality descriptions, we transform bounding box coordinates
into a referencing system using special tokens.
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Figure 3: The Architecture of the Proposed Multimodal Large Language Model for Radiol-
ogy Report Generation. Our model, integrates both current and historical X-ray images with
annotated ground truth text reports. These reports include special tokens that identify the lo-
cation of relevant findings within the images. During training, the model learns to associate
these tokens with the corresponding anatomical sub-regions, allowing for the generation of
detailed reports that include localized descriptions of findings.

Step-3: Adding historical images: We add historical images or images from previous stud-
ies to complement the information necessary for accurately aligning reports which rely on
comparisons. Not all images have previous ones available.

The final dataset contains 20000 image-sentence pairs. See Figure 2 for data samples and
a detailed distribution of annotation pairs across different clinical findings. For additional
dataset details see Supplementary material.

4 Methodology
In this section, we present our proposed method for visually-grounded RRG using MLLMs.
Sec. 4.1 explains the process to prepare the data to train a visually-grounded MLLM, Sec. 4.2
introduces the overall architecture of the model. Sec. 4.3 presents the training details.

4.1 A Grounded MLLM for RRG
Our proposed model incorporates grounding and reference abilities through a procedure in-
spired by Kosmos-2 [19]. The model is designed to handle input from user-defined bounding
boxes on images, providing visual feedback in the form of bounding boxes and linking the
textual outputs to the visual elements. To enhance the model’s ability to ground and refer to
specific visual content, we incorporate pairs of grounded radiology images and text reports
into the training set. For elements like descriptive phrases associated with specific bound-
ing boxes in these pairs, we convert the bounding box coordinates into a series of location
tokens. These tokens are subsequently combined with textual tokens to achieve a coherent
encoding process.
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Grounded Input Representations: In the process involving a grounded image-text pair, we
start by transforming the continuous coordinates of the bounding boxes associated with a text
span into a sequence of discrete location tokens [19]. For an image of width W and height
H, we subdivide each dimension into P equal segments, resulting in P×P bins. Each bin
encompasses a pixel area defined by

(W
P

)
×
(H

P

)
. We assign a location token to each bin to

denote its coordinates, using the center pixel of each bin as the reference point for bounding
box calculations. Consequently, we generate P×P location tokens, which are incorporated
into the text vocabulary for integrated image-text modeling.

Bounding boxes are specified by their top-left (x1, y1) and bottom-right (x2, y2) coordi-
nates. These coordinates are discretized into location tokens. To denote a bounding box, we
string together the top-left and bottom-right location tokens with boundary markers, forming
the sequence: <box><loc1><loc2></box>. When a text span corresponds to multi-
ple bounding boxes, we interpose the location tokens of these boxes with a delimiter token
<delim>. This structure informs the model about the connection between the image re-
gions within the bounding boxes and the associated text span.

4.2 Architecture Details
Our model follows the architecture of RadFM [24], which consists of three core compo-
nents, i) Image encoder, ii) Perceiver aggregator and iii) LLM. Different to RadFM, we train
on grounded image-text pairs. We allow spatial positions within both inputs and outputs,
enabling visual prompts as inputs and grounded objects in the model outputs. Notably, the
original RadFM model or any other SOTA model cannot perform object grounding or accept
region inputs. We describe each component in the architecture as follows:

Image encoder. From a single instance in our dataset, represented as X = {T ,V} where
V = {v1,v2, . . . ,vN}, each image vi is initially processed independently using a visual en-
coder, denoted Φvis. In line with the approach used in RadFM, we employ a 3D Vision
Transformer (ViT) to accommodate both 2D and 3D image inputs. For processing 2D im-
ages, we introduce an additional dimension representing depth by duplicating the image
layers, thus representing each scanned image as vi ∈ RH×W×Di×C. Here, C stands for the
number of channels, while H, W , and Di refer to the image’s height, width, and depth, re-
spectively.

Aggregation with Perceiver. After visual encoding, we adopt a perceiver [3] module Φper to
aggregate visual representation. Specifically, Φper follows the classical perceiver architecture
with a fix number of learnable queries as the latent array input, and the visual embedding vi is
treated as the byte array input, so that the final output embeddings will be normalized into the
same length with the pre-defined learnable query sequence. The aggregation procedure can
be formulated as ui = Φper(vi) ∈ RP×d , where ui refers to the aggregated visual embedding,
P is the pre-defined sequence length number of the learnable queries and d is the feature
dimension.

Multi-modal fusion. We combine visual embeddings and text embeddings, which are gen-
erated from tokenization, to integrate visual and linguistic data. In this approach, special
placeholder tokens designated for images are directly replaced by the corresponding visual
embeddings. This mixed sequence is then input into a decoder-only large language model
(Φllm). Within this model, the self-attention layers of the transformer architecture are effec-
tively utilized as multi-modal fusion mechanisms. The process can be expressed as follows:
p = Φllm(concat(t1,u1, t2,u2, t3, . . .)), where t i and ui are the text and visual embeddings
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respectively, and p represents the probability distribution for predicting subsequent tokens.
We utilize a 12-layer 3D Vision Transformer (ViT) with 768 feature dimensions for the

visual encoder. Additionally, a 6-layer transformer decoder, known as the perceiver, is em-
ployed, featuring a learnable latent array of dimensions 32× 5120. This configuration en-
sures that all images are embedded into a feature space of 32×5120.

When inserting them into the text embedding, we will add two extra special tokens <im-
age>, </image> at the beginning and ending respectively to distinguish them from common
text tokens. We initialize our large language model with the MedLLaMA-13B model in-
troduced by PMC-LLaMA [23], which has further fine-tuned the LLaMA-13B [22] model
on the medical corpus. Our final model has 14B parameters. A Low-Rank Adaptation
(LoRA) [2] based strategy is used for fine-tuning the LLM. While training, instead of fine-
tuning all of the weights, we finetune two smaller matrices in LoRA that approximate the
original larger matrix. After that, the fine-tuned adaptor is fed into the pretrained model
and utilised for inference. The LoRA adaptation ensures faster training and avoids forgetting
original knowledge embedded in the LLM trained and fine-tuned on generic natural language
instructions.

4.3 Model training

Image preprocessing. We apply similar pre-processing steps as in RadFM [24]: resize the
images to 512×512. In our dataset, each training sample consists of two elements, i.e., X =
{T ,V}, where T refers to the language part of the report, with special placeholder tokens
for images, e.g., “<image-1> <image-2> A layering left-sided pleural effusion is moderate in
size and new since the prior study”. V refer to the visual parts containing a set of 2D image
scans, i.e., V = {v1,v2, . . . ,vN}, vi ∈ RH×W×C or vi ∈ RH×W×D×C, H,W,D,C are height,
width, depth, channel respectively, corresponding to the “<image-i>” token in T . T and V
serve as interleaved prompts of language and image input to the model. The primary aim is
to predict the likelihood of the text tokens in T , based on the xray images, which is expressed
as:

p(T |V) = ∏ p(Tl |V<l ,T<l), (1)

Here, Tl denotes the l-th token of T , while V<l and T<l represent the images and language
text prior to the l-th token. These probabilities are parameterized using our generative model
(ΦOurs). The final training objective is defined by the negative log-likelihood of the correct
next token in the sequence:

Lreg =−∑wl logΦOurs(Tl |V<l ,T<l), (2)

where wl is the weighting per token, designed to highlight significant tokens or disregard
special tokens.

5 Experiments
For the evaluation of RRG, we use the MIMIC-CXR v2 [4] chest X-ray dataset, which con-
tains longitudinal imaging studies with corresponding radiological reports. Medical Visual
Question Answering, Modality Recognition and Disease Diagnosis are reported on the same
datasets as in RadFM. For fair comparison, we use the same split as in RadFM [24]. We only
use frontal view scans. We use the following evaluation metrics: BLEU [18], ROUGE [9],
UMLS Precision [24] and UMLS Recall [24].
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Table 1: Comparison of our proposed model with foundation model baselines, using results
reported by RadFM on the same test set as RadFM for the tasks of RRG and Medical Visual
Question Answering.

Methods Params Textual metrics Semantic metrics
Rouge Bleu UMLSp UMLSr

Radiology Report Generation
MedFlamingo [15] 9B 8.39 8.78 2.65 1.04
MedVint [26] 7B 1.73 4.72 9.93 1.45
RadFM [24] 14B 12.81 18.22 22.49 12.07

Ours 14B 20.03 25.14 32.63 22.15
Improvement +7.22 +6.92 +10.14 +10.08

Medical Visual Question Answering
MedFlamingo [15] 9B 35.97 38.64 18.7 14.52
RadFM [24] 14B 52.24 52.74 62.12 42.82

Ours 14B 62.55 63.8 71.27 51.79
Improvement +10.31 +11.06 +9.15 +8.97

Table 2: Comparison of the proposed model with foundation model baselines on the same
test set used in RadFM for the tasks Modality Recognition and Medical Disease Diagnosis.

Methods Params Accuracy F1
Modality Recognition

MedFlamingo [15] 9B 32.87 -
MedVint [26] 7B 84.25 -
RadFM [24] 14B 92.95 -
Ours 14B 92.95 -

Disease Diagnosis
MedFlamingo [15] 9B 50.13 66.13
MedVint [26] 7B 49.36 66.99
RadFM [24] 14B 80.62 80.10
Ours 14B 80.5 80

5.1 Results and Discussion

Our proposed model represents a notable step forward in the field of RRG, as indicated by
its encouraging performance improvement detailed in Table 1. We show a +7.22 increase
in the Rouge metric, +6.92 in Bleu, and significant gains of +10.14 and +10.08 in UMLSp
and UMLSr respectively. These metrics collectively indicate that our model not only excels
in capturing the key points that are essential for high-quality reports but also demonstrates a
good ability to generate text that is coherent, contextually relevant, and accurate.

The enhancements in Rouge and Bleu scores highlight the model’s refined capability
to produce reports that are both informative and linguistically sound, closely mirroring the
expert-written narratives in structure and content. Furthermore, the substantial improvements
in UMLSp and UMLSr metrics emphasize the model’s strengthened proficiency in medical
semantics.

We extended our evaluation to include the performance of our method on the tasks of
Modality Recognition and Medical Disease Diagnosis, as presented in Table 2. Although
our method and training were primarily focused on RRG and medical visual question an-
swering, we examined these additional tasks to assess potential performance degradation
from the base model. The results demonstrate that our specialized training did not lead to
any significant performance loss, confirming the model’s capacity to maintain its founda-
tional diagnostic performance, while being significantly better for specific tasks.

Citation
Citation
{Moor, Huang, Wu, Yasunaga, Zakka, Dalmia, Reis, Rajpurkar, and Leskovec} 2023{}

Citation
Citation
{Zhang, Wu, Zhao, Lin, Zhang, Wang, and Xie} 2023{}

Citation
Citation
{Wu, Zhang, Zhang, Wang, and Xie} 2023{}

Citation
Citation
{Moor, Huang, Wu, Yasunaga, Zakka, Dalmia, Reis, Rajpurkar, and Leskovec} 2023{}

Citation
Citation
{Wu, Zhang, Zhang, Wang, and Xie} 2023{}

Citation
Citation
{Moor, Huang, Wu, Yasunaga, Zakka, Dalmia, Reis, Rajpurkar, and Leskovec} 2023{}

Citation
Citation
{Zhang, Wu, Zhao, Lin, Zhang, Wang, and Xie} 2023{}

Citation
Citation
{Wu, Zhang, Zhang, Wang, and Xie} 2023{}

Citation
Citation
{Moor, Huang, Wu, Yasunaga, Zakka, Dalmia, Reis, Rajpurkar, and Leskovec} 2023{}

Citation
Citation
{Zhang, Wu, Zhao, Lin, Zhang, Wang, and Xie} 2023{}

Citation
Citation
{Wu, Zhang, Zhang, Wang, and Xie} 2023{}



SANCHEZ S.: ENHANCING RADIOLOGY REPORT GENERATION 9

Table 3: Ablation study of different variations of our prosed model for RRG on the MIMIC-
CXR dataset. Historic imgs: indicates whether we train with previous x-rays images (when
available) or not; Grounding: whether we train with grounding tokens or not and Impres-
sion: whether we predict this section of the report or not.

Model Variations MIMIC-CXR
Historic imgs Grounding Impression R B UMLSp UMLSr
Baseline
RadFM [24] 12.81 18.22 22.49 12.07

Ours
✓ - - 13.55 19.58 23.72 13.41
- ✓ - 15.03 20.84 25.00 14.79
- - ✓ 13.09 19.02 23.14 13.92
✓ ✓ - 16.12 21.35 25.80 16.08
✓ ✓ ✓ 17.00 22.14 26.31 17.24

How does the inclusion of historical images impact model performance?
Incorporating historical X-ray images from previous patient studies into our model signifi-
cantly enhances the generated radiology reports’ quality. Our work represents the first in-
stance of such an approach among state-of-the-art models in this domain. This innovation
allows for a contextual analysis that enriches the report, enabling the model to identify and
articulate temporal changes, such as "the pleural effusion is larger than before" or detecting
new findings like "there is new cardiomegaly." The effectiveness of this novel integration is
clearly supported by the data in Table 3 of our ablation study, demonstrating improvements
of 0.74, 1.36, 1.23, and 1.34 in the Rouge, Bleu, UMLSp, and UMLSr metrics, respec-
tively. These results indicate that including historical images enhances the model’s ability to
provide accurate, context-aware, and clinically relevant radiological assessments, marking a
significant advancement in the automated generation of radiology reports.

What impact do grounding tokens have on enhancing RRG? Introducing grounding
tokens during training has significantly enhanced our model’s ability to correlate textual
phrases with specific image regions. This is an important innovation in state-of-the-art large
language models for RRG. This technique bolsters the quality of the generated reports, par-
ticularly in the "Findings" section, by enabling precise alignment between textual descrip-
tions and the corresponding areas in the X-ray images, using spatial references such as left,
right, top, bottom, and specific region names. The benefits of this approach are evident in
the improvements reported in Table 3 of our ablation study, showing enhancements of 2.22,
2.62, 2.51, and 2.72 in the Rouge, Bleu, UMLSp, and UMLSr metrics respectively. These
results confirm that grounding textual phrases to image regions significantly improves the
model’s accuracy and the clinical relevance of the generated radiology reports, compared to
the baseline model that did not utilize grounding tokens.

What are the benefits of exclusively generating the "Findings" section? Our decision to
have the model generate only the "Findings" sections of radiology reports, excluding the "Im-
pressions" sections, is justified by the requirement of accuracy and reliability in automated
reporting. The "Impressions" section often relies on external patient-specific information and
additional studies that our model does not access, increasing the risk of generating incorrect
or speculative content. This focused approach is validated by the enhancements observed in
our ablation study, detailed in Table 3. We noted performance improvements with increases
of 0.28, 0.80, 0.65, and 1.85 in the Rouge, Bleu, UMLSp, and UMLSr metrics, respectively,
by omitting the generation of the "Impressions" section. This strategy ensures the model’s
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outputs remain grounded in the visual evidence provided by the X-ray images, mitigating
the risk of information hallucination and boosting the credibility of the generated reports.

6 Conclusion

Our study has demonstrated the potential of grounded Multimodal Large Language Models
(MLLMs) in improving RRG. We’ve addressed the challenge of aligning text with image
regions, leading to more interpretable and clinically useful reports. By introducing a new
dataset, location tokens, and leveraging temporal context, we’ve advanced RRG. This results
in higher-quality reports with essential grounding information, benefiting patient care and
clinical decisions. Our approach is versatile and can be applied to various MLLMs for RRG,
potentially impacting medical image analysis and report generation.

Future work: Future research could focus on refining training methods, using additional
multimodal datasets, and exploring techniques to further enhance report interpretability.
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