
Y.-H. HSIEH, S.-H. LAI: CSAD:UNSUPERVISED COMPONENT SEGMENTATION 1

CSAD: Unsupervised Component
Segmentation for Logical Anomaly Detection
(Supplementary Material)

Yu-Hsuan Hsieh
ss111062646@gapp.nthu.edu.tw

Shang-Hong Lai
lai@cs.nthu.edu.tw

National Tsing Hua University
Hsinchu, Taiwan

1 Semantic Pseudo-label Generation

1.1 Image Tag Generation
Table 3 shows the image tags of all categories generated by RAM++ [3] and the tags after
manual filtering. We use the first image in the training set to generate the tags; for cate-
gories containing multiple types of products, we generate tags for each type and merge them
together.

1.2 Component Mask Generation
In the component mask generation, we use the pretrained weight sam_hq_vit_h.pth from
SAM-HQ [4], a variation of SAM trained on high-quality datasets, as our weight in SAM. We
use the pretrained weight grounding-dino-swinT-OGC.pth and the same sam_hq_vit_h.pth as
our weights in Grounded-SAM.

1.3 Mask Refinement
In the mask refinement process, we use two algorithms to obtain the refined mask from
X sem and X seg, the filter-by-grounding algorithm and the filter-by-combine algorithm. The
filter-by-combine algorithm is used to filter out overlapped masks, while filter-by-grounding
algorithm is used to filter out noise masks. For the "screw bag" category, we apply both the
filter-by-grounding algorithm and the filter-by-combine algorithm. As for the "juice bottle,"
we only apply the filter-by-combine algorithm. Detailed description of these two algorithms
is given below.

Filter-by-grounding The filter-by-grounding algorithm filters out noise masks by remov-
ing masks in X seg that are not highly overlapped with X sem. The Python code using Numpy
is shown in Figure 7

Filter-by-combine In the masks SAM generates, some overlapped masks need to be pro-
cessed. For example, in the "screw bag" category, the SAM generates not only the masks of

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Huang, Huang, Zhang, Tian, Feng, Zhang, Xie, Li, and Zhang} 2023

Citation
Citation
{Ke, Ye, Danelljan, Liu, Tai, Tang, and Yu} 2023



2 Y.-H. HSIEH, S.-H. LAI: CSAD:UNSUPERVISED COMPONENT SEGMENTATION

the head and body of the screw but also the mask of the whole screw. In this case, we aim to
filter out the mask of the whole screw since we want precise component segmentation at this
stage. The filter-by-combine algorithm checks if one mask can be the combination of some
small masks. If so, this mask is dropped. After the process, we can remove the masks that
are highly overlapped with other masks and maintain a fine-grained segmentation map. The
Python code using Numpy is shown in Figure 8.

1.4 Component Feature Extraction

We use ImageNet pretrained WideResNet-50 as our feature extractor. The feature maps are
obtained from the fourth layer of the feature extractor, and the rotation augmentation of each
component is set to 60.

1.5 Resulting Semantic Pseudo-label Maps

Figure 6 shows the example images of X seg, X sem and the pseudo-label maps, as described in
Sec.6.2. There are components missing in the pseudo-label maps in the category "breakfast
box" and "juice bottle", and we fill up the holes for each component to mitigate this issue.

2 Component Segmentation

2.1 Training Process of Segmentation Network

Figure 1 shows the training process of the segmentation network. All images with semantic
pseudo-label maps are augmented through LSA and the predictions of augmented images
and augmented pseudo-label maps are used to calculate Cross Entropy loss, Dice loss, and
Focal loss. Predictions of unlabeled images and randomly picked pseudo-label maps are
used to calculate Histogram Matching loss, another Entropy loss that calculates the average
entropy of each pixel’s prediction is applied to reduce the uncertainty of the prediction.

2.2 LSA Augmentation

Figure 2 shows the proposed LSA augmentation procedure. To simulate logical anomalies,
the position of the additional component is set at least 0.1× image_size far from the original
position. Figure 3 shows the original images, the pseudo-label maps, the images augmented
by LSA, and the augmented pseudo-label maps.

Figure 1: Diagram of the training process of the segmentation network.



Y.-H. HSIEH, S.-H. LAI: CSAD:UNSUPERVISED COMPONENT SEGMENTATION 3

Figure 2: Diagram of the LSA augmentation process. The source image is randomly sampled
from the images used in supervised training.

Figure 3: Example images of the LSA. From left to right presents the original image, pseudo-
label map, LSA augmented image, and LSA augmented pseudo-label map. The red bounding
box indicates the additional component added to the image.



4 Y.-H. HSIEH, S.-H. LAI: CSAD:UNSUPERVISED COMPONENT SEGMENTATION

3 Implementation Detail

The performance scores of the compared methods in all our experiments are retrieved from
the original papers, except that the score of PatchCore [7] is from the paper of PSAD [5] and
the score of SimpleNet [6] is from the paper of EfficientAD [2]. In the speed comparison
section, we use the official implementation except for the EfficientAD, which does not have
an official implementation. Instead, we use the implementation of Anomalib[1].

4 Anomaly Localization

To obtain anomaly localization results, we merge the anomaly maps from the LGST and
Patch Histogram branches. The LGST anomaly maps are generated by averaging the dif-
ference maps of local and global student networks. For the Patch Histogram branch, we
analyze the difference between the current histogram and the mean histogram of the training
set. This analysis identifies missing or additional component classes. For additional compo-
nents, we assign the class region the anomaly score based on the difference of the histogram.
For missing components, we search for a normal image in the training set with the closest
class histogram and assign the anomaly score based on the difference to that class region of
the normal image. The final patch histogram anomaly map is the sum of all anomaly maps of
different patch sizes. The example images and the corresponding anomaly maps are shown
in Figure 4.

Note that the latency of anomaly map generation is not included in the experiments since
it does not affect the image level detection result.

4.1 Anomaly Localization Performance

The anomaly localization performance is shown in Table 1. While our method does not
outperform EfficientAD due to the limitations outlined in Sec. 6.2 , our Patch Histogram
branch improves anomaly localization performance in both logical and structural anomalies,
with an average sPRO improvement of 1.0%.

Model Breakfast Box Juice Bottle Pushpins Screw Bag Splicing Connectors Average

GCAD - - - - - 89.1
EfficientAD - - - - - 92.5
LGST 83.2 95.2 87.8 81.1 94.4 88.3
CSAD 84.0 95.3 88.1 84.6 94.5 89.3

LGST 76.7 / 89.6 95.2 / 95.3 98.5 / 77.1 73.9 / 88.3 94.9 / 93.9 87.8 / 88.8
CSAD 78.1 / 89.9 91.7 / 98.8 99.0 / 77.2 82.1 / 87.1 94.8 / 94.1 89.1 / 89.4

Table 1: Anomaly localization performance of the MVTec LOCO AD dataset. The result
is reported in sPRO. For the last two rows, the score is given by (logical sPRO / structural
sPRO).

Citation
Citation
{Roth, Pemula, Zepeda, Sch{ö}lkopf, Brox, and Gehler} 2022

Citation
Citation
{Kim, An, Chikontwe, Kang, Adeli, Pohl, and Park} 2024

Citation
Citation
{Liu, Zhou, Xu, and Wang} 2023

Citation
Citation
{Batzner, Heckler, and K{ö}nig} 2024

Citation
Citation
{Akcay, Ameln, Vaidya, Lakshmanan, Ahuja, and Genc} 2022



Y.-H. HSIEH, S.-H. LAI: CSAD:UNSUPERVISED COMPONENT SEGMENTATION 5

5 Supplementary Experiments

5.1 Performance and Speed of Different Branches in CSAD
Table 2 shows the anomaly detection performance and the speed of different branches in our
method. The results indicate that while the LGST and Patch Histogram branches individu-
ally do not achieve optimal performance, their combination yields the highest scores for both
logical and structural anomalies. Remarkably, the Patch Histogram branch enhances struc-
tural anomaly detection despite not being specifically designed for it. Furthermore, LGST
and Patch Histogram exhibit latencies of 5.7 milliseconds and 5.6 milliseconds, respectively.
The overall latency of CSAD is reduced to 8.9 milliseconds, with a 2.4-millisecond reduction
attributed to the reuse of features extracted by the teacher.

Branch
LA SA Mean Latency(ms) Throughput(fps)PatchHist LGST

✓ 91.4 75.4 83.4 5.6 603.5
✓ 87.7 93.1 90.4 5.7 1402.9

✓ ✓ 96.7 94.0 95.3 8.9 321.8

Table 2: Anomaly detection performance and speed comparison of dif-
ferent branches in our method. LA and SA denote logical anomalies
and structural anomalies, respectively. Anomaly detection performance
is measured in AUROC.

5.2 Hyperparameter of Component Clustering
Figure 5 illustrates the result of component clustering under different hyperparameters. Three
bandwidths were tested in MeanShift clustering. A larger bandwidth results in less similar
components being clustered together, potentially causing coarse semantic segmentation. For
instance, a bandwidth of 4.0 clusters both long and short screw bodies together, which should
be separated. In our experiments, We select bandwidth=3 for "screw bag" and 3.5 for all
other categories.

6 Limitation

6.1 Limitation of Patch Histogram
The limitation of our patch histogram lies in the selection of patch sizes. Categories with
strict component position constraints, such as "splicing connectors," benefit from smaller
patch sizes, while those without such constraints may be adversely affected like "screw bag."
Therefore, selecting the appropriate patch size requires prior knowledge of the product and
its specific application scenarios.

6.2 Limitation of Semantic Pseudo-label Generation
Our pseudo-label generation process generally produces precise label maps. However, it
is limited by the performance of the foundational model used in our implementation. This



6 Y.-H. HSIEH, S.-H. LAI: CSAD:UNSUPERVISED COMPONENT SEGMENTATION

limitation was evident when the model failed to accurately segment obscured almonds in the
"breakfast box," causing these regions to be incorrectly classified as background. Another
example is the fruit icon missing in the "juice bottle", which is filtered out in the component
clustering stage since the number of each unique fruit icon did not exceed half of the training
samples, as described in Section 3.1 of the paper. Example images are shown in Figure 6.
Despite this limitation, our Patch Histogram module is still capable of identifying logical
anomalies that arise from such segmentation errors. Future efforts could focus on improving
segmentation in such challenging scenarios.

Category RAM++ Output Tags Filtered Tags

Breakfast Box

almond, apple, banana,
cereal, container, fill,

food, fruit, grain,
granola, mixture, nut,
oatmeal, oats, orange,
plastic, raisin, seed,

topping, tray
almond, apple, container,
oatmeal, orange, banana

Juice Bottle

alcohol, apple juice,
beverage, bottle, liquor,

glass bottle, juice,
lemonade, liquid, olive oil,

orange juice, yellow, alcohol,
banana, bottle, glass bottle,

glass jar, jug, juice,
liquid, milk, alcohol, beverage,

bottle, cherry, condiment,
liquor, glass bottle, honey, juice,

liquid, maple syrup, sauce, syrup,
tomato sauce

alcohol, apple juice, beverage,
bottle, liquor, glass bottle,
juice, lemonade, liquid,
olive oil, orange juice,
yellow banana, bottle,
glass bottle, glass jar,

jug, juice, liquid,
milk beverage, bottle, cherry,

condiment, liquor, glass bottle,
honey, juice,

liquid, maple syrup, sauce,
syrup, tomato sauce.

Pushpins

box, case, container,
fill, needle, pin,

plastic, screw, tool,
tray, yellow pin, pushpin, drawing pin

Screw Bag

bag, bolt, container,
nut, package, plastic,

screw, tool, metal bolts,
metal hex nuts, metal washers,

metal screws, zip-lock bag, screw,
ring

metal bolts, metal hex nuts,
metal washers, metal screws,

zip-lock bag, screw,
ring, bag, bolt,

container, nut, tool

Splicing
Connectors

attach, cable, connect,
connector, hook, electric outlet,

plug, pole, socket,
wire

cable, connector, hook,
electric outlet, plug,
pole, socket, wire

Table 3: Image tags of all categories.



Y.-H. HSIEH, S.-H. LAI: CSAD:UNSUPERVISED COMPONENT SEGMENTATION 7

References
[1] Samet Akcay, Dick Ameln, Ashwin Vaidya, Barath Lakshmanan, Nilesh Ahuja, and

Utku Genc. Anomalib: A deep learning library for anomaly detection. In 2022 IEEE
International Conference on Image Processing (ICIP), pages 1706–1710. IEEE, 2022.

[2] Kilian Batzner, Lars Heckler, and Rebecca König. Efficientad: Accurate visual anomaly
detection at millisecond-level latencies. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision, pages 128–138, 2024.

[3] Xinyu Huang, Yi-Jie Huang, Youcai Zhang, Weiwei Tian, Rui Feng, Yuejie Zhang,
Yanchun Xie, Yaqian Li, and Lei Zhang. Open-set image tagging with multi-grained
text supervision. arXiv e-prints, pages arXiv–2310, 2023.

[4] Lei Ke, Mingqiao Ye, Martin Danelljan, Yifan Liu, Yu-Wing Tai, Chi-Keung Tang, and
Fisher Yu. Segment anything in high quality. In NeurIPS, 2023.

[5] Soopil Kim, Sion An, Philip Chikontwe, Myeongkyun Kang, Ehsan Adeli, Kilian M
Pohl, and Sang Hyun Park. Few shot part segmentation reveals compositional logic
for industrial anomaly detection. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 8591–8599, 2024.

[6] Zhikang Liu, Yiming Zhou, Yuansheng Xu, and Zilei Wang. Simplenet: A simple net-
work for image anomaly detection and localization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 20402–20411, 2023.

[7] Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, and
Peter Gehler. Towards total recall in industrial anomaly detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14318–
14328, 2022.



8 Y.-H. HSIEH, S.-H. LAI: CSAD:UNSUPERVISED COMPONENT SEGMENTATION

Figure 4: Example images and anomaly maps of anomaly localization result. For each
category, we show two types of different logical anomalies.



Y.-H. HSIEH, S.-H. LAI: CSAD:UNSUPERVISED COMPONENT SEGMENTATION 9

Figure 5: Result of component clustering under different hyperparameters. For each row, the
same color indicates the same cluster of components.



10 Y.-H. HSIEH, S.-H. LAI: CSAD:UNSUPERVISED COMPONENT SEGMENTATION

Figure 6: Example images of pseudo label generation of the five categories of the MVTecc
LOCO, from left to right, represent normal image, X seg, X sem, and pseudo label image. In
each category, random colors are assigned to different masks in X seg and X sem while the same
color represents the same class in the pseudo-label image.



Y.-H. HSIEH, S.-H. LAI: CSAD:UNSUPERVISED COMPONENT SEGMENTATION 11

Python code of filter-by-grounding algorithm.

1 import numpy as np
2 def filter_masks_by_grounding(grounding_mask,masks):
3 """
4 grounding_mask: binary mask
5 masks: list of N binary masks
6 """
7 new_mask = list()
8 for mask in masks:
9 if np.sum(np.logical_and(grounding_mask,mask))/np.sum(mask!=0)

> 0.9:
10 new_mask.append(mask)
11 return new_mask

Figure 7: Python code of the algorithm filter-by-grounding.



12 Y.-H. HSIEH, S.-H. LAI: CSAD:UNSUPERVISED COMPONENT SEGMENTATION

Python code of filter-by-combine algorithm.

1 import numpy as np
2 def intersect_ratio(mask1,mask2):
3 intersection = np.logical_and(mask1,mask2)
4 if intersection.sum() == 0:
5 return 0
6 ratio = np.sum(intersection)/min([np.sum(mask1!=0),np.sum(mask2

!=0)])
7 ratio = 0 if np.isnan(ratio) else ratio
8 return ratio
9

10 def filter_by_combine(masks):
11 """
12 masks: list of N binary masks
13 """
14

15 masks = sorted(masks,key=lambda x:np.sum(x)) # small to large
16 combine_masks = np.zeros_like(masks[0])
17 result_masks = list()
18 wait_masks = list()
19 for i,mask in enumerate(masks):
20 if intersect_ratio(combine_masks,mask) < 0.9 or i == 0:
21 combine_masks = np.logical_or(combine_masks,mask)
22 result_masks.append(mask)
23 else:
24 wait_masks.append(mask)
25

26 # second chance
27 if len(wait_masks) != 0:
28 for mask in wait_masks:
29 ratio = np.sum(np.logical_and(combine_masks,mask))/np.sum(

mask!=0)
30 if ratio < 0.9:
31 combine_masks = np.logical_or(combine_masks,mask)
32 result_masks.append(mask)
33 return result_masks

Figure 8: Python code of the algorithm filter-by-combine.


