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Abstract
The goal of a surface anomaly detection task is to classify an inspection image and

pixel as normal/anomaly with high precision. A typical conventional method called
PaDiM pre-trains convolutional neural networks with the ImageNet dataset for 1000-
class classification and detects the anomaly images from deviance on the feature space.
However, since a single class in ImageNet has a wide range of meanings, it is difficult
to represent subtle difference between normal and anomaly images as different features.
Moreover, PaDiM assumes that two images with similar anomaly scores have features
with similar values. However, the feature space is made to classify the ImageNet class,
it is not designed to assign two images with similar anomaly scores to relatively similar
features. Therefore, we propose an anomaly detection method based on pre-training us-
ing novely semi-formula driven image dataset to represent“ subtle difference”between
two images as different features and two images with similar“ anomaly score”as sim-
ilar features. An image dataset for pre-training is generated by adding pseudo-defects
with random Gaussian Mixture Model (GMM) parameters to an existing image dataset.
GMM parameters have a different value for each parameter, but the appearances of the
generated images have only subtle difference. Next, the regression network is pre-trained
to estimate GMM parameters that represent the anomaly score of generated anomaly im-
ages. In the experiments with MVTecAD, the proposed method achieved high precision
anomaly detection for categories where ImageNet performed poorly.

1 Introduction
In recent years, there has been an increasing need for reliable automatic visual inspection
at manufacturing sites to reduce the burden on workers and prevent human errors. The goal
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of this task is to classify an image and a pixel to be inspected into either the“ normal”or
“anomaly”class with high accuracy. Additionally, visual inspection using machine learning
has been attracting attention. This method generally requires a large number of normal and
anomaly images for training. However, the frequency of anomaly occurrence is extremely
low at manufacturing sites. Therefore, sufficient anomaly images for training often cannot
be obtained. Therefore, in situations where anomaly images are difficult to obtain, normal
and anomaly images need to be classified with high accuracy.

To solve this problem, various methods have been proposed. Specifically, many meth-
ods use only normal images for training. Statistical methods [1, 2] approximate the distri-
bution of normal images with a simple function. Feature extraction-based methods train a
feature extractor so that normal images are centered [3, 4], or estimate the distribution of nor-
mal images with pre-trained Convolutional Neural Networks (CNN) feature representations
[5, 6, 7, 8]. Density-based methods estimate the density of normal images using Gaussian
Mixture Model (GMM) [9] or Normalizing Flow [10, 11, 12]. Image generation-based meth-
ods detect anomalies based on image difference by generating normal image from anomaly
image with an AutoEncoder (AE) [13, 14, 15, 16], Generative Adversarial Network (GAN)
[17, 18, 19, 20], or Diffusion Model [21].

Among these conventional methods, a method that uses pre-trained CNN feature rep-
resentations and approximates the distribution of normal images in the feature space has
been shown to have particularly high performance. In particular, Patch Distribution Model-
ing (PaDiM) has been attracting attention as a typical method for anomaly detection. This
method is based on the simple idea of approximating the normal features obtained by in-
putting them into a pre-trained network to a multivariate normal distribution. Moreover,
PaDiM achieved high anomaly detection performance in the MVTecAD [22] dataset. Since
the deviation of the distribution is evaluated for each patch of the image, another advantage
is to determine normal or anomaly at not only the image level but also the pixel level.

First, PaDiM pre-trains a CNN such as ResNet [23] or WideResNet [24] for 1000-class
classification using an image dataset called ImageNet [25] that has various image variations.
Next, without performing additional training for the network, target normal images are input
to the network, and the normal features are approximated by a normal distribution on the fea-
ture space of the network. Next, in the same way, the test image is input to the network, and
the features are acquired. At this time, if the feature value deviates from the approximated
normal distribution, it is determined to be an anomaly.

(a) Incomplete feature space (b) Ideal feature space

Unsimilar images
but similar features

No overlap and positive orderDifferent images
but same feature

Figure 1: Suitable positional relationship of each image in feature space.
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However, these methods have two problems (Fig. 1(a)). The first is that a single class
in ImageNet has a wide range of meanings. Images in a single class are assigned to same
ground truth, so it has risk of representing two images with subtle difference as same feature.
The second is that ImageNet feature representations are not designed to assign two images
with similar anomaly scores to relatively similar features. In pre-training with ImageNet, the
feature space is made to classify the ImageNet class, so it has the risk of assigning unsimilar
two images (i.e., two images with completely different anomaly score) to similar features.

Therefore, we propose an anomaly detection method using pre-training with semi-formula
driven image dataset that represents“ subtle difference”between two images as different
features and two images with similar“ anomaly score”as similar features (Fig. 1(b)). The
image dataset for pre-training is generated by adding pseudo-defects with random Gaussian
Mixture Model (GMM) parameters to the existing image dataset. Also, although the GMM
parameters have different for each generated image, there are only subtle difference in the
appearance of the generated images. Next, we pre-train a regressive CNN to estimate GMM
parameters that represent the anomaly score of generated anomaly images. This realizes to
represent“ subtle difference”and“ anomaly score”for high precision anomaly detection.

2 Basic Idea
PaDiM has achieved high anomaly detection performance (AUROC) on MVTecAD, a repre-
sentative dataset for anomaly detection. However, when examining each object of MVTecAD,
not all objects have high performance, and there are objects with low performance such as
Metal Nut, Pill, Tile, and Wood. In this study, we considered the reasons the anomaly detec-
tion performance of these categories is low and devised an idea on the basis of them.

2.1 Representing Subtle Difference
PaDiM uses ImageNet to pre-train the network. Here, in ImageNet, one class has a wide
range of meaning for images. For example, ImageNet has a class called“ lens cap”, and all
images of caps used to protect camera lenses are defined as this class. Therefore, everything
from items with scratches or peeled labels to new items are treated as one class. In contrast,
the images used in actual inspections have small defects (e.g., scratches) in local area of
the texture and object (e.g., metal plate). Therefore, to determine whether it is normal or
anomaly, the network needs to pay close attention to the details of the textures and objects
in the image and distinguish the subtle difference in their surface conditions. However, in
ImageNet,“ lens cap”is defined as one class without considering such surface conditions,
and the classes are not divided to distinguish the subtle difference. This means that it is
difficult to generate the differences in features between normal and anomaly images.

Therefore, in this research, we prepare a real image dataset and add pseudo-defects to it
by formula, thereby the difference in appearance between images is subtle. In addition, by
training a neural network to predict different values for each generated image, images with
subtle difference in image appearance can have different values in the feature space.

2.2 Representing Anomaly Score
Conventional PaDiM assumes that the features of normal images follow a normal distribution
and two images with similar anomaly scores have features with similar values. This means



4 H. KOBAYASHI ET AL.: SEMI-FORMULA DRIVEN PRE-TRAINING IMAGE DATASET

that the ranking of the features in each inspection image must correspond to the“ anomaly
score”on a specific axis. For example, as shown in Fig. 2, in the Pill category of MVTecAD,
it is considered that normal or anomaly labels are assigned depending on the anomaly score
of chipping. Specifically, the second image from the left is a normal limit sample, and those
with smaller and larger scores of chipping are labeled as normal and anomaly, respectively.
This“ limit”differs depending on each manufacturing site. Therefore, a feature space in
which the score (order) of defects is maintained needs to be created so that an anomaly can be
detected even if the limits differ. If this can be achieved, anomaly features will no longer be
plotted inside the distribution of normal features estimated by PaDiM. However, the feature
space of conventional methods was constructed to classify ImageNet classes, and it is not
suitable for representing a regressive feature space with the anomaly score.

Label: Normal Label: Anomaly

Low HighAnomaly score of chipping

Defect

Figure 2: Relationship between label and anomaly score in MVTecAD [22].

In this research, CNN is pre-trained so that subtle difference between normal and anomaly
images is assigned to different features, and the order of the feature values of each test image
corresponds to the anomaly score of an image on a specific axis in the feature space.

3 Pre-training with Semi-Formula Driven Dataset
In this chapter, we propose an anomaly detection method based on pre-training with semi-
formula driven image dataset that represents“ subtle difference”between two images as
different features and two images with similar“ anomaly score”as relatively similar fea-
tures. First, an image dataset for pre-training is generated by adding the pseudo-defects with
random GMM parameters to an existing image dataset (Sec. 3.1). GMM parameters have a
different value for each parameter, but the appearances of the generated images have only
subtle difference. Since this dataset is created with real normal image and formula defect
pattern, it is called as semi-formula driven image dataset. Details of the proposed dataset
are provided in the supplementary material. Unlike some formula-driven image datasets
[29, 30, 31], the proposed method is specialized and has high performance for anomaly de-
tection. Next, the regressive CNN is pre-trained to estimate GMM parameters that represent
the anomaly score of anomaly images (Sec. 3.2). Finally, PaDiM [7] with CNN pre-trained
by the proposed method is performed.

3.1 Generating Image Dataset with Gaussian Mixture Model
As shown in Fig. 3, inspired by [26], GMM is used to represent defects. The reason for
choosing GMM is as follows. The adjacent pixel in the defect region does not have random
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values but a nearly uniform value, and a simple elliptical defect can be approximated by one
Gaussian distribution. In addition, complex defects can also be represented by combining
many Gaussian distributions. Moreover, this method can control the position by changing
the mean, the size by changing the standard deviation, the shape by changing the correlation
coefficient, and the transparency by changing the density. Therefore, GMM is adopted. This
section describes how to create an anomaly image IIIano from a normal image IIInorm and GMM
Parameter θθθ GMM with function fano(IIInorm,θθθ GMM).

GMM parameter: 𝜽!""

Random number
1. Gaussian parameter: 𝜽!"#$$!

2. Scale: 𝑠

1.1. Pixel value: 𝑣%&'&(!,#
1.2. Density: 𝜇)! , 𝜇*! , 𝜎)! , 𝜎*! , 𝜌+ , 𝜋+

×𝐾

Note: Total number of parameters: 𝐾 𝐶 + 6 + 1
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Figure 3: Anomaly image generation with random GMM parameter.

First, GMM parameter θθθ GMM is generated with a random number. One GMM parameter
θθθ GMM has K instances for Gaussian parameter θθθ Gaussk and one instance for scale s, where
θθθ Gaussk is C + 6-dimensional vector and s is scalar (Eq. 1). And, k-th Gaussian parameter
θθθ Gaussk has vvvcolork = (vcolork,1 , ...,vcolork,C) as pixel value information with C elements, and
mean (µxk ,µyk), standard deviation (σxk ,σyk), correlation coefficient ρk, and mixing coeffi-
cient πk as density information with 6 elements (Eq. 2).

θθθ GMM := ({θθθ Gaussk}
K
k=1, s) (1)

θθθ Gaussk := (vcolork,1 , ..., vcolork,C , µxk , µyk , σxk , σyk , ρk, πk) (2)

Here, K is the number of Gaussian distributions on one GMM, and if K is large, it
can generate defects of complex shapes and color scheme. C is image channel, and it is
1 for grayscale image and 3 for RGB image. The range of image coordinates is defined
as −1 ≤ x,y ≤ 1. Moreover, each parameter is randomly generated so that the range is
defined as −1 ≤ µxk ,µyk ≤ 1 for mean, σxk ,σyk > 0 for standard deviation, −1 < ρk < 1 for
correlation coefficient, 0 ≤ πk ≤ 1 (s.t. ∑K

k=1 πk = 1) for mixing coefficient, −1 ≤ vcolork,c ≤ 1
for pixel value, and 0 ≤ s ≤ 1 for scale. In Fig. 3, the red values are different for each GMM
parameter, while the blue values are always fixed.

Next, the detail of anomaly generator fano is described as follows. A mask MGMT(x,y)
is created to indicate the mixing ratio of the normal image IIInorm and the pixel value vvvcolor
of GMM indicating defect color. This mask has the value from 0.0 to 1.0 and the role of
reflecting the pixel value of the normal image as it becomes closer to 0.0; otherwise, it
reflects the pixel value of GMM. The coordinate (x,y) in this mask is calculated with the
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following equations, where N is the probability density function of the normal distribution.

pGaussk(x,y) = πkN (x,y|µxk ,µyk ,σxk ,σyk ,ρk) (3)

pGMM(x,y) =
K

∑
k=1

pGaussk(x,y) (4)

MGMT(x,y) = s · pGMM(x,y)
max

x,y
pGMM(x,y)

(5)

Finally, the pixel value Iano(x,y,c) of coordinate (x,y) and the c-th channel in the anomaly
image IIIano are calculated with the pixel value Inorm(x,y,c) of the normal image IIInorm and the
pixel value vdef(x,y,c) obtained from the pixel value vvvcolor of GMM as follows:

vdef(x,y,c) =
K

∑
k=1

s ·
pGaussk(x,y)

max
x,y

pGMM(x,y)
· vcolork,c (6)

Iano(x,y,c) = Inorm(x,y,c)(1−MGMT(x,y))+ vdef(x,y,c) (7)

Through the above operations, one anomaly image IIIano is generated from one normal
image IIInorm and one GMM parameter θθθ GMM. This operation is repeated many times to
generate a large number of GMM parameters and their corresponding anomaly images. Here,
the difference between the generated anomaly images is subtle. By training a neural network
to predict different values for each generated image, images with subtle difference in image
appearance can have different values in the feature space.

GMM Parameter 𝜽!""

𝜽!""

𝑓#$%

Normal image 𝑰$%&' Anomaly image 𝑰#$% Convolutional Neural Network 𝑓()) $𝜽!""

(a) Nearest Neighbor Loss
from 𝜽!"" to $𝜽!""

Pre-processing

𝑓#$%

Generated anomaly image %𝑰#$%

(b) Image Generation Loss
between 𝑰#$% and %𝑰#$%

Figure 4: Pre-training based on estimation of GMM parameter from anomaly image.

3.2 Pre-training Based on Estimation of GMM Parameters
In this section, the regressive CNN is pre-trained with the generated anomaly image as in-
put such that the network estimates GMM parameters corresponding to this anomaly image
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(Fig. 4). And, two versions for pre-training are introduced as follows: direct estimation
(Sec. 3.2.1) and indirect estimation (Sec. 3.2.2). These pre-trainings are performed inde-
pendently and compared. By these pre-trainings, the regressive CNN can represent“ subtle
difference”as different features and“ anomaly score”with the order of the feature value.

3.2.1 Direct Estimation Training of GMM with Nearest Neighbor

First, an anomaly image IIIano is input to CNN fCNN, and then the final output is obtained.
Next, this output is separated to each parameter, and then the function is applied to v̂vvcolor
with Tanh, (µ̂µµx, µ̂µµy) with Tanh, (σ̂σσ x, σ̂σσ y) with Softplus, ρ̂ρρ with Tanh, π̂ππ with Softmax, and
ŝ with Sigmoid. Finally, the estimated parameter θ̂θθ GMM is obtained. Here, θ̂θθ GMM consists
of θ̂θθ Gaussk and ŝ by Eq. 8. Similar to Eq. 2, θ̂θθ Gaussk is the vector with elements of v̂vvcolork ,
(µ̂xk , µ̂yk), (σ̂xk , σ̂yk), ρ̂k, and π̂k. However, the network assigns the estimation result of
parameters to arbitrary nodes by ignoring the order of Gaussian distribution for the ground
truth label. In other words, when k = l, θθθ Gaussk and θ̂θθ Gaussl do not necessarily correspond
to each other. Therefore, it is necessary to find the output nodes θ̂θθ Gaussl that correspond to
each Gaussian distribution θθθ Gaussk of ground truth label and calculate the error between the
corresponding nodes. In this paper, this is achieved by finding the nearest neighbor from
θθθ GMM to θ̂θθ GMM with mean squared error as follows:

θ̂θθ GMM = fCNN(IIIano), where θ̂θθ GMM := ({θ̂θθ Gaussk}
K
k=1, ŝ) (8)

Ldirect =
1

K +1

(
(s− ŝ)2 +

K

∑
k=1

min
1≤l≤K

1
C+6

∥θθθ Gaussk − θ̂θθ Gaussl∥
2
2

)
(9)

Finally, after Ldirect is calculated by Eq. 9, the CNN is pre-trained so that Ldirect is mini-
mized. And, CNN will directly be able to estimate the parameters of Gaussian distributions
in anomaly images.

3.2.2 Indirect Estimation Training of GMM with Image Generation

In case of Sec. 3.2.1, even if the specific πk has πk ≒ 0 (0 ≤ πk ≤ 1) and the color of this
Gaussian distribution with low density doesn’t appear in anomaly image, the training to es-
timate parameters is forced. However, it is difficult for the network to estimate the Gaussian
parameter corresponding to this πk. To estimate the GMM parameters correctly regardless of
the value of πk, GMM is estimated indirectly using image generation (lower part of Fig. 4).

First, similar to Sec. 3.2.1, the parameter θ̂θθ GMM is estimated. Next, the anomaly image
ÎIIano is generated with the normal image IIInorm and GMM θ̂θθ GMM by the anomaly generator
fano. Then, the error between IIIano and ÎIIano is calculated with mean squared error as follows:

ÎIIano = fano(IIInorm, θ̂θθ GMM) (10)

Lindirect = ∥IIIano − ÎIIano∥2
2 (11)

Here, the function fano is differentiable, then the gradient can be backpropagated from
Lindirect to θ̂θθ GMM and fCNN. Finally, after Lindirect is calculated by Eq. 11, the CNN is pre-
trained so that Lindirect is minimized. And, CNN will indirectly be able to estimate the pa-
rameters of Gaussian distributions in anomaly images. By these operations, even if two input
images are very similar, if two GMM parameters that represent these images have different
values, the feature values and the output values of a network have different values between
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two images. This means the CNN is expected to separate normal and anomaly features in the
feature space. Moreover, this method can estimate the mean of the Gaussian distribution as
the position of pseudo-defects, the standard deviation as the size, the correlation coefficient
as the shape, and the density as the transparency. Therefore, the performance is expected to
be high when there is an ordinal correlation between“ anomaly score”and parameter value
(e.g., the defect size in Fig. 3 and the value of the standard deviation).

4 Experiments

4.1 Settings

For generating the pre-training image dataset, we used the beanTech Anomaly Detection
(BTAD) dataset [27]. It consists of 2,830 images separated into 3 categories. This has
little variation within the normal class on one category, and it is useful to generate anomaly
images with “subtle difference”. Therefore, all normal images of all categories in BTAD
were used as input image IIInorm of function fano for generating an anomaly image IIIano. One
normal sample is randomly selected from those normal images, one GMM parameter is
generated with a random number, and then one anomaly image is generated. This operation
was repeated to generate a total of 1,000,000 images. The number C of image channels
was 3 to detect the color difference. Additionally, the number K of Gaussian distributions
in one GMM parameter was 30 to save the shape and number of various defects. These
hyperparameters were decided manually before pre-training, as mentioned above.

For pre-training with the proposed method, we used WideResNet-50 [24] as a CNN. As
shown in Fig. 3, the total number of parameters contained in one GMM (i.e., used in one
anomaly image) is calculated by K(C+ 6)+ 1. Therefore, the number of nodes in the final
output layer of this network is defined as 271 because of K = 30 and C = 3.

To evaluate the defect detection performance, we used the MVTec Anomaly Detection
(MVTec AD) dataset [22], which is a benchmark dataset for unsupervised defect detection.
It consists of 5,354 images separated into 15 categories. Each category contains about 250
training images and 100 test images. In particular, Metal Nut, Pill, Tile, and Wood are labeled
as normal/anomaly on a basis of anomaly score from a certain point of view, and PaDiM has
low performance (less than 95.0 on Pixel-AUROC such as Sec. 4.2) for these 4 categories.
Therefore, we especially focused on these 4 categories. For each category, by using PaDiM,
a normal distribution was modeled by using only normal images, and normal/anomaly clas-
sification performance was evaluated using both normal and anomaly images in the test. The
area under the curve of the receiver operating characteristic (AUROC) was used as a met-
ric to evaluate classification performance at the pixel level (i.e., segmentation performance).
The ROC curve was created by utilizing the threshold of the anomaly score. And, five types
of random number seed values were used and the mean of five AUROC was calculated.

In this experiment, to evaluate the effectiveness of the proposed pre-training, classification-
based pre-training with previous image dataset (ImageNet [25], FractalDB [29], DAGM
[28], and BTAD [27]), and regression-based pre-training with proposed GMM-driven image
dataset are compared on same PaDiM algorithm. Here, ImageNet has 1,281,167 images and
1,000 classes, FractalDB has 1,000,000 images and 1,000 classes, DAGM has 6,900 images
and 12 classes, BTAD has 2,540 images and 6 classes (normal and anomaly images are in
different classes), and the proposed dataset has 1,000,000 image pairs and 271-dimensional
target variables. For a fair comparison, all methods are pre-trained with 50 [epoch], batch
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size of 64, Adam optimizer [32], and image size of 224x224[pixel] on WideResNet-50.

4.2 Results

Normal Anomaly ℒ!"#$%& ℒ"'!"#$%&

B
TA

D
-0

2 B
TA

D
-0

1
B

TA
D

-0
3

Training data Generated
Normal Anomaly ℒ!"#$%& ℒ"'!"#$%&

Training data Generated

Figure 5: Result of image generation with the proposed method on pre-training.

Figure 5 shows the result of image generation with the proposed method after pre-
training. "Normal" and "Anomaly" are normal and anomaly images actually used for pre-
training, and the generated image is made by normal image and GMM parameter obtained as
the output of CNN with anomaly image as input in each pre-training. The generated image is
close to the actual anomaly image, it indicates that the proposed method can estimate GMM
parameters.

Table 1: Anomaly detection performance (Pixel-AUROC) in various pre-training.
Previous pre-training Proposed pre-training

Category ImageNet FractalDB DAGM BTAD
BTAD+GMM

w/ Ldirect

BTAD+GMM
w/ Lindirect

Metal Nut 94.4 91.5 94.5 92.3 95.4 96.6
Pill 92.5 71.6 91.0 92.1 93.5 93.9
Tile 84.9 72.3 76.8 80.5 90.6 91.0

Wood 90.3 69.5 85.6 73.7 90.2 89.2
Mean 90.5 76.2 87.0 84.7 92.4 92.7
Bottle 98.1 90.4 95.1 94.4 97.1 96.6
Cable 95.2 94.4 94.2 87.1 93.5 95.3

Capsule 96.9 94.4 96.6 96.4 95.6 96.6
Carpet 98.5 93.5 78.9 72.3 91.2 92.4
Grid 95.3 90.7 74.9 59.8 85.9 89.3

Hazelnut 97.7 97.5 97.5 97.7 97.7 97.6
Leather 98.6 95.0 96.1 93.8 98.9 98.6
Screw 98.3 97.1 96.4 94.9 93.4 96.3

Toothbrush 98.4 95.8 97.5 98.5 97.1 98.0
Transistor 97.3 97.0 97.0 94.5 97.6 97.5

Zipper 97.3 91.7 94.8 85.1 96.3 97.2
Mean 97.4 94.3 92.6 88.6 94.9 95.9
All 95.6 89.5 91.1 87.5 94.3 95.1

Table 1 shows the experimental results (Pixel-AUROC) in 15 categories of MVTec AD.
In particular, the 4 categories (Metal Nut, Pill, Tile and Wood) where ImageNet performed
poorly (less than 95.0 on Pixel-AUROC) are shown in the upper group, and the other 11
categories are shown in the lower group. Overall, PaDiM based on pre-training with pro-
posed GMM-driven image dataset outperformed some previous datasets. In particular, the
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proposed method outperformed ImageNet in mean AUROC of 4 categories where ImageNet
performed poorly (upper group of table). It is considered that the proposed method has com-
plemented for the weaknesses of ImageNet by pre-training to represent“ subtle difference”
between two images as different features and two images with similar“ anomaly score”as
similar features. However, the performance of proposed method was lower than ImageNet
in mean AUROC of 11 categories (lower group of table). It is considered that the proposed
method had only 3 types of background textures while diversity of ImageNet is large, and it
is difficult to adapt various target dataset that differs from pre-training.

Anomaly
Image

Ground
Truth

ImageNet FractalDB DAGM BTAD BTAD+GMM
w/ ℒ!"#$%&

BTAD+GMM
w/ ℒ"'!"#$%&
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et
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W
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d

Estimated anomaly map
Previous pre-training Proposed pre-training

Figure 6: Result of anomaly detection with the estimated anomaly map.

Figure 6 shows the result of anomaly detection with the estimated anomaly map in 4 cat-
egories. The heatmap values are linearly normalized for each image. Compared to previous
pre-training methods, proposed pre-training methods are able to detect only defect regions.

5 Conclusion

In this paper, we proposed an anomaly detection method by pre-training with semi-formula
driven image dataset to represent“ subtle difference” between two images as different
features and two images with similar“ anomaly score” as similar features. An image
dataset for pre-training was generated by adding the pseudo-defects with random Gaussian
Mixture Model (GMM) parameters to the existing image dataset. GMM parameters have
a different value for each parameter, but the appearances of generated images have only
subtle difference. And, the regression network was pre-trained to estimate GMM parameters
that represent the anomaly score of generated anomaly images. In the experiments with
MVTecAD, the proposed method achieved high performance for categories where ImageNet
performed poorly.



H. KOBAYASHI ET AL.: SEMI-FORMULA DRIVEN PRE-TRAINING IMAGE DATASET 11

References
[1] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Esti-

mating the Support of a High-Dimensional Distribution,” Neural Computation, 2001.

[2] D. M. J. Tax and R. P. W. Duin, “Support Vector Data Description,” Machine Learning,
2004.

[3] L. Ruff, R. A. Vandermeulen, N. Görnitz, L. Deecke, S. A. Siddiqui, A. Binder, E.
Müller, and M. Kloft, “Deep One-Class Classification,” ICML, 2018.

[4] J. Yi and S. Yoon, “Patch SVDD: Patch-level SVDD for Anomaly Detection and Seg-
mentation,” ACCV, 2020.

[5] P. Napoletano, F. Piccoli, and R. Schettini, “Anomaly Detection in Nanofibrous Mate-
rials by CNN-Based Self-Similarity,” Sensors, 2018.

[6] O. Rippel, P. Mertens, and D. Merhof, “Modeling the Distribution of Normal Data in
Pre-Trained Deep Features for Anomaly Detection,” ICPR, 2021.

[7] T. Defard, A. Setkov, A. Loesch, and R. Audigier, “PaDiM: A Patch Distribution Mod-
eling Framework for Anomaly Detection and Localization,” Pattern Recognition. ICPR
International Workshops and Challenges, 2021.

[8] K. Roth, L. Pemula, J. Zepeda, B. Schölkopf, T. Brox, and P. Gehler, “Towards Total
Recall in Industrial Anomaly Detection,” CVPR, 2022.

[9] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and H. Chen, “Deep
Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection,” ICLR,
2018.

[10] M. Rudolph, B. Wandt, and B. Rosenhahn, “Same Same But DifferNet: Semi-
Supervised Defect Detection with Normalizing Flows,” WACV, 2021.

[11] M. Rudolph, T. Wehrbein, B. Rosenhahn, and B. Wandt, “Fully Convolutional Cross-
Scale-Flows for Image-based Defect Detection,” WACV, 2022.

[12] J. Yu, Y. Zheng, X. Wang, W. Li, Y. Wu, R. Zhao, and L. Wu, “FastFlow: Unsuper-
vised Anomaly Detection and Localization via 2D Normalizing Flows,” arXiv preprint
arXiv:2111.07677, 2021.

[13] P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger, and C. Steger, “Improving Unsu-
pervised Defect Segmentation by Applying Structural Similarity To Autoencoders,”
VISAPP, 2019.

[14] D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh, and A. v. d. Hengel,
“Memorizing Normality to Detect Anomaly: Memory-Augmented Deep Autoencoder
for Unsupervised Anomaly Detection,” ICCV, 2019.

[15] J. Hou, Y. Zhang, Q. Zhong, D. Xie, S. Pu, and H. Zhou, “Divide-and-Assemble:
Learning Block-wise Memory for Unsupervised Anomaly Detection,” ICCV, 2021.

[16] D. Dehaene, O. Frigo, S. Combrexelle, and P. Eline, “Iterative energy-based projection
on a normal data manifold for anomaly localization,” ICLR, 2020.



12 H. KOBAYASHI ET AL.: SEMI-FORMULA DRIVEN PRE-TRAINING IMAGE DATASET

[17] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Unsu-
pervised Anomaly Detection with Generative Adversarial Networks to Guide Marker
Discovery,” IPMI, 2017.

[18] H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chandrasekhar, “Efficient GAN-
Based Anomaly Detection,” ICLR Workshop, 2018.

[19] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “GANomaly: Semi-Supervised
Anomaly Detection via Adversarial Training,” ACCV, 2018.

[20] S. Akçay, A. Atapour-Abarghouei, and T. P. Breckon, “Skip-GANomaly: Skip Con-
nected and Adversarially Trained Encoder-Decoder Anomaly Detection,” IJCNN,
2019.

[21] A. Mousakhan, T. Brox, and J. Tayyub, “Anomaly Detection with Conditioned Denois-
ing Diffusion Models,” arXiv preprint arXiv:2305.15956, 2023.

[22] P. Bergmann, K. Batzner, M. Fauser, D. Sattlegger, and C. Steger, “The MVTec
Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised
Anomaly Detection,” IJCV, 2021.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,”
CVPR, 2016.

[24] S. Zagoruyko and N. Komodakis, “Wide Residual Networks,” arXiv preprint
arXiv:1605.07146, 2016.

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale
Hierarchical Image Database,” CVPR, 2009.

[26] H. Kobayashi and M. Hashimoto, “DRepT: Anomaly Detection Based on Transfer of
Defect Representation with Transmittance Mask,” IJCNN, 2023.

[27] P. Mishra, R. Verk, D. Fornasier, C. Piciarelli, and G. L. Foresti, “VT-ADL: A Vision
Transformer Network for Image Anomaly Detection and Localization,” ISIE, 2021.

[28] M. Wieler and T. Hahn, “Weakly Supervised Learning for Industrial Optical Inspec-
tion,” DAGM, 2007.

[29] H. Kataoka, K. Okayasu, A. Matsumoto, E. Yamagata, R. Yamda, N. Inoue, A. Naka-
mura, Y. Satoh, “Pre-Training Without Natural Images,” IJCV, 2022.

[30] H. Kataoka, R. Hayamizu, R. Yamada, K. Nakashima, S. Takashima, X. Zhang, Edgar
Josafat Martinez-Noriega, Nakamasa Inoue, Rio Yokota, “Replacing Labeled Real-
Image Datasets with Auto-Generated Contours,” CVPR, 2022.

[31] S. Takashima, R. Hayamizu, N. Inoue, H. Kataoka, R. Yokota, “Visual Atoms: Pre-
training Vision Transformers with Sinusoidal Waves,” CVPR, 2023.

[32] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” ICLR, 2015.


