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1 Introduction
In the supplementary material , Section 2 provides detailed results on three benchmark
datasets, miniImagnet, CIFAR100, and CUB200, for several previous SOA methods. Sec-
tion 3 provides visualization, and section 4 presents discussion and hyperparameters analy-
sis.

2 Detailed Results
Tables 1- 3 present detailed results on three benchmark datasets. Our method achieves fi-
nal accuracy rates of 65.32% for CUB200, 62.78% for miniImagenet, and 61.02% for CI-
FAR100, outperforming the current state-of-the-art (SOTA) methods by margins of 2.82%
(SAVC [15]), 2.04% (MICS [11]), and 2.52% (RCN [19]), respectively. Furthermore, our
approach attains average accuracies of 71.43%, 71.29%, and 70.12% across the CUB200,
miniImagenet, and CIFAR100 datasets, respectively, surpassing all other methods.

In Table 4, we analyze the False Negative Rate (FNR) and False Positive Rate (FPR)
percentages from session 1 as defined in TEEN [18] on the miniImagenet dataset. Notably,
a high FPR and a comparatively low FNR are obtained, indicating that new class instances
are frequently misidentified as base classes or similar novel classes. Our method stands out
by achieving a substantially lower FPR compared to baseline approaches, underscoring the
effectiveness of its introduced semantically rich multi-scale feature extraction strategy aided
by a contrastive framework.

Figure 1 indicates the Harmonic Mean [9] for different methods under 5-shot incremental
scenarios on CUB200 dataset indicated by line graph. We outperform all the benchmarked
methods including the latest method OrCo [1]. For 1-shot, we compare with the state-of-
the-art, indicated by bar graph. Our multi-scale approach shows its efficiency in the case of

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Song, Zhao, Shi, Peng, Yuan, and Tian} 2023

Citation
Citation
{Kim, Jeong, Park, and Yoon} 2024

Citation
Citation
{Wang, Wang, Zhao, and Qian} 2023

Citation
Citation
{Wang, Zhou, Zhang, Zhan, and Ye} 2024

Citation
Citation
{Kalla and Biswas} 2022

Citation
Citation
{Ahmed, Kukleva, and Schiele} 2024



2 RIYA VERMA, SUKHENDU DAS: MULTI-SCALE DUAL ANGULAR MARGIN CONTRAST

Method Accuracy in each session (%) ↑ Avg ↑ △last

0 1 2 3 4 5 6 7 8

Ft-CNN [16] 61.31 27.22 16.37 6.08 2.54 1.56 1.93 2.60 1.40 13.45 -
iCaRLa [13] 61.31 46.32 42.94 37.63 30.49 24.00 20.81 18.80 17.21 33.28 +15.81
EEILa [2] 61.31 46.58 44.00 37.29 33.14 27.12 24.10 21.57 19.58 34.97 +18.18
TOPICa [16] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 39.64 +23.02
Rebalancing [7] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 30.83 +12.77
SPPR [26] 61.35 63.80 59.53 55.83 52.35 49.60 46.49 43.24 41.92 52.76 +40.52
F2M [14] 72.05 67.47 63.16 59.70 56.71 53.77 51.11 49.21 47.84 57.89 +46.44
CEC [23] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 57.75 +46.23
MCNet [8] 72.33 67.70 63.50 60.34 57.59 54.70 52.13 50.41 49.08 58.64 +47.68
MetaFSCIL [3] 72.04 67.94 63.77 60.29 57.58 55.16 52.90 50.79 49.19 58.85 +47.79
MFS3 [20] 73.65 68.91 64.60 61.48 58.68 55.55 53.33 51.69 50.26 59.79 +48.86
FACT [24] 72.56 69.63 66.38 62.77 60.60 57.33 54.34 52.16 50.49 60.70 +49.09
SoftNet [22] 79.77 75.08 70.59 66.93 64.00 61.00 57.81 55.81 54.68 65.07 +53.28
ALICE [12] 80.60 70.60 67.40 64.50 62.50 60.00 57.80 56.80 55.70 63.99 +54.30
LIMIT [25] 72.32 68.47 64.30 60.78 57.95 55.07 52.70 50.72 49.19 59.06 +47.79
WaRP [10] 72.99 68.10 64.31 61.30 58.64 56.08 53.40 51.72 50.65 59.69 +49.25
NC-FSCIL [21] 84.02 76.80 72.00 67.83 66.00 64.04 61.46 59.54 58.31 67.82 +56.91
FCIL [5] 76.34 71.40 67.10 64.08 61.30 58.51 55.72 54.08 52.76 62.37 +51.36
SAVC [15] 81.12 76.14 72.43 68.92 66.48 62.95 59.92 58.39 57.11 67.05 +55.71
RCN∗ [19] 83.40 78.75 74.94 70.81 67.84 64.89 63.10 60.92 58.53 69.24 +57.13
TEEN [18] 73.53 70.55 66.37 63.23 60.53 57.95 55.24 53.44 52.08 61.41 +50.68
EHS∗ [4] 71.25 66.65 62.84 59.65 56.90 54.14 51.63 50.05 49.06 58.01 +47.66
MICS [11] 84.40 79.4 75.09 71.40 68.89 66.16 63.57 61.79 60.74 70.16 +59.34
Ours 82.97 79.96 76.93 74.07 69.39 68.98 63.48 63.04 62.78 71.29 +61.38

Table 1: Comparison of the performance of different methods on the miniImagenet dataset.
SOA results are highlighted in bold, while the second-best outcomes are underlined. a:
indicates that results are copied from [23]. *: indicates results directly copied from published
literature. △last: Relative improvements of the last session compared to the Ft-CNN [16]
model.

Figure 1: Harmonic Mean for different methods across sessions on CUB200. The line graph
depicts the harmonic mean under 5-shot setting, while the bar graph illustrates the harmonic
accuracy under 1-shot setting.
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Method Accuracy in each session (%) ↑ Avg ↑ △last

0 1 2 3 4 5 6 7 8

Ft-CNN [16] 64.10 39.61 15.37 9.80 6.67 3.80 3.70 3.14 2.65 16.54 -
iCaRLa [13] 64.10 53.28 41.69 34.73 27.93 25.06 20.41 15.48 13.73 32.93 +11.08
EEILa [2] 64.10 53.11 43.71 35.15 28.96 24.98 21.01 17.26 15.85 33.79 +13.20
TOPICa [16] 64.10 55.88 47.07 45.01 40.11 36.38 33.39 31.55 29.37 42.54 +26.72
Rebalancing [7] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 34.22 +10.89
SPPR [26] 63.97 65.86 61.31 57.60 53.39 50.93 48.27 45.36 43.32 54.45 +40.67
F2M [14] 71.45 68.10 64.43 60.87 57.76 55.26 53.53 51.57 49.35 59.15 +46.70
CEC [23] 73.07 68.88 65.26 61.19 58.09 55.57 53.23 51.34 49.14 59.53 +46.49
MCNet [8] 73.30 69.34 65.72 61.70 58.75 56.44 54.59 53.01 50.72 60.40 +48.07
MetaFSCIL [3] 74.50 70.10 66.84 62.77 59.48 56.52 54.36 52.56 49.97 60.79 +47.32
MFS3 [20] 73.42 69.85 66.44 62.81 59.78 56.94 55.04 53.00 51.07 60.93 +48.42
FACT [24] 74.60 72.09 67.56 63.52 61.38 58.36 56.58 54.24 52.10 62.27 +49.45
C-FSCIL 77.47 72.40 67.47 63.25 59.84 56.95 54.42 52.47 50.47 61.64 +47.82
SoftNet [22] 79.88 75.54 71.64 67.47 64.45 61.09 59.07 57.29 55.33 65.75 +52.68
ALICE [12] 79.00 70.50 67.10 63.40 61.20 59.20 58.10 56.30 54.10 63.21 +51.45
LIMIT [25] 73.81 72.09 67.87 63.89 60.70 57.77 55.67 53.52 51.23 61.84 +48.58
WaRP [10] 80.31 75.86 71.87 67.58 64.39 61.34 59.15 57.10 54.74 65.82 +52.09
NC-FSCIL [21] 82.62 78.62 73.34 69.68 66.19 62.85 60.96 59.02 56.11 67.71 +53.46
FCIL [5] 77.12 72.42 68.31 64.47 61.18 58.17 56.06 54.19 52.02 62.66 +49.37
SAVC [15] 78.77 73.31 69.31 64.93 61.70 59.25 57.13 55.19 53.12 63.63 +50.47
RCN∗ [19] 83.40 78.75 74.94 70.81 67.84 64.89 63.10 60.92 58.53 69.24 +55.88
TEEN [18] 74.92 72.65 68.74 65.01 62.01 59.29 57.90 54.76 52.64 63.10 +49.99
EHS∗ [4] 73.98 70.11 66.66 62.75 60.11 57.33 55.59 53.75 51.59 61.31 +48.94
MICS [11] 78.18 73.49 68.97 65.01 62.25 59.34 57.31 55.11 52.94 63.62 +50.29
Ours 83.44 79.99 75.57 71.42 69.54 64.65 62.95 62.55 61.05 70.12 +58.40

Table 2: Comparison of the performance of different methods on the CIFAR100 dataset.
SOA results are highlighted in bold, while the second-best outcomes are underlined. a:
indicates that results are copied from [23]. *: indicates results directly copied from published
literature. △last: Relative improvements of the last session compared to the Ft-CNN [16]
model.

1-shot as well.

3 Visualizations
Figure 2a compares the confusion matrices generated by the SAVC and our method when
applied to the CUB200 dataset. A sharper diagonal in our confusion matrix indicates more
correct predictions by our model, and fewer spreads outside the diagonal suggest that our
model is less confused and does not often misclassify between different classes compared to
SAVC. In figure 4, we visualize the top 3 output probabilities for some input images from
miniImagenet dataset for the baseline method, our set of 4 mappers, and the overall result of
our method using the Sum-min metric. Our set-based approach performs well on confusing
data, acts as an ensemble, and correctly identifies the output classes. The third row of figure 4
displays an inaccurate result for our method; nonetheless, our approach remains superior
since the compared method did not rank the true class within the top three scores. Our multi-
scale strategy results in fewer errors when classifying novel classes and also addresses the
bias towards base classes. Figure 2b we depict the decision boundaries learned from the
CIFAR100 dataset using t-SNE [17]. The visualization represents the decision boundaries
formed during the base session, where the model is trained on five old classes and five new
classes. Our approach evidently reserves space for future classes (indicated by the gray
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Method Accuracy in each session (%) ↑ Avg ↑ △last

0 1 2 3 4 5 6 7 8 9 10

Ft-CNN [16] 68.68 43.70 25.05 17.72 18.08 16.95 15.10 10.06 8.93 8.93 8.47 21.97 -
iCaRLa [13] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 36.6 +12.69
EEILa [2] 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.23 22.11 36.27 +13.64
TOPICa [16] 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 43.92 +17.81
Rebalancing [7] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 32.49 +11.4
SPPR [26] 68.68 61.85 57.43 52.68 50.19 46.88 4.65 43.07 40.17 39.63 37.33 49.34 +28.86
F2M [14] 77.13 73.92 70.27 66.37 64.34 61.69 60.52 59.38 57.15 56.94 55.89 63.96 +47.42
CEC [23] 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28 61.33 +43.81
MCNet [8] 77.57 73.96 70.47 65.81 66.16 63.81 62.09 61.08 60.41 60.09 59.08 65.57 +50.61
MetaFSCIL [3] 75.90 72.41 68.78 64.78 62.96 59.99 58.30 56.85 54.78 53.82 52.64 61.93 +44.17
MFS3 [20] 75.63 72.51 69.65 65.29 63.13 60.38 58.99 57.41 55.55 54.93 53.47 62.45 +45.00
FACT [24] 75.90 73.23 70.84 66.13 65.56 62.15 61.74 59.83 58.41 57.89 56.94 64.42 +48.47
SoftNet [22] 78.07 74.58 71.37 67.54 65.37 62.60 61.07 59.37 57.53 57.21 56.75 64.68 +48.28
ALICE [12] 77.40 72.70 70.60 67.20 65.90 63.40 62.91 60.90 60.50 60.01 60.10 65.75 +51.63
S3C [9] 80.62 77.55 73.19 68.54 68.05 64.33 63.58 62.07 60.61 59.79 58.95 67.03 +50.48
LIMIT [25] 75.89 73.55 71.99 68.14 67.42 63.61 62.40 61.35 59.91 58.66 57.41 65.48 +48.94
WaRP [10] 77.74 74.15 70.82 66.90 65.01 62.64 61.40 59.86 57.95 57.77 57.01 64.66 +48.54
NC-FSCIL [21] 80.45 75.98 73.20 70.28 68.17 65.16 64.43 63.25 60.66 60.01 59.44 67.28 + 50.97
FCIL [5] 78.70 75.12 70.10 66.26 66.51 64.01 62.69 61.00 60.36 59.45 58.48 62.37 +50.01
SAVC [15] 81.85 77.92 74.95 70.21 69.96 67.02 66.16 65.30 63.84 63.15 62.50 69.35 +54.03
RCN∗ [19] 79.86 76.48 73.34 69.72 68.48 65.93 64.58 63.68 62.04 61.48 60.47 67.82 +52.00
TEEN [18] 77.26 76.13 72.81 68.16 67.77 64.40 63.25 62.29 61.19 60.32 59.31 66.63 +50.84
MICS [11] 78.77 75.37 72.30 68.72 67.45 65.40 64.72 63.39 61.89 61.89 61.37 67.39 +52.90
Ours 83.08 79.99 77.25 72.35 71.65 69.02 68.13 67.98 65.06 65.92 65.32 71.43

Table 3: Comparison of the performance of different methods on the CUB200 dataset. SOA
results are highlighted in bold, while the second-best outcomes are underlined. a: indicates
that results are copied from [23]. *: indicates results directly copied from published litera-
ture. △last: Relative improvements of the last session compared to the Ft-CNN [16] model.

Table 4: False Negative Rate/False Positive Rate(%) on miniImageNet dataset for different
methods.

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8
FNR/FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR
CEC [23] 3.45 68.40 5.60 65.50 7.03 61.93 7.73 58.30 8.47 56.68 9.58 54.50 10.22 52.54 10.93 50.05

TEEN [18] 8.02 46.40 11.35 38.60 13.12 37.53 15.32 35.20 16.47 32.48 17.38 31.57 18.63 28.03 19.97 26.35
MICS [11] 11.08 42.79 13.71 30.63 14.00 35.35 10.06 20.08 15.89 27.33 16.04 20.63 21.56 23.45 12.30 16.14

Our 11.24 35.97 13.69 23.47 14.19 26.05 12.94 15.89 15.76 19.58 17.50 21.89 22.78 17.37 11.92 14.85

areas). The transition to the incremental stage is illustrated, marked by the introduction of
5 new classes (depicted as dots). The preserved space facilitates the incremental learning
phase, allowing new classes to integrate into the embedding space without compressing the
embedding of existing classes.

4 Discussion and Hyperparameters Analysis
We report the comparison of the number of trainable parameters of several typical methods
in Figure 3a. We can infer that the number of parameters used in our model is comparable
with most methods, indicating that performance gain is not due to over-parameterization.
The training time for CUB200 is shown in Figure 3b ,our method is at par with other related
works. Figure 5 illustrates mapper activation on various categories of miniImagenet dataset.
This demonstrates that mappers at the low level are frequently engaged similarly to those
at the high level. Thus, our approach benefits from a set of features compared to a single
feature per image.

Figure 7a compares the (R2) class separation degree for CE (cross-entropy), SAVC, and
our method. We achieved a higher mutual class separation degree, indicating we can separate
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(a) Confusion matrices comparison of SAVC and
our method on CUB200 dataset.

(b) t-SNE visualization of CIFAR100, Orig-
inal classes are marked with triangles, new
classes with dots, and shaded areas show class
decision regions.

Figure 2: Visualizations.

(a) Parameter count in millions. (b) Training time analysis.

Figure 3: Parameter count and training time analysis on CUB200 for several methods

the novel classes well from the old ones.
For double angular margin contrastive loss used in our method, we analyzed different

values of the scale factor s. As shown in figure 6a, s = 30 or 20 gives good results in most
sessions. Thus, for all our experiments, we set the s to 30.

Figure 6b analyzes values of positive (mp) and negative (mn) margins on CIFAR100
dataset. The plot indicates that it is better to set mn greater than mp. Parameter mn in-
creases the distance threshold for negative pairs. For more diverse datasets like CIFAR100
or miniImagenet, a larger value of mn helps separate distinct classes well. C manages the
numerical range and stability of the cotangent outputs in the loss function. It prevents ex-
cessively large gradients by clamping the cotangent function’s output, which may cause the
learning process to diverge, particularly near its undefined points. Clamping ensures stable,
discriminative feature learning, which is crucial for model convergence. Our selection of
C=20 is supported by accuracy variations shown in the figure 6c. Temperature τ = 20 gives
the optimal performance as depicted in figure 6d.

Figure 7b depicts applying Layerwise Feature Augmentation (LFA) gives better perfor-
mance over uniform feature augmentation. LFA before mappers performs better as mappers
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Figure 4: Top 3 prediction probabilities for the baseline [15], mappers (m1, m2−3, m4−6 and
m7−10) and our cumulative result. Blue and orange colors represent base and incremental
classes, respectively. A yellow edge indicates the ground-truth class.
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Figure 5: The heatmap represents the frequency (as a percentage) with which each feature
mapper (y-axis) is selected when classifying samples from various categories (x-axis) within
a subset of the miniImageNet test set. These values are calculated by averaging the selection
frequency of each mapper across all 200 samples within their respective categories. Base
classes, which are part of the initial training set, are indicated in red, while incremental
classes, added during the testing phase, are shown in blue.

(a) Hyperparameter study for scale factor (s).
s = 30 gives the optimal performance

(b) Hyperparameter study for margins. mp:
positive margin, mn: negative margin.

(c) Hyperparameter study for Clamp C. (d) Hyperparameter study for Temperature τ .

Figure 6: Hyperparameter Analysis on CIFAR100
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further enhance the augmented features learning more generalized representations.

(a) Class separation degree (R2) defined in
SAVC [15]. Higher mutual class separation
degree indicates good separation between the
novel classes and the old classes.

(b) Analysis of Feature Augmentation. UFA:
Uniform Feature Augmentation, LFA_before:
LFA applied before mappers, LFA_after:LFA
applied after mappers.

Figure 7: Ablation Study on Class Separation Degree and Feature Augmentation.

Table 5 shows the impact of the number of mappers on the average accuracy for the CI-
FAR100 dataset. The optimal accuracy is achieved with ten mappers. For a fair comparison,
we used a ResNet [6] architecture with four blocks. Increasing the number of mappers
doesn’t necessarily improve performance because it requires reducing the number of filters
to maintain comparable parameters, leading to underfitting due to under-parameterization.
However, using larger backbones with more mappers could potentially yield better perfor-
mance.

No. of Mappers Average Accuracy (%)

4 68.56
8 69.29
10 70.12
12 70.01
14 69.76

Table 5: Impact of the Number of Mappers on Average Accuracy for the CIFAR100 Dataset.
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